Runella Slithyfurmis Gen. Nov., Sp. Nov., a Curved, Nonflexible, Pink Bacterium

Total Page:16

File Type:pdf, Size:1020Kb

Runella Slithyfurmis Gen. Nov., Sp. Nov., a Curved, Nonflexible, Pink Bacterium 0020-77 13/78/0028-0032$02.00/0 INTERNA'I'IONAI, JOIIRNA~.OF SYSTI.:MATI(' BA(TTEHIOI,OGY, Jan. 1978, p. 32-36 Vol. 28, No. 1 Copyright 0 1978 International Association of Microbiological Societies Printed in U.S. A. Runella slithyfurmis gen. nov., sp. nov., a Curved, Nonflexible, Pink Bacterium JOHN M. LARKIN AND PATRICIA M. WILLIAMS Department of Microbiology, Louisiana State University, Baton Rouge, Louisiana 70803 Two strains of bacteria regarded as belonging to a new species were isolated from bodies of water near Baton Rouge, La. The cells of these strains were gram-negative, curved rods, the degree of curvature varying among cells in a single culture. A pink pigment was produced on glucose-peptone-yeast extract agar. The strains were nonmotile and nonfermentative, and the guanine-plus- cytosine contents of their deoxyribonucleic acids varied from 49.3 to 49.6 mol%. The species cannot be assigned to any known genus, and therefore a new genus, Runella, is proposed, with R. slzthyformis as the type species. The type strain of this species is strain 4 (= ATCC 29530). At present, it is difficult to place the genus Runella in a family. During examination of the bacteria that in- eosin-methylene blue agar, phenol red-mannitol-salt habit the bodies of fresh water in southern agar, phenyl ethyl alcohol agar, nutrient agar, nutrient Louisiana, we repeatedly encountered bacteria agar plus 5% sucrose, Trypticase soy agar, Trypticase soy agar plus 3% glucose, peptonized milk agar, MS that resembled those of the newly described agar, yeast extract-acetate-tryptoneagar, McConkey genus Flectobucillus (2). The organisms were agar, bismuth sulfide agar, and salmonella-shigella seen both on slides that had been suspended in agar. water and in enrichments made by adding 0.1 g Additional characters.The techniques and meth- of peptonized milk to 100 ml of the water sample. ods used to determine the abilities of the strains to We were successful in isolating two strains of utilize sole carbon sources, to hydrolyze macromole- these organisms, and subsequent characteriza- cules, to produce specific enzymes or end products, tion studies indicated that they are physiologi- and to determine their susceptibilities to antibiotics cally quite different from flectobacilli even have been reported previously (2). though they are similar morphologically. These Two techniques were used to determine the gua- nine-plus-cytosine (G+C) contents of the deoxyribo- a strains represent new species and genus of nucleic acids (DNA) of the strains. One technique, bacteria, descriptions of which are presented. used with strain 6, made use of the Marmur method (6) to purify the DNA, followed by determining the MATEXIALS AND METHODS melting-point profile with a Gilford model 2400 spec- Bacterid strains. Two similar strains were iso- trophotometer equipped with a temperature-con- lated from water from the Baton Rouge, La., area by trolled cuvette compartment (5). In the other tech- repeated streaking of water samples onto MS agar nique, used with strain 4, DNA was partially purified (0.1% each of glucose, peptone, and yeast extract, plus by the method of Meyer and Schliefer (7), and the 1.5% agar) with incubation at room temperature. One mole percent G+C was determined by the absorbance strain, designated as strain 4, was isolated from Uni- ratio technique of Ulitzer (9). Measurements of cell versity Lake, and the other, designated as strain 6, size were obtained with a Filar micrometer. Photomi- was isolated from Elbow Bayou. Cultures