Category of G-Groups and Its Spectral Category

Total Page:16

File Type:pdf, Size:1020Kb

Category of G-Groups and Its Spectral Category Communications in Algebra ISSN: 0092-7872 (Print) 1532-4125 (Online) Journal homepage: http://www.tandfonline.com/loi/lagb20 Category of G-Groups and its Spectral Category María José Arroyo Paniagua & Alberto Facchini To cite this article: María José Arroyo Paniagua & Alberto Facchini (2017) Category of G-Groups and its Spectral Category, Communications in Algebra, 45:4, 1696-1710, DOI: 10.1080/00927872.2016.1222409 To link to this article: http://dx.doi.org/10.1080/00927872.2016.1222409 Accepted author version posted online: 07 Oct 2016. Published online: 07 Oct 2016. Submit your article to this journal Article views: 12 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=lagb20 Download by: [UNAM Ciudad Universitaria] Date: 29 November 2016, At: 17:29 COMMUNICATIONS IN ALGEBRA® 2017, VOL. 45, NO. 4, 1696–1710 http://dx.doi.org/10.1080/00927872.2016.1222409 Category of G-Groups and its Spectral Category María José Arroyo Paniaguaa and Alberto Facchinib aDepartamento de Matemáticas, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico, D. F., México; bDipartimento di Matematica, Università di Padova, Padova, Italy ABSTRACT ARTICLE HISTORY Let G be a group. We analyse some aspects of the category G-Grp of G-groups. Received 15 April 2016 In particular, we show that a construction similar to the construction of the Revised 22 July 2016 spectral category, due to Gabriel and Oberst, and its dual, due to the second Communicated by T. Albu. author, is possible for the category G-Grp. KEYWORDS Group actions; Semi-abelian categories; Spectral categories 2000 MATHEMATICS SUBJECT CLASSIFICATION 20J15 1. Introduction The original motivation of this paper was to give an adequate categorical setting to the techniques employed in [4]. In that paper, Andrea Lucchini and the second author obtained results concerning the direct product decompositions of a group G as a direct product of indecomposable normal subgroups employing techniques essentially based on the notion of normal homomorphism [12, p. 81]. Here, if N and M are normal subgroups of G, a homomorphism f : N → G/M is normal if it commutes with all inner automorphisms of G. In particular, a construction reminiscent of the construction of the spectral category [5] was applied to the set of all normal endomorphisms of the group G. In order to place these techniques into a proper setting, we study groups, where now is the group G, and G acts on its normal subgroups N and its quotient groups G/M via inner automorphisms. To this end, we consider the category G-Grp of all pairs (H, ϕ), where H is any group and ϕ : G → Aut(H) is a group homomorphism. In other words, G-Grp is the category whose objects are the socalled Ggroups. The notion of Ggroup is a classical one, and sometimes G is called the operator group acting on H ([1, Denition 5.5] and [13, Denition 8.1]). In this context, normal subgroups N of G and quotient groups G/M become objects of G-Grp, and normal homomorphisms become morphisms in G-Grp. Thus we focus on the study of the category G-Grp, which is a semiabelian category in the sense of [9]; cf. [1] and [6]. We determine the free G-groups and show that the injective objects in the category G-Grp are only the trivial ones, like in the case of the category Grp of groups. There are two more categories in strict relation with the category G-Grp. One is the category of all Gsemidirect products (i.e., the category of pointed objects over the group G [1, Section 5]) and the other is the category of all le kGmodule Hopf algebras. We adapt the GabrielOberst construction of spectral category and its ′ dual to the category G-Grp, getting two categories Spec(G-Grp) and CG. This setting works particularly well on the full subcategory CG of G-Grp consisting of all objects (H, ϕ) of G-Grp for which the image of the group homomorphism ϕ : G → Aut(H) contains the group Inn(H) of all inner automorphisms C C′ of H. Furthermore, there is a local canonical functor of G to the product category Spec(G-Grp) × G (Theorem 6.7). Also, we obtain that the endomorphism monoid of an object H of the category Spec(G- Grp) is a regular monoid whenever H is a Ggroup in