Clusterin Impairs Hepatic Insulin Sensitivity and Adipocyte Clusterin

Total Page:16

File Type:pdf, Size:1020Kb

Clusterin Impairs Hepatic Insulin Sensitivity and Adipocyte Clusterin Diabetes Care 1 Clusterin Impairs Hepatic Insulin David Bradley,1 Alecia Blaszczak,1 Zheng Yin,2 Joey Liu,1 Joshua J. Joseph,1 Sensitivity and Adipocyte Valerie Wright,1 Kajol Anandani,1 Bradley Needleman,3 Sabrena Noria,3 Clusterin Associates With David Renton,3 Martha Yearsley,4 Stephen T.C. Wong,2 and Willa A. Hsueh1 Cardiometabolic Risk https://doi.org/10.2337/dc18-0870 OBJECTIVE Components of the adipose tissue (AT) extracellular matrix (ECM) are recently discovered contributors to obesity-related cardiometabolic disease. We identified increased adipocyte expression of ECM-related clusterin (apolipoprotein J) in obese versus lean women by microarray. Our objective was to determine 1) whether subcutaneous AT adipocyte (SAd) clusterin and serum clusterin are associated with insulin resistance (IR) and known markers of cardiometabolic risk and 2) how clusterin may contribute to increased risk. RESEARCH DESIGN AND METHODS We validated increased clusterin expression in adipocytes from a separate group 1 of 18 lean and 54 obese individuals. The relationship of clusterin gene expres- Diabetes and Metabolism Research Center, Di- vision of Endocrinology, Diabetes and Metabo- sion and plasma clusterin with IR, cardiovascular biomarkers, and risk of cardio- lism, Department of Internal Medicine, Wexner vascular disease (CVD) was then determined. Further investigations in human Medical Center, The Ohio State University, Co- cultured cells and in aged LDLR2/2 mice prone to development of obesity- lumbus, OH 2 associated complications were performed. Department of Systems Medicine and Bioengi- CARDIOVASCULAR AND METABOLIC RISK neering, Institute for Academic Medicine, Hous- ton Methodist Hospital, Weill Cornell Medicine, RESULTS Houston, TX SAd clusterin correlated with IR, multiple CVD biomarkers, and CVD risk, in- 3Center for Minimally Invasive Surgery, Depart- dependent of traditional risk factors. Circulating human clusterin exhibited similar ment of General Surgery, The Ohio State Uni- associations. In human adipocytes, palmitate enhanced clusterin secretion, and in versity Wexner Medical Center, The Ohio State University, Columbus, OH human hepatocytes clusterin attenuated insulin signaling and APOA1 expression 4Department of Pathology, Wexner Medical Cen- and stimulated hepatic gluconeogenesis. LRP2 (megalin), a clusterin receptor, ter, The Ohio State University, Columbus, OH highly expressed in liver, mediated these effects, which were inhibited by LRP2 Corresponding author: David Bradley, david siRNA. In response to Western diet feeding, an increase in adipocyte clusterin [email protected], Willa A. Hsueh, willa expression was associated with a progressive increase in liver fat, steatohepatitis, [email protected], or Stephen T.C. Wong, [email protected] and fibrosis in aged LDLR2/2 mice. Received 20 April 2018 and accepted 19 Decem- CONCLUSIONS ber 2018 This article contains Supplementary Data online Adipocyte-derived clusterin is a novel ECM-related protein linking cardiometabolic at http://care.diabetesjournals.org/lookup/suppl/ disease and obesity through its actions in the liver. doi:10.2337/dc18-0870/-/DC1. D.B. and A.B. are co–first authors. Obesity is associated with a heightened cardiovascular disease (CVD) risk profile that © 2019 by the American Diabetes Association. encompasses insulin resistance (IR), type 2 diabetes, hypertension, dyslipidemia, and Readers may use this article as long as the work is d properly cited, the use is educational and not for hepatic steatosis all components of the well-described metabolic syndrome (1,2). profit, and the work is not altered. More infor- These factors act synergistically to accelerate morbidity and mortality in obesity (3). IR mation is available at http://www.diabetesjournals stems from adipocyte lipolysis and lipid deposition into insulin target tissues, as well .org/content/license. Diabetes Care Publish Ahead of Print, published online January 18, 2019 2 Adipocyte Clusterin and Cardiometabolic Risk Diabetes Care as a systemic inflammation instigated by (accession number GSE44000). Of Tissue Procurement, RNA Isolation, adipose tissue (AT) (4). However, iden- 428 ECM-related genes in the Gene Set and Protein Expression tification of specific mediators relating Enrichment Analysis (GSEA) database, Subcutaneous AT was biopsied near the obesity to IR and other CVD risk factors genes of interest were identified based umbilicus at either elective bariatric sur- has been unsuccessful. on significance, rather than fold change, gery (Roux-en-Y gastric bypass, n = 30; The adipocyte is increasingly recog- to reduce bias, since both up- and down- sleeve gastrectomy, n = 24) in obese nized as an important instigator of in- regulated genes could be included in the subjects or elective surgery (cholecystec- flammation in expanding AT (5–7). In analyses without independently assigning tomy, n = 5; hernia repair, n = 11; Heller obesity, adipocyte enlargement and hyp- cutoffs. Also, using P values allowed us to myotomy, n = 1; Nissen fundoplication, oxia enhance adipocyte production of exclude the potential impact of outliers. n = 1) in lean subjects. Patients fasted extracellular matrix (ECM) proteins, lead- A PubMed search for the top 48 genes from midnight prior to surgery; surger- ing to the accumulation of collagens and included the gene/protein name and ies were performed from 7:00 A.M. to other matrix proteins and, ultimately, the search terms “insulin resistance” 2:00 P.M. under general anesthesia. Sam- fibrosis, which limits AT adaptability and/or “cardiovascular disease.” The ples were transferred to ice-cold saline (8–11). In addition to AT remodeling, studies were then reviewed individually and processed within 15 min of tissue these ECM proteins can enhance diverse to assess for published effects on cardio- excision. SAd and the stromal vascular functions such as AT inflammation metabolic disease. CLU was one of the fraction were isolated as previously through the influx of immune cells identified genes, and we performed gene described (7), and the adipocytes were (12,13). We found that expression of expression, correlation analyses, and blood leukocyte depleted to achieve ,0.1% clusterin was higher in adipocytes of measurements in an independent group leukocyte contamination (Supplementary obese versus lean subjects. Previous of subjects undergoing elective surgery Fig. 1). AT macrophages (ATMs) were studies have suggested that plasma clus- at The Ohio State University. then fractionated from the stromal vas- terin levels correlate with BMI, inflam- Baseline characteristics for this valida- cular fraction with biotinylated antibod- mation, IR (14), and CVD risk (15–17), and tion group of male and female subjects ies against CD14 (eBioscience, San Diego, polymorphisms are associated with without diabetes (n = 18 lean and n = CA) and streptavidin-coupled Dynabeads type 2 diabetes (18). Clusterin is a mo- 54 obese) are included in Table 1. Pre- (Thermo Fisher Scientific, Waltham, MA); lecular chaperone that assists with clear- surgery blood samples were obtained there was little contamination of the ance of cellular debris from the ECM via prior to induction of anesthesia, after ATM fraction with adipocytes or T cells endocytosis and lysosomal degradation an 8-h overnight fast, and were analyzed (Supplementary Fig. 1). The relative ab- (19). Although specific clusterin recep- for fasting plasma glucose (FPG) using the sence of adipocyte precursor cells in the tors for many metabolically active tis- Glucose Assay Kit and fasting plasma adipocyte fraction was verified by analyz- sues, including the liver, have yet to be insulin (FPI) (Millipore Sigma, Billerica, ing gene expression of the preadipocyte defined, the most well characterized is MA), triglycerides (TGs), total cholesterol marker protein delta homolog 1 (preadi- LDL receptor–related protein 2 (LRP2). (Tchol), and HDL and LDL cholesterol by pocyte factor 1 [Pref-1]) (Supplementary Clusterin binding to LRP2 in the CNS ELISA (Millipore Sigma, Billerica, MA). Fig. 2). affects hypothalamic feeding regulation Serum clusterin was measured by ELISA Quantitative RT-PCR (qRT-PCR) was (20) and leptin signaling (21). Our goal (R&D systems, Waltham, MA), with a performed as previously described (6). was, therefore, to determine 1) whether sensitivity of 200 pg/mL, intra-assay co- In brief, RNA was isolated using Direct-zol adipocytes could secrete clusterin, 2) efficient of variation of ,10%, and inter- RNA MiniPrep kit (Zymo Research), re- whether clusterin was associated with assay coefficient of variation of ,12%. verse transcribed with High-Capacity insulin action and components of the metabolic syndrome, and, if so, 3)how Table 1—Characteristics of the study population undergoing qRT-PCR (group 2) clusterin impacted insulin target tissues. analyses Validation study population RESEARCH DESIGN AND METHODS Lean (N = 18) Obese (N = 54) Microarray analysis was performed on n female/n male (% female) 5/13 (27) 31/23 (57) subcutaneous adipocytes (SAd) obtained Age (years) 44.9 6 12.4 44.2 6 10.4 from postmenopausal female subjects BMI (kg/m2) 23.1 6 1.6 49.7 6 8.7a (n = 7 lean and obese) undergoing elec- SBP (mmHg) 126.9 6 19.6 140.2 6 14.8a tive abdominal surgery. Subjects were DBP (mmHg) 75.8 6 10.2 78.6 6 10.6 not on hormone replacement therapy or Plasma parameters medications for hyperlipidemia, hyper- Tchol (mg/dL) 182.8 6 32.6 167.2 6 31.2 tension, or diabetes. Demographics and HDL cholesterol (mg/dL) 58.0 6 14.6 43.4 6 9.4a baseline data for group 1 and microarray LDL cholesterol (mg/dL) 104.0 6 34.5 95.3 6 29.9 6 6 technology have previously been re- TGs (mg/dL) 104.9 89.9 144.7 53.9 FPG (mg/dL) 85.5 6 13.0 114.2 6 34.7a ported (22). Raw microarray data sets FPI (mIU/mL) 7.3 6 6.0 22.6 6 14.1a are deposited in the National Center HOMA-IR 1.9 6 1.7 5.7 6 4.9a for Biotechnology Information Gene Data are means 6 SD. aP , 0.05 in lean vs. obese patients. Expression Omnibus (GEO) database care.diabetesjournals.org Bradley and Associates 3 cDNA Reverse Transcription kits (Thermo for 20 h before incubation with human protein lysates were collected for West- Fisher Scientific), and analyzed by using insulin (50 nmol/L) for 30 min.
Recommended publications
  • C-Terminal HSP90 Inhibitors Block the HSP90:HIF-1Α Interaction and Inhibit the Cellular Hypoxic Response
    bioRxiv preprint doi: https://doi.org/10.1101/521989; this version posted January 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. C-terminal HSP90 Inhibitors Block the HSP90:HIF-1α Interaction and Inhibit the Cellular Hypoxic Response Nalin Katariaa, Bernadette Kerra, Samantha S. Zaiterb, Shelli McAlpineb and Kristina M Cooka† a. University of Sydney, Faculty of Medicine and Health, Charles Perkins Centre, Sydney, Australia. b. School of Chemistry, University of New South Wales, Sydney, Australia. † To whom correspondence should be addressed: Kristina M Cook, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia 2006; [email protected]; Tel: +61 286274858. Hypoxia Inducible Factor (HIF) is a transcription factor cancer cells known as a heat shock response (HSR)12. The activated by low oxygen, which is common in solid compounds also have poor selectivity for HSP9013,14. tumours. HIF controls the expression of genes involved in C-terminus inhibitors of HSP90 (SM molecules)11 act in a angiogenesis, chemotherapy resistance and metastasis. The selective manner, and in contrast to the N-terminus chaperone HSP90 (Heat Shock Protein 90) stabilizes the inhibitors, they do not induce a heat shock response13,15. subunit HIF-1α and prevents degradation. Previously Although the SM molecules block all co-chaperones that identified HSP90 inhibitors bind to the N-terminal pocket bind to the C-terminus of HSP90 and inhibit HSP90 of HSP90 which blocks binding to HIF-1α, and produces function16,17, there is no data discussing whether C- HIF-1α degradation.