of these crographs were obtained with a GiIlet and Seibert strains were maintained on MS agar, with transfers microscope equipped with a Nikon model AFM cam- made at about 2-week intervals. era. Utilization of carbohydrates. The production of acid from carbohydrates by aerobic or anaerobic RESULTS means was determined by the method of Hugh and Leifson (11, in which MS agar was used but with the The results of the analysis of the two strains glucose replaced by 1%of the substrate to be tested are summarized in Table 1. The cells were and the agar concentration lowered to 0.3%. Incuba- curved rods, with the degree of curvature of tion was continued for 8 weeks for cultures giving individual cells within a culture varying from negative results. nearly straight to curved in the shape of a ring. Ability to grow on various media. The abilities of the organisms to grow on various media were inves- Coils of two to three turns were rarely formed, tigated by making a single streak of the organisms and filaments up to 14 pm in length were pro- from a fresh slant onto the surface of the medium duced. This morphological variation prompted and incubating at 25°C for a minimum of 3 weeks. us to determine whether the cells were flexible The media tested were chocolate agar, blood agar, or capable of gliding motility, but observations 32 VOL. 28,1978 RUNELLA SLITHYFORMIS, GEN. NOV., SP. NOV. 33 TABLE1. Characteristics of two strains of Runella slithyfonnis" Character Strain 4 Strain 6 ~______~~ Character Strain 4 Strain 6 Gram reaction ......... - - Indole production ..... - - Pigmentation ......... Pale pink Pale pink Methyl red test ........ - - Fluorescence .......... - - Voges-Proskauer test . - - Formation of coils ..... Rare Rare NO3 reduction ......... - - Motility ............. - - H2S production ........ - - Mol% G+C ........... 49.6 49.3 Hydrolytic activity on: Cell size: Cellulose ........... - - Length (pm) ........ 2.5-4.0 2.0-4.5 Agar ............... - - Diameter (pm) ...... 0.5-0.9 0.6-0.9 Chitin ............. - - Diameter of rings (pm) 2.0-3.0 2.0-2.5 Gelatin ............. - - Filament length (pm) up to 12.0 Up to 14.0 Starch ............. sl+ sl+ Acid produced aerobi- Casein ............. NG NG cally from: Esculin ............. - - Pentoses Tributyrin .......... + + Arabinose ........ Litmus milk ......... No change No change Ribose ........... Utilization of sole carbon Xylose ........... sources: Methyl pentose Acetate ............. - - Rhamnose ........ - + Benzoate ........... - - Hexoses Citrate ............. - - Fructose .......... Formate ............ - - Galactose ......... Glycerol phosphate . - - Glucose .......... Methylamine ....... - - Mannose ......... Propionate .......... - - Sorbose .......... Succinate ........... - - Glucosides Tartrate ............. - - a-Methyl-D-gluco- Malonate ........... - - side ............ Methanol ........... - - Salicin ........... Growth on agar media: Disaccharides Chocolate ........... 1 1 Cellobiose ........ Blood .............. NG NG Lactose ........... - - EMB ............... NG NG Maltose .......... + + NA ................. 3 3 Melibiose ......... NAS ............... NG NG Sucrose ........... + + PRMS ............. NG NG Trehalose ......... NG NG PEA ............... NG NG Trisaccharide TSA ............... NG NG Fbffinose ......... - + TSAS .............. NG NG Polysaccharides TSAG .............. NG NG Dextrin ........... - - PMA ............... 1 1 Inulin ............ + + MS ................ 4 4 Alcohols YEAT .............. 1 1 Glycerol .......... McConkey .......... NG NG Erythritol ........ BS ................. NG NG Dulcitol .......... ss ................. NG NG Mannit01 ......... Antibiotic susceptibility Sorbitol .......... to: Actinomycin D (100 Production of enzymes S S Urease ............. pg/d . , - Lecithinase ......... Ampicillin (10 pg) ... S S Lysine decarboxylase Aureomycin (15 pg) . S S Ornithine decarboxyl- Carbenicillin (50 pg) . S S ase ............. Cephalothin (30pg) . S S Phenylalanine deami- Colistin (10 pg) ...... R R nase ............ Erythromycin (15 pg) S S ONPG ............. Furadantin/macrodantin + + S S Oxidase ............. + + (300 pg) ........ Catalase ............ sl+ sl+ Gentamycin (10 pg) . S S Phosphatase ........ + + Kanamycin (30 pg) . R S Hemolvsin .......... - - 34 LARKIN AN I) WILLIAMS INT. J. SYST. BACTEIIIOL. TABLEl-Continued Character Strain 4 Strain 6 Character Strain 4 Strain 6 ~_.______ Mitomycin C (1 pg/ml) S Sulfamethoxyzole/tri- Neomycin (30 pg) S methopterh (25 S S Penicillin G (10 U) S S Clg) Polymyxin B (300 U) H Tetracycline (30 pg) S S Streptomycin (10 pg) S S Triple sulfa (1 mg) K R " Symbols: +, positive, -, negative; NG, no growth. The growth responses on various media are graded from 1 to 4 for scant to luxurious growth, repectively. Abbreviations: S, susceptible; R, resistant; EMB, eosin- methylene blue; NA, nutrient agar; NAS, nutrient agar plus 5% sucrose; PRMS, phenol red-mannitol-salt agar; PEA, phenyl ethyl alcohol agar; TSA, Trypticase soy agar; TSAG, Trypticase soy agar plus 3% glucose; PMA, peptonized milk agar; YEAT, yeast extract-acetate-tryptoneagar; BS, bismuth sulfide agar; SS, salmo- nella-shigella agar. of tubes. Figure 1 shows the typical morphology of these two strains. DISCUSSION The organisms described above are suffi- ciently different from those of the known genera to merit their recognition as members of a new genus, which we propose to call Runella. In Table 2 are listed some of the characteristics that help to differentiate Runella from other genera that have some characteristics in com- mon with the new genus. Runella resembles Vibrio in DNA G+C con- tent and in being curved, but it differs from Vcbrio in being nonmotile, nonfermentative, in- capable of anaerobic growth, and in producing a pink pigmentation. Runella differs from Cy- tophaga and FZexibacter in DNA G+C content and in being nonmotile; additionally, it differs from Cytophagu in being nonfermentative and unable to hydrolyze cellulose,
Recommended publications
  • Runella Slithyformis Type Strain (LSU 4(T))
    Lawrence Berkeley National Laboratory Recent Work Title Complete genome sequence of the aquatic bacterium Runella slithyformis type strain (LSU 4(T)). Permalink https://escholarship.org/uc/item/52p6k8qb Journal Standards in genomic sciences, 6(2) ISSN 1944-3277 Authors Copeland, Alex Zhang, Xiaojing Misra, Monica et al. Publication Date 2012-05-04 DOI 10.4056/sigs.2475579 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Standards in Genomic Sciences (2012) 6:145-154 DOI:10.4056/sigs.2485911 Complete genome sequence of the aquatic bacterium T Runella slithyformis type strain (LSU 4 ) Alex Copeland1, Xiaojing Zhang1,2, Monica Misra1,2, Alla Lapidus1, Matt Nolan1, Susan Lucas1, Shweta Deshpande1, Jan-Fang Cheng1, Roxanne Tapia1,2, Lynne A. Goodwin1,2, Sam Pitluck1, Konstantinos Liolios1, Ioanna Pagani1, Natalia Ivanova1, Natalia Mikhailova1, Amrita Pati1, Amy Chen3, Krishna Palaniappan3, Miriam Land1,4, Loren Hauser1,4, Chongle Pan1,4, Cynthia D. Jeffries1,4, John C. Detter1, Evelyne-Marie Brambilla5, Manfred Rohde6, Olivier D. Ngatchou Djao6, Markus Göker5, Johannes Sikorski5, Brian J. Tindall5, Tanja Woyke1, James Bristow1, Jonathan A. Eisen1,7, Victor Markowitz3, Philip Hugenholtz1,8, Nikos C. Kyrpides1, Hans-Peter Klenk5*, and Konstantinos Mavromatis1 1 DOE Joint Genome Institute, Walnut Creek, California, USA 2 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 3 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley,
