Clusterin Impairs Hepatic Insulin Sensitivity and Adipocyte Clusterin
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
C-Terminal HSP90 Inhibitors Block the HSP90:HIF-1Α Interaction and Inhibit the Cellular Hypoxic Response
bioRxiv preprint doi: https://doi.org/10.1101/521989; this version posted January 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. C-terminal HSP90 Inhibitors Block the HSP90:HIF-1α Interaction and Inhibit the Cellular Hypoxic Response Nalin Katariaa, Bernadette Kerra, Samantha S. Zaiterb, Shelli McAlpineb and Kristina M Cooka† a. University of Sydney, Faculty of Medicine and Health, Charles Perkins Centre, Sydney, Australia. b. School of Chemistry, University of New South Wales, Sydney, Australia. † To whom correspondence should be addressed: Kristina M Cook, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia 2006; [email protected]; Tel: +61 286274858. Hypoxia Inducible Factor (HIF) is a transcription factor cancer cells known as a heat shock response (HSR)12. The activated by low oxygen, which is common in solid compounds also have poor selectivity for HSP9013,14. tumours. HIF controls the expression of genes involved in C-terminus inhibitors of HSP90 (SM molecules)11 act in a angiogenesis, chemotherapy resistance and metastasis. The selective manner, and in contrast to the N-terminus chaperone HSP90 (Heat Shock Protein 90) stabilizes the inhibitors, they do not induce a heat shock response13,15. subunit HIF-1α and prevents degradation. Previously Although the SM molecules block all co-chaperones that identified HSP90 inhibitors bind to the N-terminal pocket bind to the C-terminus of HSP90 and inhibit HSP90 of HSP90 which blocks binding to HIF-1α, and produces function16,17, there is no data discussing whether C- HIF-1α degradation. -
LRP2 Is Associated with Plasma Lipid Levels 311 Original Article
310 Journal of Atherosclerosis and Thrombosis Vol.14, No.6 LRP2 is Associated with Plasma Lipid Levels 311 Original Article Genetic Association of Low-Density Lipoprotein Receptor-Related Protein 2 (LRP2) with Plasma Lipid Levels Akiko Mii1, 2, Toshiaki Nakajima2, Yuko Fujita1, Yasuhiko Iino1, Kouhei Kamimura3, Hideaki Bujo4, Yasushi Saito5, Mitsuru Emi2, and Yasuo Katayama1 1Department of Internal Medicine, Divisions of Neurology, Nephrology, and Rheumatology, Nippon Medical School, Tokyo, Japan. 2Department of Molecular Biology-Institute of Gerontology, Nippon Medical School, Kawasaki, Japan. 3Awa Medical Association Hospital, Chiba, Japan. 4Department of Genome Research and Clinical Application, Graduate School of Medicine, Chiba University, Chiba, Japan. 5Department of Clinical Cell Biology, Graduate School of Medicine, Chiba University, Chiba, Japan. Aim: Not all genetic factors predisposing phenotypic features of dyslipidemia have been identified. We studied the association between the low density lipoprotein-related protein 2 gene (LRP2) and levels of plasma total cholesterol (T-Cho) and LDL-cholesterol (LDL-C) among 352 adults in Japan. Methods: Subjects were obtained from among participants in a cohort study that was carried out with health-check screening in an area of east-central Japan. We selected 352 individuals whose LDL-C levels were higher than 140 mg/dL from the initially screened 22,228 people. We assessed the relation between plasma cholesterol levels and single-nucleotide polymorphisms (SNPs) in the LRP2 gene. Results: -
Potential Microrna-Related Targets in Clearance Pathways of Amyloid-Β
Madadi et al. Cell Biosci (2019) 9:91 https://doi.org/10.1186/s13578-019-0354-3 Cell & Bioscience REVIEW Open Access Potential microRNA-related targets in clearance pathways of amyloid-β: novel therapeutic approach for the treatment of Alzheimer’s disease Soheil Madadi1, Heidi Schwarzenbach2, Massoud Saidijam3, Reza Mahjub4 and Meysam Soleimani1* Abstract Imbalance between amyloid-beta (Aβ) peptide synthesis and clearance results in Aβ deregulation. Failure to clear these peptides appears to cause the development of Alzheimer’s disease (AD). In recent years, microRNAs have become established key regulators of biological processes