    [Show full text]
  • LRP2 Is Associated with Plasma Lipid Levels 311 Original Article
    310 Journal of Atherosclerosis and Thrombosis Vol.14, No.6 LRP2 is Associated with Plasma Lipid Levels 311 Original Article Genetic Association of Low-Density Lipoprotein Receptor-Related Protein 2 (LRP2) with Plasma Lipid Levels Akiko Mii1, 2, Toshiaki Nakajima2, Yuko Fujita1, Yasuhiko Iino1, Kouhei Kamimura3, Hideaki Bujo4, Yasushi Saito5, Mitsuru Emi2, and Yasuo Katayama1 1Department of Internal Medicine, Divisions of Neurology, Nephrology, and Rheumatology, Nippon Medical School, Tokyo, Japan. 2Department of Molecular Biology-Institute of Gerontology, Nippon Medical School, Kawasaki, Japan. 3Awa Medical Association Hospital, Chiba, Japan. 4Department of Genome Research and Clinical Application, Graduate School of Medicine, Chiba University, Chiba, Japan. 5Department of Clinical Cell Biology, Graduate School of Medicine, Chiba University, Chiba, Japan. Aim: Not all genetic factors predisposing phenotypic features of dyslipidemia have been identified. We studied the association between the low density lipoprotein-related protein 2 gene (LRP2) and levels of plasma total cholesterol (T-Cho) and LDL-cholesterol (LDL-C) among 352 adults in Japan. Methods: Subjects were obtained from among participants in a cohort study that was carried out with health-check screening in an area of east-central Japan. We selected 352 individuals whose LDL-C levels were higher than 140 mg/dL from the initially screened 22,228 people. We assessed the relation between plasma cholesterol levels and single-nucleotide polymorphisms (SNPs) in the LRP2 gene. Results:
    [Show full text]
  • Potential Microrna-Related Targets in Clearance Pathways of Amyloid-Β
    Madadi et al. Cell Biosci (2019) 9:91 https://doi.org/10.1186/s13578-019-0354-3 Cell & Bioscience REVIEW Open Access Potential microRNA-related targets in clearance pathways of amyloid-β: novel therapeutic approach for the treatment of Alzheimer’s disease Soheil Madadi1, Heidi Schwarzenbach2, Massoud Saidijam3, Reza Mahjub4 and Meysam Soleimani1* Abstract Imbalance between amyloid-beta (Aβ) peptide synthesis and clearance results in Aβ deregulation. Failure to clear these peptides appears to cause the development of Alzheimer’s disease (AD). In recent years, microRNAs have become established key regulators of biological processes that relate among others to the development and progres- sion of neurodegenerative diseases, such as AD. This review article gives an overview on microRNAs that are involved in the Aβ cascade and discusses their inhibitory impact on their target mRNAs whose products participate in Aβ clear- ance. Understanding of the mechanism of microRNA in the associated signal pathways could identify novel therapeu- tic targets for the treatment of AD. Keywords: Ubiquitin–proteasome system, Autophagy, Aβ-degrading proteases, BBB transporters, Phagocytosis, Heat shock proteins, microRNAs Introduction stage, APP is cleaved to non-toxic proteins by α-secretase Alzheimer’s disease (AD)—the most common form of [6]. Aβ has two major forms: Aβ40 and Aβ42, which are dementia—is a devastating diagnosis that accounts for 40 and 42 amino acid-long fragments, respectively. Since 93,541 deaths in the United States in 2014 [1]. Clinical Aβ42 is more hydrophobic than Aβ40, it is more prone to manifestation of AD is often a loss of memory and cog- aggregate and scafold for oligomeric and fbrillar forms nitive skills.