    [Show full text]
  • Eelgrass Sediment Microbiome As a Nitrous Oxide Sink in Brackish Lake Akkeshi, Japan
    Microbes Environ. Vol. 34, No. 1, 13-22, 2019 https://www.jstage.jst.go.jp/browse/jsme2 doi:10.1264/jsme2.ME18103 Eelgrass Sediment Microbiome as a Nitrous Oxide Sink in Brackish Lake Akkeshi, Japan TATSUNORI NAKAGAWA1*, YUKI TSUCHIYA1, SHINGO UEDA1, MANABU FUKUI2, and REIJI TAKAHASHI1 1College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, 252–0880, Japan; and 2Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060–0819, Japan (Received July 16, 2018—Accepted October 22, 2018—Published online December 1, 2018) Nitrous oxide (N2O) is a powerful greenhouse gas; however, limited information is currently available on the microbiomes involved in its sink and source in seagrass meadow sediments. Using laboratory incubations, a quantitative PCR (qPCR) analysis of N2O reductase (nosZ) and ammonia monooxygenase subunit A (amoA) genes, and a metagenome analysis based on the nosZ gene, we investigated the abundance of N2O-reducing microorganisms and ammonia-oxidizing prokaryotes as well as the community compositions of N2O-reducing microorganisms in in situ and cultivated sediments in the non-eelgrass and eelgrass zones of Lake Akkeshi, Japan. Laboratory incubations showed that N2O was reduced by eelgrass sediments and emitted by non-eelgrass sediments. qPCR analyses revealed that the abundance of nosZ gene clade II in both sediments before and after the incubation as higher in the eelgrass zone than in the non-eelgrass zone. In contrast, the abundance of ammonia-oxidizing archaeal amoA genes increased after incubations in the non-eelgrass zone only. Metagenome analyses of nosZ genes revealed that the lineages Dechloromonas-Magnetospirillum-Thiocapsa and Bacteroidetes (Flavobacteriia) within nosZ gene clade II were the main populations in the N2O-reducing microbiome in the in situ sediments of eelgrass zones.
    [Show full text]
  • Runella Slithyfurmis Gen. Nov., Sp. Nov., a Curved, Nonflexible, Pink Bacterium
    0020-77 13/78/0028-0032$02.00/0 INTERNA'I'IONAI, JOIIRNA~.OF SYSTI.:MATI(' BA(TTEHIOI,OGY, Jan. 1978, p. 32-36 Vol. 28, No. 1 Copyright 0 1978 International Association of Microbiological Societies Printed in U.S. A. Runella slithyfurmis gen. nov., sp. nov., a Curved, Nonflexible, Pink Bacterium JOHN M. LARKIN AND PATRICIA M. WILLIAMS Department of Microbiology, Louisiana State University, Baton Rouge, Louisiana 70803 Two strains of bacteria regarded as belonging to a new species were isolated from bodies of water near Baton Rouge, La. The cells of these strains were gram-negative, curved rods, the degree of curvature varying among cells in a single culture. A pink pigment was produced on glucose-peptone-yeast extract agar. The strains were nonmotile and nonfermentative, and the guanine-plus- cytosine contents of their deoxyribonucleic acids varied from 49.3 to 49.6 mol%. The species cannot be assigned to any known genus, and therefore a new genus, Runella, is proposed, with R. slzthyformis as the type species. The type strain of this species is strain 4 (= ATCC 29530). At present, it is difficult to place the genus Runella in a family. During examination of the bacteria that in- eosin-methylene blue agar, phenol red-mannitol-salt habit the bodies of fresh water in southern agar, phenyl ethyl alcohol agar, nutrient agar, nutrient Louisiana, we repeatedly encountered bacteria agar plus 5% sucrose, Trypticase soy agar, Trypticase soy agar plus 3% glucose, peptonized milk agar, MS that resembled those of the newly described agar, yeast extract-acetate-tryptoneagar, McConkey genus Flectobucillus (2).