CG. CONTACT Alberto Facchini [email protected] Dipartimento di Matematica, Università di Padova, Via Trieste 63, 35121 Padova, Italy. © 2017 Taylor & Francis COMMUNICATIONS IN ALGEBRA® 1697 The reader will notice the analogy between the category G-Grp of Ggroups and the category RMod of all le modules over a xed ring R. The category RMod has as objects the pairs (M, λ), where M is an additive abelian group and λ: R → End(M) is a ring morphism. In the category G-Grp the morphisms f : (H, ϕ) → (H′, ϕ′) are the group homomorphisms f : H → H′ such that f (gh) = gf (h) for every g ∈ G, h ∈ H, exactly as in the category RMod. We write mappings on the le (we stress this, because in group theory mappings are oen written on the right, sometimes as exponents. Moreover, writing mappings on the le has as a consequence that le actions correspond to homomorphisms, and right actions correspond to antihomomorphisms. We will come back to this point in Remark 2.3). Let G be a group. As we have already said above, a (le) Ggroup is a pair (H, ϕ), where H is a group and ϕ : G → Aut(H) is a group homomorphism. Since we write mappings on the le, a Ggroup can be equivalently dened as a group H endowed with a mapping ·: G × H → H, (g, h) → gh, called le scalar multiplication, such that (a) g(hh′) = (gh)(gh′) (b) (gg′)h = g(g′h) (c) 1Gh = h for every g, g′ ∈ G and every h, h′ ∈ H. As far as terminology is concerned, it is convenient to be very precise. The notion of Ggroup is a particular case of the notion of group as treated in [12, p. 28] (for any set , an group is a pair (H, ϕ), where H is a group and ϕ : → End(H) is a mapping). At the same time, this notion of - group is a particular case of the more general notion of a group with multiple operators studied in [7]. Also, recall that a (le) Gset is a pair (X, σ), where X is a set and σ : G → SX is a group homomorphism into the symmetric group SX on X. Equivalently, a Gset is a set X with a mapping ·: G × X → X, ′ ′ ′ (g, x) → gx, such that (gg )x = g(g x) and 1Gx = x for every g, g ∈ G and x ∈ X. 2. G-groups and their morphisms The rst part of this section is devoted to establishing the elementary terminology about Ggroups. A Ggroup morphism f : (H, ϕ) → (H′, ϕ′) is a group homomorphism f : H → H′ such that f (gh) = gf (h) ′ ′ for every g ∈ G, h ∈ H. We will denote by HomG(H, H ) the set of all Ggroup morphisms of H into H . Thus Ggroups form a category, which we will denote by G-Grp. Notice that the category Grp of groups and the category 1Grp, where 1 is the trivial group (with one element), are isomorphic categories. This is the analog of the fact that the category Ab of abelian groups and the category Z−Mod of modules over the ring Z of integers are isomorphic categories, because 1 and Z are the initial objects in the category of groups and the category of rings, respectively. It is clearly possible to generalize our study of the category G-Grp to a more general setting, though this will not be our primary aim in this paper. The generalization is the following. Let C be a category and M a monoid. We can obviously dene the category CM of all Mobjects in C as the category of all pairs (C, ϕ), where C is an object in C and ϕ : M → End(C) is a monoid homomorphism. If we view M as a category with one object, CM is the category of all functors M → C. When M is a group, every homomorphism M → End(C) factors uniquely though Aut(C), and so we can write ϕ : M → Aut(C) instead of ϕ : M → End(C). When C is the category Grp of groups and G is a group, CG turns out to be the category G-Grp of Ggroups. Now for any category C and any monoid M, there is a forgetful functor U : CM → C, which associates to every object (C, ϕ) of CM (the category of Mobjects in C) the object C of C. Suppose now that C has Mindexed coproducts. This is the case, for instance, for M = G and C = Grp, where, for any family of groups Hg indexed by the elements g of G, the Mindexed coproduct is the free product of the groups Hg. The forgetful functor U : CM → C has a le adjoint F : C → CM. Here F is dened on objects by F(C) = (M ·C, ϕ), where M ·C is the Mindexed coproduct of |M| copies of C, and ϕ : M → End(M ·C) 1698 M. J. A. PANIAGUA AND A. FACCHINI is constructed as follows. For every m ∈ M, let ιm : C → M·C be the coproduct injection.