    [Show full text]
  • Holdase Activity of Secreted Hsp70 Masks Amyloid-Β42 Neurotoxicity in Drosophila
    Holdase activity of secreted Hsp70 masks amyloid-β42 neurotoxicity in Drosophila Pedro Fernandez-Funeza,b,c,1, Jonatan Sanchez-Garciaa, Lorena de Menaa, Yan Zhanga, Yona Levitesb, Swati Kharea, Todd E. Goldea,b, and Diego E. Rincon-Limasa,b,c,1 aDepartment of Neurology, McKnight Brain Institute, University of Florida, Gainesville, FL 32611; bDepartment of Neuroscience, Center for Translational Research on Neurodegenerative Diseases, University of Florida, Gainesville, FL 32611; and cGenetics Institute, University of Florida, Gainesville, FL 32611 Edited by Nancy M. Bonini, University of Pennsylvania, Philadelphia, PA, and approved July 11, 2016 (received for review May 25, 2016) Alzheimer’s disease (AD) is the most prevalent of a large group of cell-free systems by dissociating preformed oligomers but not fi- related proteinopathies for which there is currently no cure. Here, we brils, suggesting that Hsp70 targets oligomeric intermediates (18). used Drosophila to explore a strategy to block Aβ42 neurotoxicity More recent in vitro studies show that Hsp70 and other chaperones through engineering of the Heat shock protein 70 (Hsp70), a chap- promote the aggregation of oligomers into less toxic species (19). erone that has demonstrated neuroprotective activity against several Also, Hsp70 demonstrates neuroprotection against intracellular intracellular amyloids. To target its protective activity against extra- Aβ42 in primary cultures (20), whereas down-regulation of Hsp70 cellular Aβ42, we added a signal peptide to Hsp70. This secreted form leads to increased protein aggregation in transgenic worms of Hsp70 (secHsp70) suppresses Aβ42 neurotoxicity in adult eyes, expressing intracellular Aβ42 (21). A recent study in a transgenic reduces cell death, protects the structural integrity of adult neurons, mouse model of AD overexpressing the Amyloid precursor pro- alleviates locomotor dysfunction, and extends lifespan.
    [Show full text]
  • Human Megalin/LRP2 Antibody
    Human Megalin/LRP2 Antibody Monoclonal Mouse IgG1 Clone # 545606 Catalog Number: MAB9578 DESCRIPTION Species Reactivity Human Specificity Detects human Megalin/LRP2 in direct ELISAs. Source Monoclonal Mouse IgG1 Clone # 545606 Purification Protein A or G purified from ascites Immunogen Mouse myeloma cell line NS0­derived recombinant human Megalin/LRP2 Pro3510­Lys3964 Accession # P98164 Formulation Lyophilized from a 0.2 μm filtered solution in PBS with Trehalose. See Certificate of Analysis for details. *Small pack size (­SP) is supplied either lyophilized or as a 0.2 μm filtered solution in PBS. APPLICATIONS Please Note: Optimal dilutions should be determined by each laboratory for each application. General Protocols are available in the Technical Information section on our website. Recommended Sample Concentration Flow Cytometry 0.25 µg/106 cells See Below Immunohistochemistry 5­25 µg/mL See Below CyTOF­ready Ready to be labeled using established conjugation methods. No BSA or other carrier proteins that could interfere with conjugation. DATA Flow Cytometry Immunohistochemistry Detection of Megalin/LRP2 in CaCo­2 Megalin/LRP2 in Human Kidney. Human Cell Line by Flow Cytometry. Megalin/LRP2 was detected in immersion CaCo2 human cell line was stained with fixed paraffin­embedded sections of human Mouse Anti­Human Megalin/LRP2 kidney using Mouse Anti­Human Monoclonal Antibody (Catalog # MAB9578, Megalin/LRP2 Monoclonal Antibody (Catalog filled histogram) or isotype control antibody # MAB9578) at 5 µg/mL for 1 hour at room (Catalog # MAB002, open histogram), temperature followed by incubation with the followed by Phycoerythrin­conjugated Anti­ Anti­Mouse IgG VisUCyte™ HRP Polymer Mouse IgG Secondary Antibody (Catalog # Antibody (Catalog # VC001).