    [Show full text]
  • Taxonomy JN869023
    Species that differentiate periods of high vs. low species richness in unattached communities Species Taxonomy JN869023 Bacteria; Actinobacteria; Actinobacteria; Actinomycetales; ACK-M1 JN674641 Bacteria; Bacteroidetes; [Saprospirae]; [Saprospirales]; Chitinophagaceae; Sediminibacterium JN869030 Bacteria; Actinobacteria; Actinobacteria; Actinomycetales; ACK-M1 U51104 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae; Limnohabitans JN868812 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae JN391888 Bacteria; Planctomycetes; Planctomycetia; Planctomycetales; Planctomycetaceae; Planctomyces HM856408 Bacteria; Planctomycetes; Phycisphaerae; Phycisphaerales GQ347385 Bacteria; Verrucomicrobia; [Methylacidiphilae]; Methylacidiphilales; LD19 GU305856 Bacteria; Proteobacteria; Alphaproteobacteria; Rickettsiales; Pelagibacteraceae GQ340302 Bacteria; Actinobacteria; Actinobacteria; Actinomycetales JN869125 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae New.ReferenceOTU470 Bacteria; Cyanobacteria; ML635J-21 JN679119 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae HM141858 Bacteria; Acidobacteria; Holophagae; Holophagales; Holophagaceae; Geothrix FQ659340 Bacteria; Verrucomicrobia; [Pedosphaerae]; [Pedosphaerales]; auto67_4W AY133074 Bacteria; Elusimicrobia; Elusimicrobia; Elusimicrobiales FJ800541 Bacteria; Verrucomicrobia; [Pedosphaerae]; [Pedosphaerales]; R4-41B JQ346769 Bacteria; Acidobacteria; [Chloracidobacteria]; RB41; Ellin6075
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Spirosoma Endophyticum Sp. Nov., Isolated from Zn- and Cd-Accumulating Salix Caprea
    International Journal of Systematic and Evolutionary Microbiology (2013), 63, 4586–4590 DOI 10.1099/ijs.0.052654-0 Spirosoma endophyticum sp. nov., isolated from Zn- and Cd-accumulating Salix caprea Julia Fries, Stefan Pfeiffer, Melanie Kuffner and Angela Sessitsch Correspondence AIT Austrian Institute of Technology GmbH, Bioresources Unit, Tulln, Austria Angela Sessitsch [email protected] A Gram-reaction-negative, yellow-pigmented strain, designated EX36T, was characterized using a polyphasic approach comprising phylogenetic, morphological and genotypic analyses. The endophytic strain was isolated from Zn/Cd-accumulating Salix caprea in Arnoldstein, Austria. Analysis of the 16S rRNA gene demonstrated that the novel strain is most closely related to members of the genus Spirosoma (95 % sequence similarity with Spirosoma linguale). The genomic DNA G+C content was 47.2 mol%. The predominant quinone was and the major cellular fatty acids were summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1v7c), C16 : 1v5c, iso- T C17 : 0 3-OH and iso-C15 : 0. On the basis of its phenotypic and genotypic properties, strain EX36 should be classified as a novel species of the genus Spirosoma, for which the name Spirosoma endophyticum sp. nov. is proposed. The type strain is EX36T (5DSM 26130T5LMG 27272T). The genus Spirosoma was first proposed by Larkin & Borrall rRNA gene was amplified by PCR using the primers 8f (59- (1984) and belongs to the family Flexibacteraceae in the AGAGTTTGATCCTGGCTCAG-39)(Weisburget al., 1991) phylum Bacteroidetes. At the time of writing the genus and 1520r (59-AAGGAGGTGATCCAGCCGCA-39)(Edwards Spirosoma includes five species, the type species Spirosoma et al., 1989).