that relate among others to the development and progres- sion of neurodegenerative diseases, such as AD. This review article gives an overview on microRNAs that are involved in the Aβ cascade and discusses their inhibitory impact on their target mRNAs whose products participate in Aβ clear- ance. Understanding of the mechanism of microRNA in the associated signal pathways could identify novel therapeu- tic targets for the treatment of AD. Keywords: Ubiquitin–proteasome system, Autophagy, Aβ-degrading proteases, BBB transporters, Phagocytosis, Heat shock proteins, microRNAs Introduction stage, APP is cleaved to non-toxic proteins by α-secretase Alzheimer’s disease (AD)—the most common form of [6]. Aβ has two major forms: Aβ40 and Aβ42, which are dementia—is a devastating diagnosis that accounts for 40 and 42 amino acid-long fragments, respectively. Since 93,541 deaths in the United States in 2014 [1]. Clinical Aβ42 is more hydrophobic than Aβ40, it is more prone to manifestation of AD is often a loss of memory and cog- aggregate and scafold for oligomeric and fbrillar forms nitive skills. -
Holdase Activity of Secreted Hsp70 Masks Amyloid-Β42 Neurotoxicity in Drosophila
Holdase activity of secreted Hsp70 masks amyloid-β42 neurotoxicity in Drosophila Pedro Fernandez-Funeza,b,c,1, Jonatan Sanchez-Garciaa, Lorena de Menaa, Yan Zhanga, Yona Levitesb, Swati Kharea, Todd E. Goldea,b, and Diego E. Rincon-Limasa,b,c,1 aDepartment of Neurology, McKnight Brain Institute, University of Florida, Gainesville, FL 32611; bDepartment of Neuroscience, Center for Translational Research on Neurodegenerative Diseases, University of Florida, Gainesville, FL 32611; and cGenetics Institute, University of Florida, Gainesville, FL 32611 Edited by Nancy M. Bonini, University of Pennsylvania, Philadelphia, PA, and approved July 11, 2016 (received for review May 25, 2016) Alzheimer’s disease (AD) is the most prevalent of a large group of cell-free systems by dissociating preformed oligomers but not fi- related proteinopathies for which there is currently no cure. Here, we brils, suggesting that Hsp70 targets oligomeric intermediates (18). used Drosophila to explore a strategy to block Aβ42 neurotoxicity More recent in vitro studies show that Hsp70 and other chaperones through engineering of the Heat shock protein 70 (Hsp70), a chap- promote the aggregation of oligomers into less toxic species (19). erone that has demonstrated neuroprotective activity against several Also, Hsp70 demonstrates neuroprotection against intracellular intracellular amyloids. To target its protective activity against extra- Aβ42 in primary cultures (20), whereas down-regulation of Hsp70 cellular Aβ42, we added a signal peptide to Hsp70. This secreted form leads to increased protein aggregation in transgenic worms of Hsp70 (secHsp70) suppresses Aβ42 neurotoxicity in adult eyes, expressing intracellular Aβ42 (21). A recent study in a transgenic reduces cell death, protects the structural integrity of adult neurons, mouse model of AD overexpressing the Amyloid precursor pro- alleviates locomotor dysfunction, and extends lifespan. -
Human Megalin/LRP2 Antibody
Human Megalin/LRP2 Antibody Monoclonal Mouse IgG1 Clone # 545606 Catalog Number: MAB9578 DESCRIPTION Species Reactivity Human Specificity Detects human Megalin/LRP2 in direct ELISAs. Source Monoclonal Mouse IgG1 Clone # 545606 Purification Protein A or G purified from ascites Immunogen Mouse myeloma cell line NS0derived recombinant human Megalin/LRP2 Pro3510Lys3964 Accession # P98164 Formulation Lyophilized from a 0.2 μm filtered solution in PBS with Trehalose. See Certificate of Analysis for details. *Small pack size (SP) is supplied either lyophilized or as a 0.2 μm filtered solution in PBS. APPLICATIONS Please Note: Optimal dilutions should be determined by each laboratory for each application. General Protocols are available in the Technical Information section on our website. Recommended Sample Concentration Flow Cytometry 0.25 µg/106 cells See Below Immunohistochemistry 525 µg/mL See Below CyTOFready Ready to be labeled using established conjugation