    [Show full text]
  • Clusterin and LRP2 Are Critical Components of the Hypothalamic Feeding Regulatory Pathway
    ARTICLE Received 21 Sep 2012 | Accepted 16 Apr 2013 | Published 14 May 2013 DOI: 10.1038/ncomms2896 Clusterin and LRP2 are critical components of the hypothalamic feeding regulatory pathway So Young Gil1, Byung-Soo Youn2, Kyunghee Byun3,4, Hu Huang5, Churl Namkoong1, Pil-Geum Jang1, Joo-Yong Lee1, Young-Hwan Jo6, Gil Myoung Kang1, Hyun-Kyong Kim1, Mi-Seon Shin7, Claus U. Pietrzik8, Bonghee Lee3,4, Young-Bum Kim3,5 & Min-Seon Kim1,7 Hypothalamic feeding circuits are essential for the maintenance of energy balance. There have been intensive efforts to discover new biological molecules involved in these pathways. Here we report that central administration of clusterin, also called apolipoprotein J, causes anorexia, weight loss and activation of hypothalamic signal transduction-activated transcript-3 in mice. In contrast, inhibition of hypothalamic clusterin action results in increased food intake and body weight, leading to adiposity. These effects are likely mediated through the mutual actions of the low-density lipoprotein receptor-related protein-2, a potential receptor for clusterin, and the long-form leptin receptor. In response to clusterin, the low-density lipoprotein receptor-related protein-2 binding to long-form leptin receptor is greatly enhanced in cultured neuronal cells. Furthermore, long-form leptin receptor deficiency or hypothalamic low-density lipoprotein receptor-related protein-2 suppression in mice leads to impaired hypothalamic clusterin signalling and actions. Our study identifies the hypotha- lamic clusterin–low-density lipoprotein receptor-related protein-2 axis as a novel anorexigenic signalling pathway that is tightly coupled with long-form leptin receptor-mediated signalling. 1 Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul 138-736, Korea.
    [Show full text]
  • Plasma Proteomic Analysis Reveals Altered Protein Abundances In
    Lygirou et al. J Transl Med (2018) 16:104 https://doi.org/10.1186/s12967-018-1476-9 Journal of Translational Medicine RESEARCH Open Access Plasma proteomic analysis reveals altered protein abundances in cardiovascular disease Vasiliki Lygirou1 , Agnieszka Latosinska2, Manousos Makridakis1, William Mullen3, Christian Delles3, Joost P. Schanstra4,5, Jerome Zoidakis1, Burkert Pieske6, Harald Mischak2 and Antonia Vlahou1* Abstract Background: Cardiovascular disease (CVD) describes the pathological conditions of the heart and blood vessels. Despite the large number of studies on CVD and its etiology, its key modulators remain largely unknown. To this end, we performed a comprehensive proteomic analysis of blood plasma, with the scope to identify disease-associated changes after placing them in the context of existing knowledge, and generate a well characterized dataset for fur- ther use in CVD multi-omics integrative analysis. Methods: LC–MS/MS was employed to analyze plasma from 32 subjects (19 cases of various CVD phenotypes and 13 controls) in two steps: discovery (13 cases and 8 controls) and test (6 cases and 5 controls) set analysis. Follow- ing label-free quantifcation, the detected proteins were correlated to existing plasma proteomics datasets (plasma proteome database; PPD) and functionally annotated (Cytoscape, Ingenuity Pathway Analysis). Diferential expression was defned based on identifcation confdence ( 2 peptides per protein), statistical signifcance (Mann–Whitney p value 0.05) and a minimum of twofold change.≥ ≤ Results: Peptides detected in at least 50% of samples per group were considered, resulting in a total of 3796 identi- fed proteins (838 proteins based on 2 peptides). Pathway annotation confrmed the functional relevance of the fndings (representation of complement≥ cascade, fbrin clot formation, platelet degranulation, etc.).