    [Show full text]
  • Metagenomics Unveils the Attributes of the Alginolytic Guilds of Sediments from Four Distant Cold Coastal Environments
    Metagenomics unveils the attributes of the alginolytic guilds of sediments from four distant cold coastal environments Marina N Matos1, Mariana Lozada1, Luciano E Anselmino1, Matías A Musumeci1, Bernard Henrissat2,3,4, Janet K Jansson5, Walter P Mac Cormack6,7, JoLynn Carroll8,9, Sara Sjöling10, Leif Lundgren11 and Hebe M Dionisi1* 1Laboratorio de Microbiología Ambiental, Centro para el Estudio de Sistemas Marinos (CESIMAR, CONICET), Puerto Madryn, U9120ACD, Chubut, Argentina 2Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, 13288 Marseille, France 3INRA, USC 1408 AFMB, F-13288 Marseille, France 4Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia 5Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA 6Instituto Antártico Argentino, Ciudad Autónoma de Buenos Aires, C1064ABR, Argentina 7Instituto Nanobiotec, CONICET- Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1113AAC, Argentina 8Akvaplan-niva, Fram – High North Research Centre for Climate and the Environment, NO- 9296 Tromsø, Norway 9CAGE - Centre for Arctic Gas Hydrate, Environment and Climate, UiT The Arctic University of Norway, N-9037 Tromsø, Norway 10School of Natural Sciences and Environmental Studies, Södertörn University, 141 89 Huddinge, Sweden 11Stockholm University, SE-106 91 Stockholm, Sweden This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as an ‘Accepted Article’, doi: 10.1111/1462-2920.13433 This article is protected by copyright. All rights reserved. Page 2 of 41 Running title: Alginolytic guilds from cold sediments *Correspondence: Hebe M.
    [Show full text]
  • Water Quality and Microbial Diversity in Cisterns from Semiarid Areas in Brazil Fellipe Alves, Thorsten Köchling, Julio Luz, Sylvana Melo Santos and Savia Gavazza
    513 © IWA Publishing 2014 Journal of Water and Health | 12.3 | 2014 Water quality and microbial diversity in cisterns from semiarid areas in Brazil Fellipe Alves, Thorsten Köchling, Julio Luz, Sylvana Melo Santos and Savia Gavazza ABSTRACT Harvesting rainwater is a common practice worldwide, particularly in areas with no access to a Fellipe Alves Sylvana Melo Santos public water supply or insufficient groundwater reserves. More than two million people living in Savia Gavazza (corresponding author) Laboratory of Environmental Engineering, semiarid regions of Brazil consume rainwater stored in cisterns, and little information is available Academic Center of the Agreste, Federal University of Pernambuco. Rodovia regarding the water quality. Despite the initial good quality of the rainwater, its harvest and storage BR-104, can introduce contaminants that must be eliminated before consumption. To evaluate the influence of Km 62, Nova Caruaru. Caruaru – PE, Brazil. CEP: 55002-970 handling, cistern age and precipitation on the quality of harvested rainwater, we monitored seven E-mail: [email protected] cisterns in the semiarid Brazilian Northeast over 4 years. Microbial and physicochemical parameters Thorsten Köchling Julio Luz were monitored once a month, and denaturant gradient gel electrophoresis (DGGE) was performed at Laboratory of Environmental Sanitation, Department of Civil Engineering, the end of the monitoring period. Coliform bacteria were detected in 100% of samples, while Federal University of Pernambuco. Av. Escherichia coli were observed in 73.8%. The alkalinity and conductivity were the highest for the AcadêmicoHélio Ramos, s/n. CidadeUniversitária. Recife – PE, recently built cisterns due to the dissolution of construction materials. The DGGE of the 16S r DNA did Brazil.