methods. No BSA or other carrier proteins that could interfere with conjugation. DATA Flow Cytometry Immunohistochemistry Detection of Megalin/LRP2 in CaCo2 Megalin/LRP2 in Human Kidney. Human Cell Line by Flow Cytometry. Megalin/LRP2 was detected in immersion CaCo2 human cell line was stained with fixed paraffinembedded sections of human Mouse AntiHuman Megalin/LRP2 kidney using Mouse AntiHuman Monoclonal Antibody (Catalog # MAB9578, Megalin/LRP2 Monoclonal Antibody (Catalog filled histogram) or isotype control antibody # MAB9578) at 5 µg/mL for 1 hour at room (Catalog # MAB002, open histogram), temperature followed by incubation with the followed by Phycoerythrinconjugated Anti AntiMouse IgG VisUCyte™ HRP Polymer Mouse IgG Secondary Antibody (Catalog # Antibody (Catalog # VC001). -
Clusterin and LRP2 Are Critical Components of the Hypothalamic Feeding Regulatory Pathway
ARTICLE Received 21 Sep 2012 | Accepted 16 Apr 2013 | Published 14 May 2013 DOI: 10.1038/ncomms2896 Clusterin and LRP2 are critical components of the hypothalamic feeding regulatory pathway So Young Gil1, Byung-Soo Youn2, Kyunghee Byun3,4, Hu Huang5, Churl Namkoong1, Pil-Geum Jang1, Joo-Yong Lee1, Young-Hwan Jo6, Gil Myoung Kang1, Hyun-Kyong Kim1, Mi-Seon Shin7, Claus U. Pietrzik8, Bonghee Lee3,4, Young-Bum Kim3,5 & Min-Seon Kim1,7 Hypothalamic feeding circuits are essential for the maintenance of energy balance. There have been intensive efforts to discover new biological molecules involved in these pathways. Here we report that central administration of clusterin, also called apolipoprotein J, causes anorexia, weight loss and activation of hypothalamic signal transduction-activated transcript-3 in mice. In contrast, inhibition of hypothalamic clusterin action results in increased food intake and body weight, leading to adiposity. These effects are likely mediated through the mutual actions of the low-density lipoprotein receptor-related protein-2, a potential receptor for clusterin, and the long-form leptin receptor. In response to clusterin, the low-density lipoprotein receptor-related protein-2 binding to long-form leptin receptor is greatly enhanced in cultured neuronal cells. Furthermore, long-form leptin receptor deficiency or hypothalamic low-density lipoprotein receptor-related protein-2 suppression in mice leads to impaired hypothalamic clusterin signalling and actions. Our study identifies the hypotha- lamic clusterin–low-density lipoprotein receptor-related protein-2 axis as a novel anorexigenic signalling pathway that is tightly coupled with long-form leptin receptor-mediated signalling. 1 Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul 138-736, Korea. -
Plasma Proteomic Analysis Reveals Altered Protein Abundances In
Lygirou et al. J Transl Med (2018) 16:104 https://doi.org/10.1186/s12967-018-1476-9 Journal of Translational Medicine RESEARCH Open Access Plasma proteomic analysis reveals altered protein abundances in cardiovascular disease Vasiliki Lygirou1 , Agnieszka Latosinska2, Manousos Makridakis1, William Mullen3, Christian Delles3, Joost P. Schanstra4,5, Jerome Zoidakis1, Burkert Pieske6, Harald Mischak2 and Antonia Vlahou1* Abstract Background: Cardiovascular disease (CVD) describes the pathological conditions of the heart and blood vessels. Despite the large number of studies on CVD and its etiology, its key modulators remain largely unknown. To this end, we performed a comprehensive proteomic analysis of blood plasma, with the scope to identify disease-associated changes after placing them in the context of existing knowledge, and generate a well characterized dataset for fur- ther use in CVD multi-omics integrative analysis. Methods: LC–MS/MS was employed to analyze plasma from 32 subjects (19 cases of various CVD phenotypes and 13 controls) in two steps: discovery (13 cases and 8 controls) and test (6 cases and 5 controls) set analysis. Follow- ing label-free quantifcation, the detected proteins were correlated to existing plasma proteomics datasets (plasma proteome database; PPD) and functionally annotated (Cytoscape, Ingenuity Pathway Analysis). Diferential expression was defned based on identifcation confdence ( 2 peptides per protein), statistical signifcance (Mann–Whitney p value 0.05) and a minimum of twofold change.≥ ≤ Results: Peptides detected in at least 50% of samples per group were considered, resulting in a total of 3796 identi- fed proteins (838 proteins based on 2 peptides). Pathway annotation confrmed the functional relevance of the fndings (representation of complement≥ cascade, fbrin clot formation, platelet degranulation, etc.). -