Recommended publications
  • A General Theory of Localizations
    GENERAL THEORY OF LOCALIZATION DAVID WHITE • Localization in Algebra • Localization in Category Theory • Bousfield localization Thank them for the invitation. Last section contains some of my PhD research, under Mark Hovey at Wesleyan University. For more, please see my website: dwhite03.web.wesleyan.edu 1. The right way to think about localization in algebra Localization is a systematic way of adding multiplicative inverses to a ring, i.e. given a commutative ring R with unity and a multiplicative subset S ⊂ R (i.e. contains 1, closed under product), localization constructs a ring S−1R and a ring homomorphism j : R ! S−1R that takes elements in S to units in S−1R. We want to do this in the best way possible, and we formalize that via a universal property, i.e. for any f : R ! T taking S to units we have a unique g: j R / S−1R f g T | Recall that S−1R is just R × S= ∼ where (r; s) is really r=s and r=s ∼ r0=s0 iff t(rs0 − sr0) = 0 for some t (i.e. fractions are reduced to lowest terms). The ring structure can be verified just as −1 for Q. The map j takes r 7! r=1, and given f you can set g(r=s) = f(r)f(s) . Demonstrate commutativity of the triangle here. The universal property is saying that S−1R is the closest ring to R with the property that all s 2 S are units. A category theorist uses the universal property to define the object, then uses R × S= ∼ as a construction to prove it exists.
    [Show full text]
  • Complete Objects in Categories
    Complete objects in categories James Richard Andrew Gray February 22, 2021 Abstract We introduce the notions of proto-complete, complete, complete˚ and strong-complete objects in pointed categories. We show under mild condi- tions on a pointed exact protomodular category that every proto-complete (respectively complete) object is the product of an abelian proto-complete (respectively complete) object and a strong-complete object. This to- gether with the observation that the trivial group is the only abelian complete group recovers a theorem of Baer classifying complete groups. In addition we generalize several theorems about groups (subgroups) with trivial center (respectively, centralizer), and provide a categorical explana- tion behind why the derivation algebra of a perfect Lie algebra with trivial center and the automorphism group of a non-abelian (characteristically) simple group are strong-complete. 1 Introduction Recall that Carmichael [19] called a group G complete if it has trivial cen- ter and each automorphism is inner. For each group G there is a canonical homomorphism cG from G to AutpGq, the automorphism group of G. This ho- momorphism assigns to each g in G the inner automorphism which sends each x in G to gxg´1. It can be readily seen that a group G is complete if and only if cG is an isomorphism. Baer [1] showed that a group G is complete if and only if every normal monomorphism with domain G is a split monomorphism. We call an object in a pointed category complete if it satisfies this latter condi- arXiv:2102.09834v1 [math.CT] 19 Feb 2021 tion.
    [Show full text]
  • Categories of Sets with a Group Action
    Categories of sets with a group action Bachelor Thesis of Joris Weimar under supervision of Professor S.J. Edixhoven Mathematisch Instituut, Universiteit Leiden Leiden, 13 June 2008 Contents 1 Introduction 1 1.1 Abstract . .1 1.2 Working method . .1 1.2.1 Notation . .1 2 Categories 3 2.1 Basics . .3 2.1.1 Functors . .4 2.1.2 Natural transformations . .5 2.2 Categorical constructions . .6 2.2.1 Products and coproducts . .6 2.2.2 Fibered products and fibered coproducts . .9 3 An equivalence of categories 13 3.1 G-sets . 13 3.2 Covering spaces . 15 3.2.1 The fundamental group . 15 3.2.2 Covering spaces and the homotopy lifting property . 16 3.2.3 Induced homomorphisms . 18 3.2.4 Classifying covering spaces through the fundamental group . 19 3.3 The equivalence . 24 3.3.1 The functors . 25 4 Applications and examples 31 4.1 Automorphisms and recovering the fundamental group . 31 4.2 The Seifert-van Kampen theorem . 32 4.2.1 The categories C1, C2, and πP -Set ................... 33 4.2.2 The functors . 34 4.2.3 Example . 36 Bibliography 38 Index 40 iii 1 Introduction 1.1 Abstract In the 40s, Mac Lane and Eilenberg introduced categories. Although by some referred to as abstract nonsense, the idea of categories allows one to talk about mathematical objects and their relationions in a general setting. Its origins lie in the field of algebraic topology, one of the topics that will be explored in this thesis. First, a concise introduction to categories will be given.