    [Show full text]
  • Mosaic Origin of the Eukaryotic Kinetochore 2 Jolien J.E
    bioRxiv preprint doi: https://doi.org/10.1101/514885; this version posted January 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Mosaic origin of the eukaryotic kinetochore 2 Jolien J.E. van Hooff12*, Eelco Tromer123*#, Geert J.P.L. Kops2+ and Berend Snel1+# 3 4 1 Theoretical Biology and Bioinformatics, Biology, Science Faculty, Utrecht University, the Netherlands 5 2 Oncode Institute, Hubrecht Institute – KNAW (Royal Netherlands Academy of Arts and Sciences) and 6 University Medical Centre Utrecht, Utrecht, The Netherlands 7 3 Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom 8 9 * equal contribution as first author 10 + equal contribution as senior author 11 # corresponding authors ([email protected]; [email protected]) 1 bioRxiv preprint doi: https://doi.org/10.1101/514885; this version posted January 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 12 Abstract 13 The emergence of eukaryotes from ancient prokaryotic lineages was accompanied by a remarkable increase in 14 cellular complexity. While prokaryotes use simple systems to connect DNA to the segregation machinery during 15 cell division, eukaryotes use a highly complex protein assembly known as the kinetochore. Although conceptually 16 similar, prokaryotic segregation systems and eukaryotic kinetochore proteins share no homology, raising the 17 question of the origins of the latter.
    [Show full text]
  • Hsp27 Silencing Coordinately Inhibits Proliferation and Promotes Fas-Induced Apoptosis by Regulating the PEA-15 Molecular Switch
    Cell Death and Differentiation (2012) 19, 990–1002 & 2012 Macmillan Publishers Limited All rights reserved 1350-9047/12 www.nature.com/cdd Hsp27 silencing coordinately inhibits proliferation and promotes Fas-induced apoptosis by regulating the PEA-15 molecular switch N Hayashi1, JW Peacock1, E Beraldi1, A Zoubeidi1,2, ME Gleave1,2 and CJ Ong*,1,3 Heat shock protein 27 (Hsp27) is emerging as a promising therapeutic target for treatment of various cancers. Although the role of Hsp27 in protection from stress-induced intrinsic cell death has been relatively well studied, its role in Fas (death domain containing member of the tumor necrosis factor receptor superfamily)-induced apoptosis and cell proliferation remains underappreciated. Here, we show that Hsp27 silencing induces dual coordinated effects, resulting in inhibition of cell proliferation and sensitization of cells to Fas-induced apoptosis through regulation of PEA-15 (15-kDa phospho-enriched protein in astrocytes). We demonstrate that Hsp27 silencing suppresses proliferation by causing PEA-15 to bind and sequester extracellular signal-regulated kinase (ERK), resulting in reduced translocation of ERK to the nucleus. Concurrently, Hsp27 silencing promotes Fas-induced apoptosis by inducing PEA-15 to release Fas-associating protein with a novel death domain (FADD), thus allowing FADD to participate in death receptor signaling. Conversely, Hsp27 overexpression promotes cell proliferation and suppresses Fas-induced apoptosis. Furthermore, we show that Hsp27 regulation of PEA-15 activity occurs in an Akt-dependent manner. Significantly, Hsp27 silencing in a panel of phosphatase and tensin homolog on chromosome 10 (PTEN) wild-type or null cell lines, and in LNCaP cells that inducibly express PTEN, resulted in selective growth inhibition of PTEN-deficient cancer cells.
    [Show full text]
  • A New Role for LRP2 in Forebrain Development
    A new role for LRP2 in forebrain development DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) im Fach Biologie eingereicht an der Mathematisch-Naturwissenschaftlichen Fakult¨atI Humboldt-Universit¨atzu Berlin von Herr Dipl.-Biol. (technisch orientiert) Uwe Anzenberger geboren am 22.03.1976 in Singen a. Htwl. Pr¨asident der Humboldt-Universit¨atzu Berlin: Prof. Dr. Christoph Markschies Dekan der Mathematisch-Naturwissenschaftlichen Fakult¨atI: Prof. Thomas Buckhout, Phd Gutachter: 1. Prof. Dr. Thomas Willnow 2. Prof. Dr. Michael Bader 3. Prof. Dr. Wolfgang Lockau Tag der m¨undlichen Pr¨ufung: 22. September 2006 Abstract LRP2 is a member of the low-density lipoprotein receptor gene family that is mainly expressed in the yolk sac and in the neuroepithelium of the early embryo. Deficiency for this 600 kDa protein in mice results in holoprosencephaly, indicating an important yet unknown role for LRP2 in forebrain development. In this study, mice with a complete or a conditional loss of lrp2 function were used to further elucidate the consequences of the lack of LRP2 expression. This study shows that the presence of LRP2 in the neuroepithelium but not in the yolk sac is crucial for early forebrain development. Lack of the receptor resulted in an increase of Bone morphogenic protein (Bmp) 4 signaling in the rostral telencephalon at E9.5. As a consequence, sonic hedgehog (shh) expression at E10.5 was lost completely in a ventral region of the telencephalon termed anterior entopeduncular area (AEP). The absence of Shh activity in this area subsequently led to the loss of ventrally induced oligodendroglial and interneuronal cell populations in lrp2 deficient mice.