    [Show full text]
  • Diversity of Aerobic Anoxygenic Phototrophs and Rhodopsin-Containing Bacteria in the Surface Microlayer, Water Column and Epilithic Biofilms of Lake Baikal
    microorganisms Article Diversity of Aerobic Anoxygenic Phototrophs and Rhodopsin-Containing Bacteria in the Surface Microlayer, Water Column and Epilithic Biofilms of Lake Baikal Agnia Dmitrievna Galachyants 1,*, Andrey Yurjevich Krasnopeev 1 , Galina Vladimirovna Podlesnaya 1 , Sergey Anatoljevich Potapov 1 , Elena Viktorovna Sukhanova 1 , Irina Vasiljevna Tikhonova 1 , Ekaterina Andreevna Zimens 1, Marsel Rasimovich Kabilov 2 , Natalia Albertovna Zhuchenko 1, Anna Sergeevna Gorshkova 1, Maria Yurjevna Suslova 1 and Olga Ivanovna Belykh 1,* 1 Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; [email protected] (A.Y.K.); [email protected] (G.V.P.); [email protected] (S.A.P.); [email protected] (E.V.S.); [email protected] (I.V.T.); [email protected] (E.A.Z.); [email protected] (N.A.Z.); [email protected] (A.S.G.); [email protected] (M.Y.S.) 2 Chemical Biology and Fundamental Medicine Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8, 630090 Novosibirsk, Russia; [email protected] * Correspondence: [email protected] (A.D.G.); [email protected] (O.I.B.); Citation: Galachyants, A.D.; Tel.: +73-952-425-415 (A.D.G. & O.I.B.) Krasnopeev, A.Y.; Podlesnaya, G.V.; Potapov, S.A.; Sukhanova, E.V.; Abstract: The diversity of aerobic anoxygenic phototrophs (AAPs) and rhodopsin-containing bac- Tikhonova, I.V.; Zimens, E.A.; teria in the surface microlayer, water column, and epilithic biofilms of Lake Baikal was studied for Kabilov, M.R.; Zhuchenko, N.A.; the first time, employing pufM and rhodopsin genes, and compared to 16S rRNA diversity.
    [Show full text]
  • Genome-Based Taxonomic Classification Of
    ORIGINAL RESEARCH published: 20 December 2016 doi: 10.3389/fmicb.2016.02003 Genome-Based Taxonomic Classification of Bacteroidetes Richard L. Hahnke 1 †, Jan P. Meier-Kolthoff 1 †, Marina García-López 1, Supratim Mukherjee 2, Marcel Huntemann 2, Natalia N. Ivanova 2, Tanja Woyke 2, Nikos C. Kyrpides 2, 3, Hans-Peter Klenk 4 and Markus Göker 1* 1 Department of Microorganisms, Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany, 2 Department of Energy Joint Genome Institute (DOE JGI), Walnut Creek, CA, USA, 3 Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia, 4 School of Biology, Newcastle University, Newcastle upon Tyne, UK The bacterial phylum Bacteroidetes, characterized by a distinct gliding motility, occurs in a broad variety of ecosystems, habitats, life styles, and physiologies. Accordingly, taxonomic classification of the phylum, based on a limited number of features, proved difficult and controversial in the past, for example, when decisions were based on unresolved phylogenetic trees of the 16S rRNA gene sequence. Here we use a large collection of type-strain genomes from Bacteroidetes and closely related phyla for Edited by: assessing their taxonomy based on the principles of phylogenetic classification and Martin G. Klotz, Queens College, City University of trees inferred from genome-scale data. No significant conflict between 16S rRNA gene New York, USA and whole-genome phylogenetic analysis is found, whereas many but not all of the Reviewed by: involved taxa are supported as monophyletic groups, particularly in the genome-scale Eddie Cytryn, trees. Phenotypic and phylogenomic features support the separation of Balneolaceae Agricultural Research Organization, Israel as new phylum Balneolaeota from Rhodothermaeota and of Saprospiraceae as new John Phillip Bowman, class Saprospiria from Chitinophagia.