    [Show full text]
  • Lecture 4 Supergroups
    Lecture 4 Supergroups Let k be a field, chark =26 , 3. Throughout this lecture we assume all superalgebras are associative, com- mutative (i.e. xy = (−1)p(x)p(y) yx) with unit and over k unless otherwise specified. 1 Supergroups A supergroup scheme is a superscheme whose functor of points is group val- ued, that is to say, valued in the category of groups. It associates functorially a group to each superscheme or equivalently to each superalgebra. Let us see this in more detail. Definition 1.1. A supergroup functor is a group valued functor: G : (salg) −→ (sets) This is equivalent to have the following natural transformations: 1. Multiplication µ : G × G −→ G, such that µ ◦ (µ × id) = (µ × id) ◦ µ, i. e. µ×id G × G × G −−−→ G × G id×µ µ µ G ×y G −−−→ Gy 2. Unit e : ek −→ G, where ek : (salg) −→ (sets), ek(A)=1A, such that µ ◦ (id ⊗ e)= µ ◦ (e × id), i. e. id×e e×id G × ek −→ G × G ←− ek × G ց µ ւ G y 1 3. Inverse i : G −→ G, such that µ ◦ (id, i)= e ◦ id, i. e. (id,i) G −−−→ G × G µ e eyk −−−→ Gy The supergroup functors together with their morphisms, that is the nat- ural transformations that preserve µ, e and i, form a category. If G is the functor of points of a superscheme X, i.e. G = hX , in other words G(A) = Hom(SpecA, X), we say that X is a supergroup scheme. An affine supergroup scheme X is a supergroup scheme which is an affine superscheme, that is X = SpecO(X) for some superalgebra O(X).
    [Show full text]
  • Abelian Categories
    Abelian Categories Lemma. In an Ab-enriched category with zero object every finite product is coproduct and conversely. π1 Proof. Suppose A × B //A; B is a product. Define ι1 : A ! A × B and π2 ι2 : B ! A × B by π1ι1 = id; π2ι1 = 0; π1ι2 = 0; π2ι2 = id: It follows that ι1π1+ι2π2 = id (both sides are equal upon applying π1 and π2). To show that ι1; ι2 are a coproduct suppose given ' : A ! C; : B ! C. It φ : A × B ! C has the properties φι1 = ' and φι2 = then we must have φ = φid = φ(ι1π1 + ι2π2) = ϕπ1 + π2: Conversely, the formula ϕπ1 + π2 yields the desired map on A × B. An additive category is an Ab-enriched category with a zero object and finite products (or coproducts). In such a category, a kernel of a morphism f : A ! B is an equalizer k in the diagram k f ker(f) / A / B: 0 Dually, a cokernel of f is a coequalizer c in the diagram f c A / B / coker(f): 0 An Abelian category is an additive category such that 1. every map has a kernel and a cokernel, 2. every mono is a kernel, and every epi is a cokernel. In fact, it then follows immediatly that a mono is the kernel of its cokernel, while an epi is the cokernel of its kernel. 1 Proof of last statement. Suppose f : B ! C is epi and the cokernel of some g : A ! B. Write k : ker(f) ! B for the kernel of f. Since f ◦ g = 0 the map g¯ indicated in the diagram exists.
    [Show full text]
  • Of F-Points of an Algebraic Variety X Defined Over A
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 14, Number 3, Pages 509{534 S 0894-0347(01)00365-4 Article electronically published on February 27, 2001 R-EQUIVALENCE IN SPINOR GROUPS VLADIMIR CHERNOUSOV AND ALEXANDER MERKURJEV The notion of R-equivalence in the set X(F )ofF -points of an algebraic variety X defined over a field F was introduced by Manin in [11] and studied for linear algebraic groups by Colliot-Th´el`ene and Sansuc in [3]. For an algebraic group G defined over a field F , the subgroup RG(F )ofR-trivial elements in the group G(F ) of all F -pointsisdefinedasfollows.Anelementg belongs to RG(F )ifthereisa A1 ! rational morphism f : F G over F , defined at the points 0 and 1 such that f(0) = 1 and f(1) = g.Inotherwords,g can be connected with the identity of the group by the image of a rational curve. The subgroup RG(F )isnormalinG(F ) and the factor group G(F )=RG(F )=G(F )=R is called the group of R-equivalence classes. The group of R-equivalence classes is very useful while studying the rationality problem for algebraic groups, the problem to determine whether the variety of an algebraic group is rational or stably rational. We say that a group G is R-trivial if G(E)=R = 1 for any field extension E=F. IfthevarietyofagroupG is stably rational over F ,thenG is R-trivial. Thus, if one can establish non-triviality of the group of R-equivalence classes G(E)=R just for one field extension E=F, the group G is not stably rational over F .