    [Show full text]
  • University of Groningen Maternal-Fetal Cholesterol Transport in The
    University of Groningen Maternal-fetal cholesterol transport in the second half ofmouse pregnancy does not involve LDL receptor-related protein 2 Zwier, Mathijs V; Baardman, Maria E; van Dijk, Theo H.; Jurdzinski, Angelika; Wisse, Lambertus J; Bloks, Vincent; Berger, Rolf M. F. ; DeRuiter, Marco C; Groen, Albert; Plosch, Torsten Published in: Acta physiologica DOI: 10.1111/apha.12845 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Final author's version (accepted by publisher, after peer review) Publication date: 2017 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Zwier, M. V., Baardman, M. E., van Dijk, T. H., Jurdzinski, A., Wisse, L. J., Bloks, V. W., ... Plösch, T. (2017). Maternal-fetal cholesterol transport in the second half ofmouse pregnancy does not involve LDL receptor-related protein 2. Acta physiologica, 220(4), 471-485. DOI: 10.1111/apha.12845 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
    [Show full text]
  • Supplementary Table S1. List of Differentially Expressed
    Supplementary table S1. List of differentially expressed transcripts (FDR adjusted p‐value < 0.05 and −1.4 ≤ FC ≥1.4). 1 ID Symbol Entrez Gene Name Adj. p‐Value Log2 FC 214895_s_at ADAM10 ADAM metallopeptidase domain 10 3,11E‐05 −1,400 205997_at ADAM28 ADAM metallopeptidase domain 28 6,57E‐05 −1,400 220606_s_at ADPRM ADP‐ribose/CDP‐alcohol diphosphatase, manganese dependent 6,50E‐06 −1,430 217410_at AGRN agrin 2,34E‐10 1,420 212980_at AHSA2P activator of HSP90 ATPase homolog 2, pseudogene 6,44E‐06 −1,920 219672_at AHSP alpha hemoglobin stabilizing protein 7,27E‐05 2,330 aminoacyl tRNA synthetase complex interacting multifunctional 202541_at AIMP1 4,91E‐06 −1,830 protein 1 210269_s_at AKAP17A A‐kinase anchoring protein 17A 2,64E‐10 −1,560 211560_s_at ALAS2 5ʹ‐aminolevulinate synthase 2 4,28E‐06 3,560 212224_at ALDH1A1 aldehyde dehydrogenase 1 family member A1 8,93E‐04 −1,400 205583_s_at ALG13 ALG13 UDP‐N‐acetylglucosaminyltransferase subunit 9,50E‐07 −1,430 207206_s_at ALOX12 arachidonate 12‐lipoxygenase, 12S type 4,76E‐05 1,630 AMY1C (includes 208498_s_at amylase alpha 1C 3,83E‐05 −1,700 others) 201043_s_at ANP32A acidic nuclear phosphoprotein 32 family member A 5,61E‐09 −1,760 202888_s_at ANPEP alanyl aminopeptidase, membrane 7,40E‐04 −1,600 221013_s_at APOL2 apolipoprotein L2 6,57E‐11 1,600 219094_at ARMC8 armadillo repeat containing 8 3,47E‐08 −1,710 207798_s_at ATXN2L ataxin 2 like 2,16E‐07 −1,410 215990_s_at BCL6 BCL6 transcription repressor 1,74E‐07 −1,700 200776_s_at BZW1 basic leucine zipper and W2 domains 1 1,09E‐06 −1,570 222309_at
    [Show full text]