    [Show full text]
  • Kingsley Chow
    Exploration of the diversity of Eukaryotic, Prokaryotic and Archaea communities in deep subsurface microbial ecosystems Kingsley V. Chow; Oxana Gorbatenko; Bethany A. Reman; Cynthia Anderson Black Hill State University, South Dakota ♦ Introduction ♦ Methods & Materials ♦ Results/Discussion Exploration of microbial diversity within unique ecosystems worldwide Visual characterization: Bacterial life: Scanning Electron Microscopy (SEM): contributes greatly to our understanding of the complexity and diversity of • Regular light microscopy was used to scan small portions of the biofilm. Sample 503 life. Such exploration has revealed the presence of numerous novel • Small portions of the biofilms were preserved for scanning electron lineages of Bacteria, Archaea, and Eukaryota, many of which are microscopy (SEM) with a phosphate buffer containing 5% glutaraldehyde. Nematode under SEM (Right) 2700X uncultured; has expanded our knowledge of the limits of life; and has • The buffer was replaced by a series of ethanol washes with increasing Top Species Classificaon Results BF4850-060216-503M presence supported by NextGen Metagenomic data provided insight to physiological and biogeochemical processes. Here we concentrations until 100% has been reached. Classificaon % Total Reads that still awaits further Runella limosa 11.4 build on previous studies exploring the diversity of the deepest levels • The sample was then placed under critical point drying followed by analysis for specific genus. Methylocaldum tepidum 7.83 accessible within the Sanford
    [Show full text]
  • Spirosoma Linguale Type Strain (1)
    Lawrence Berkeley National Laboratory Recent Work Title Complete genome sequence of Spirosoma linguale type strain (1). Permalink https://escholarship.org/uc/item/5pg186v8 Journal Standards in genomic sciences, 2(2) ISSN 1944-3277 Authors Lail, Kathleen Sikorski, Johannes Saunders, Elizabeth et al. Publication Date 2010 DOI 10.4056/sigs.741334 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Standards in Genomic Sciences (2010) 2:176-185 DOI:10.4056/sigs.741334 Complete genome sequence of Spirosoma linguale type strain (1T) Kathleen Lail1, Johannes Sikorski2, Elizabeth Saunders3, Alla Lapidus1, Tijana Glavina Del Rio1, Alex Copeland1, Hope Tice1, Jan-Fang Cheng1, Susan Lucas1, Matt Nolan1, David Bruce1,3, Lynne Goodwin1,3, Sam Pitluck1, Natalia Ivanova1, Konstantinos Mavromatis1, Galina Ovchinnikova1, Amrita Pati1, Amy Chen4, Krishna Palaniappan4, Miriam Land1,5, Loren Hauser1,5, Yun-Juan Chang1,5, Cynthia D. Jeffries1,5, Patrick Chain1,6, Thomas Brettin1,3, John C. Detter1,3, Andrea Schütze2, Manfred Rohde7, Brian J. Tindall2, Markus Göker2, Jim Bristow1, Jonathan A. Eisen1,8, Victor Markowitz4, Philip Hugenholtz1, Nikos C. Kyrpides1*, Hans-Peter Klenk2, and Feng Chen1 1 DOE Joint Genome Institute, Walnut Creek, California, USA 2 DSMZ – German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 4 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA 5 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 6 Lawrence Livermore National Laboratory, Livermore, California, USA 7 HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany 8 University of California Davis Genome Center, Davis, California, USA *Corresponding author: Nikos C.
    [Show full text]