    [Show full text]
  • Adams Operations and Symmetries of Representation Categories Arxiv
    Adams operations and symmetries of representation categories Ehud Meir and Markus Szymik May 2019 Abstract: Adams operations are the natural transformations of the representation ring func- tor on the category of finite groups, and they are one way to describe the usual λ–ring structure on these rings. From the representation-theoretical point of view, they codify some of the symmetric monoidal structure of the representation category. We show that the monoidal structure on the category alone, regardless of the particular symmetry, deter- mines all the odd Adams operations. On the other hand, we give examples to show that monoidal equivalences do not have to preserve the second Adams operations and to show that monoidal equivalences that preserve the second Adams operations do not have to be symmetric. Along the way, we classify all possible symmetries and all monoidal auto- equivalences of representation categories of finite groups. MSC: 18D10, 19A22, 20C15 Keywords: Representation rings, Adams operations, λ–rings, symmetric monoidal cate- gories 1 Introduction Every finite group G can be reconstructed from the category Rep(G) of its finite-dimensional representations if one considers this category as a symmetric monoidal category. This follows from more general results of Deligne [DM82, Prop. 2.8], [Del90]. If one considers the repre- sentation category Rep(G) as a monoidal category alone, without its canonical symmetry, then it does not determine the group G. See Davydov [Dav01] and Etingof–Gelaki [EG01] for such arXiv:1704.03389v3 [math.RT] 3 Jun 2019 isocategorical groups. Examples go back to Fischer [Fis88]. The representation ring R(G) of a finite group G is a λ–ring.
    [Show full text]
  • Monomorphism - Wikipedia, the Free Encyclopedia
    Monomorphism - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Monomorphism Monomorphism From Wikipedia, the free encyclopedia In the context of abstract algebra or universal algebra, a monomorphism is an injective homomorphism. A monomorphism from X to Y is often denoted with the notation . In the more general setting of category theory, a monomorphism (also called a monic morphism or a mono) is a left-cancellative morphism, that is, an arrow f : X → Y such that, for all morphisms g1, g2 : Z → X, Monomorphisms are a categorical generalization of injective functions (also called "one-to-one functions"); in some categories the notions coincide, but monomorphisms are more general, as in the examples below. The categorical dual of a monomorphism is an epimorphism, i.e. a monomorphism in a category C is an epimorphism in the dual category Cop. Every section is a monomorphism, and every retraction is an epimorphism. Contents 1 Relation to invertibility 2 Examples 3 Properties 4 Related concepts 5 Terminology 6 See also 7 References Relation to invertibility Left invertible morphisms are necessarily monic: if l is a left inverse for f (meaning l is a morphism and ), then f is monic, as A left invertible morphism is called a split mono. However, a monomorphism need not be left-invertible. For example, in the category Group of all groups and group morphisms among them, if H is a subgroup of G then the inclusion f : H → G is always a monomorphism; but f has a left inverse in the category if and only if H has a normal complement in G.
    [Show full text]
  • Mathematical Morphology Via Category Theory 3
    Mathematical Morphology via Category Theory Hossein Memarzadeh Sharifipour1 and Bardia Yousefi2,3 1 Department of Computer Science, Laval University, Qubec, CA [email protected] 2 Department of Electrical and Computer Engineering, Laval University, Qubec, CA 3 Address: University of Pennsylvania, Philadelphia PA 19104 [email protected] Abstract. Mathematical morphology contributes many profitable tools to image processing area. Some of these methods considered to be basic but the most important fundamental of data processing in many various applications. In this paper, we modify the fundamental of morphological operations such as dilation and erosion making use of limit and co-limit preserving functors within (Category Theory). Adopting the well-known matrix representation of images, the category of matrix, called Mat, can be represented as an image. With enriching Mat over various semirings such as Boolean and (max, +) semirings, one can arrive at classical defi- nition of binary and gray-scale images using the categorical tensor prod- uct in Mat. With dilation operation in hand, the erosion can be reached using the famous tensor-hom adjunction. This approach enables us to define new types of dilation and erosion between two images represented by matrices using different semirings other than Boolean and (max, +) semirings. The viewpoint of morphological operations from category the- ory can also shed light to the claimed concept that mathematical mor- phology is a model for linear logic. Keywords: Mathematical morphology · Closed monoidal categories · Day convolution. Enriched categories, category of semirings 1 Introduction Mathematical morphology is a structure-based analysis of images constructed on set theory concepts.