Mosaic Origin of the Eukaryotic Kinetochore 2 Jolien J.E
bioRxiv preprint doi: https://doi.org/10.1101/514885; this version posted January 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Mosaic origin of the eukaryotic kinetochore 2 Jolien J.E. van Hooff12*, Eelco Tromer123*#, Geert J.P.L. Kops2+ and Berend Snel1+# 3 4 1 Theoretical Biology and Bioinformatics, Biology, Science Faculty, Utrecht University, the Netherlands 5 2 Oncode Institute, Hubrecht Institute – KNAW (Royal Netherlands Academy of Arts and Sciences) and 6 University Medical Centre Utrecht, Utrecht, The Netherlands 7 3 Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom 8 9 * equal contribution as first author 10 + equal contribution as senior author 11 # corresponding authors ([email protected]; [email protected]) 1 bioRxiv preprint doi: https://doi.org/10.1101/514885; this version posted January 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 12 Abstract 13 The emergence of eukaryotes from ancient prokaryotic lineages was accompanied by a remarkable increase in 14 cellular complexity. While prokaryotes use simple systems to connect DNA to the segregation machinery during 15 cell division, eukaryotes use a highly complex protein assembly known as the kinetochore. Although conceptually 16 similar, prokaryotic segregation systems and eukaryotic kinetochore proteins share no homology, raising the 17 question of the origins of the latter. -
Hsp27 Silencing Coordinately Inhibits Proliferation and Promotes Fas-Induced Apoptosis by Regulating the PEA-15 Molecular Switch
Cell Death and Differentiation (2012) 19, 990–1002 & 2012 Macmillan Publishers Limited All rights reserved 1350-9047/12 www.nature.com/cdd Hsp27 silencing coordinately inhibits proliferation and promotes Fas-induced apoptosis by regulating the PEA-15 molecular switch N Hayashi1, JW Peacock1, E Beraldi1, A Zoubeidi1,2, ME Gleave1,2 and CJ Ong*,1,3 Heat shock protein 27 (Hsp27) is emerging as a promising therapeutic target for treatment of various cancers. Although the role of Hsp27 in protection from stress-induced intrinsic cell death has been relatively well studied, its role in Fas (death domain containing member of the tumor necrosis factor receptor superfamily)-induced apoptosis and cell proliferation remains underappreciated. Here, we show that Hsp27 silencing induces dual coordinated effects, resulting in inhibition of cell proliferation and sensitization of cells to Fas-induced apoptosis through regulation of PEA-15 (15-kDa phospho-enriched protein in astrocytes). We demonstrate that Hsp27 silencing suppresses proliferation by causing PEA-15 to bind and sequester extracellular signal-regulated kinase (ERK), resulting in reduced translocation of ERK to the nucleus. Concurrently, Hsp27 silencing promotes Fas-induced apoptosis by inducing PEA-15 to release Fas-associating protein with a novel death domain (FADD), thus allowing FADD to participate in death receptor signaling. Conversely, Hsp27 overexpression promotes cell proliferation and suppresses Fas-induced apoptosis. Furthermore, we show that Hsp27 regulation of PEA-15 activity occurs in an Akt-dependent manner. Significantly, Hsp27 silencing in a panel of phosphatase and tensin homolog on chromosome 10 (PTEN) wild-type or null cell lines, and in LNCaP cells that inducibly express PTEN, resulted in selective growth inhibition of PTEN-deficient cancer cells. -
A New Role for LRP2 in Forebrain Development