    [Show full text]
  • Groups and Categories
    \chap04" 2009/2/27 i i page 65 i i 4 GROUPS AND CATEGORIES This chapter is devoted to some of the various connections between groups and categories. If you already know the basic group theory covered here, then this will give you some insight into the categorical constructions we have learned so far; and if you do not know it yet, then you will learn it now as an application of category theory. We will focus on three different aspects of the relationship between categories and groups: 1. groups in a category, 2. the category of groups, 3. groups as categories. 4.1 Groups in a category As we have already seen, the notion of a group arises as an abstraction of the automorphisms of an object. In a specific, concrete case, a group G may thus consist of certain arrows g : X ! X for some object X in a category C, G ⊆ HomC(X; X) But the abstract group concept can also be described directly as an object in a category, equipped with a certain structure. This more subtle notion of a \group in a category" also proves to be quite useful. Let C be a category with finite products. The notion of a group in C essentially generalizes the usual notion of a group in Sets. Definition 4.1. A group in C consists of objects and arrows as so: m i G × G - G G 6 u 1 i i i i \chap04" 2009/2/27 i i page 66 66 GROUPSANDCATEGORIES i i satisfying the following conditions: 1.
    [Show full text]
  • Homological Algebra Lecture 1
    Homological Algebra Lecture 1 Richard Crew Richard Crew Homological Algebra Lecture 1 1 / 21 Additive Categories Categories of modules over a ring have many special features that categories in general do not have. For example the Hom sets are actually abelian groups. Products and coproducts are representable, and one can form kernels and cokernels. The notation of an abelian category axiomatizes this structure. This is useful when one wants to perform module-like constructions on categories that are not module categories, but have all the requisite structure. We approach this concept in stages. A preadditive category is one in which one can add morphisms in a way compatible with the category structure. An additive category is a preadditive category in which finite coproducts are representable and have an \identity object." A preabelian category is an additive category in which kernels and cokernels exist, and finally an abelian category is one in which they behave sensibly. Richard Crew Homological Algebra Lecture 1 2 / 21 Definition A preadditive category is a category C for which each Hom set has an abelian group structure satisfying the following conditions: For all morphisms f : X ! X 0, g : Y ! Y 0 in C the maps 0 0 HomC(X ; Y ) ! HomC(X ; Y ); HomC(X ; Y ) ! HomC(X ; Y ) induced by f and g are homomorphisms. The composition maps HomC(Y ; Z) × HomC(X ; Y ) ! HomC(X ; Z)(g; f ) 7! g ◦ f are bilinear. The group law on the Hom sets will always be written additively, so the last condition means that (f + g) ◦ h = (f ◦ h) + (g ◦ h); f ◦ (g + h) = (f ◦ g) + (f ◦ h): Richard Crew Homological Algebra Lecture 1 3 / 21 We denote by 0 the identity of any Hom set, so the bilinearity of composition implies that f ◦ 0 = 0 ◦ f = 0 for any morphism f in C.
    [Show full text]
  • Classifying Categories the Jordan-Hölder and Krull-Schmidt-Remak Theorems for Abelian Categories
    U.U.D.M. Project Report 2018:5 Classifying Categories The Jordan-Hölder and Krull-Schmidt-Remak Theorems for Abelian Categories Daniel Ahlsén Examensarbete i matematik, 30 hp Handledare: Volodymyr Mazorchuk Examinator: Denis Gaidashev Juni 2018 Department of Mathematics Uppsala University Classifying Categories The Jordan-Holder¨ and Krull-Schmidt-Remak theorems for abelian categories Daniel Ahlsen´ Uppsala University June 2018 Abstract The Jordan-Holder¨ and Krull-Schmidt-Remak theorems classify finite groups, either as direct sums of indecomposables or by composition series. This thesis defines abelian categories and extends the aforementioned theorems to this context. 1 Contents 1 Introduction3 2 Preliminaries5 2.1 Basic Category Theory . .5 2.2 Subobjects and Quotients . .9 3 Abelian Categories 13 3.1 Additive Categories . 13 3.2 Abelian Categories . 20 4 Structure Theory of Abelian Categories 32 4.1 Exact Sequences . 32 4.2 The Subobject Lattice . 41 5 Classification Theorems 54 5.1 The Jordan-Holder¨ Theorem . 54 5.2 The Krull-Schmidt-Remak Theorem . 60 2 1 Introduction Category theory was developed by Eilenberg and Mac Lane in the 1942-1945, as a part of their research into algebraic topology. One of their aims was to give an axiomatic account of relationships between collections of mathematical structures. This led to the definition of categories, functors and natural transformations, the concepts that unify all category theory, Categories soon found use in module theory, group theory and many other disciplines. Nowadays, categories are used in most of mathematics, and has even been proposed as an alternative to axiomatic set theory as a foundation of mathematics.[Law66] Due to their general nature, little can be said of an arbitrary category.
    [Show full text]