A new role for LRP2 in forebrain development DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) im Fach Biologie eingereicht an der Mathematisch-Naturwissenschaftlichen Fakult¨atI Humboldt-Universit¨atzu Berlin von Herr Dipl.-Biol. (technisch orientiert) Uwe Anzenberger geboren am 22.03.1976 in Singen a. Htwl. Pr¨asident der Humboldt-Universit¨atzu Berlin: Prof. Dr. Christoph Markschies Dekan der Mathematisch-Naturwissenschaftlichen Fakult¨atI: Prof. Thomas Buckhout, Phd Gutachter: 1. Prof. Dr. Thomas Willnow 2. Prof. Dr. Michael Bader 3. Prof. Dr. Wolfgang Lockau Tag der m¨undlichen Pr¨ufung: 22. September 2006 Abstract LRP2 is a member of the low-density lipoprotein receptor gene family that is mainly expressed in the yolk sac and in the neuroepithelium of the early embryo. Deficiency for this 600 kDa protein in mice results in holoprosencephaly, indicating an important yet unknown role for LRP2 in forebrain development. In this study, mice with a complete or a conditional loss of lrp2 function were used to further elucidate the consequences of the lack of LRP2 expression. This study shows that the presence of LRP2 in the neuroepithelium but not in the yolk sac is crucial for early forebrain development. Lack of the receptor resulted in an increase of Bone morphogenic protein (Bmp) 4 signaling in the rostral telencephalon at E9.5. As a consequence, sonic hedgehog (shh) expression at E10.5 was lost completely in a ventral region of the telencephalon termed anterior entopeduncular area (AEP). The absence of Shh activity in this area subsequently led to the loss of ventrally induced oligodendroglial and interneuronal cell populations in lrp2 deficient mice. -
University of Groningen Maternal-Fetal Cholesterol Transport in The
University of Groningen Maternal-fetal cholesterol transport in the second half ofmouse pregnancy does not involve LDL receptor-related protein 2 Zwier, Mathijs V; Baardman, Maria E; van Dijk, Theo H.; Jurdzinski, Angelika; Wisse, Lambertus J; Bloks, Vincent; Berger, Rolf M. F. ; DeRuiter, Marco C; Groen, Albert; Plosch, Torsten Published in: Acta physiologica DOI: 10.1111/apha.12845 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Final author's version (accepted by publisher, after peer review) Publication date: 2017 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Zwier, M. V., Baardman, M. E., van Dijk, T. H., Jurdzinski, A., Wisse, L. J., Bloks, V. W., ... Plösch, T. (2017). Maternal-fetal cholesterol transport in the second half ofmouse pregnancy does not involve LDL receptor-related protein 2. Acta physiologica, 220(4), 471-485. DOI: 10.1111/apha.12845 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. -
Supplementary Table S1. List of Differentially Expressed
Supplementary table S1. List of differentially expressed transcripts (FDR adjusted p‐value < 0.05 and −1.4 ≤ FC ≥1.4). 1 ID Symbol Entrez Gene Name Adj. p‐Value Log2 FC 214895_s_at ADAM10 ADAM metallopeptidase domain 10 3,11E‐05 −1,400 205997_at ADAM28 ADAM metallopeptidase domain 28 6,57E‐05 −1,400 220606_s_at ADPRM ADP‐ribose/CDP‐alcohol diphosphatase, manganese dependent 6,50E‐06 −1,430 217410_at AGRN agrin 2,34E‐10 1,420 212980_at AHSA2P activator of HSP90 ATPase homolog 2, pseudogene 6,44E‐06 −1,920 219672_at AHSP alpha hemoglobin stabilizing protein 7,27E‐05 2,330 aminoacyl tRNA synthetase complex interacting multifunctional 202541_at AIMP1 4,91E‐06 −1,830 protein 1 210269_s_at AKAP17A A‐kinase anchoring protein 17A 2,64E‐10 −1,560 211560_s_at ALAS2 5ʹ‐aminolevulinate synthase 2 4,28E‐06 3,560 212224_at ALDH1A1 aldehyde dehydrogenase 1 family member A1 8,93E‐04 −1,400 205583_s_at ALG13 ALG13 UDP‐N‐acetylglucosaminyltransferase subunit 9,50E‐07 −1,430 207206_s_at ALOX12 arachidonate 12‐lipoxygenase, 12S type 4,76E‐05 1,630 AMY1C (includes 208498_s_at amylase alpha 1C 3,83E‐05 −1,700 others) 201043_s_at ANP32A acidic nuclear phosphoprotein 32 family member A 5,61E‐09 −1,760 202888_s_at ANPEP alanyl aminopeptidase, membrane 7,40E‐04 −1,600 221013_s_at APOL2 apolipoprotein L2 6,57E‐11 1,600 219094_at ARMC8 armadillo repeat containing 8 3,47E‐08 −1,710 207798_s_at ATXN2L ataxin 2 like 2,16E‐07 −1,410 215990_s_at BCL6 BCL6 transcription repressor 1,74E‐07 −1,700 200776_s_at BZW1 basic leucine zipper and W2 domains 1 1,09E‐06 −1,570 222309_at