A Review on Phytochemical and Pharmacological Of
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
University of Copenhagen
Guide to handling of tropical and subtropical forest seed Schmidt, Lars Holger Publication date: 2000 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Schmidt, L. H. (2000). Guide to handling of tropical and subtropical forest seed. Danida Forest Seed Centre. Download date: 25. sep.. 2021 SEED BIOLOGY, 2 DEVELOPMENT SEED BIOLOG AND ECOLOGY Y , DEVELOPMENT AND ECOLOGY Contents 2.1 Introduction 1 2.2 Definitions and Terminology in Reproductive Biology 4 2.3 Reproductive Biology in Seed Plants 6 2.3.1 ‘Flowering’ and seed production in gymnosperms 6 2.3.2 Flowering and seed development in angiosperms 9 2.4 Development and Maturation of Seed-Bearing Organs and Seeds 13 2.4.1 Physiology of fruit maturation 14 2.4.2 Physiology of seed maturation 14 2.4.3 Dehiscence and absission 15 2.5 Morphology of Fruit and Seed 17 2.5.1 Fruit morphology and classification 17 2.5.2 Seed morphology 21 2.5.3 Embryo morphology 21 2.5.4 Characters for identification of seeds 22 2.6 Seed Dispersal 23 2.6.1 Modes of dispersal 23 2.6.2 Practical application of knowledge on seed dispersal 25 2.7 Ecological Fruit and Seed Types 26 2.8 Seasonality and Periodicity of Flowering and Fruiting 27 2.9 Reproductive Age 29 2.10 Influence of External Factors on Seed Production 32 References 34 Extract from ‘Guide to Handling of Tropical and Subtropical Forest Seed’ 1 by Lars Schmidt, Danida Forest Seed Centre. 2000. Other Chapters of the book Guide to Handling of Tropical and Sub-Tropical Forest Seed by Lars Schmidt available -
Optimizing the Debarking and Cutting Schedule of Cork Oak Stands María Pasalodos-Tato, Timo Pukkala, Isabel Cañellas, Mariola Sánchez-González
Optimizing the debarking and cutting schedule of cork oak stands María Pasalodos-Tato, Timo Pukkala, Isabel Cañellas, Mariola Sánchez-González To cite this version: María Pasalodos-Tato, Timo Pukkala, Isabel Cañellas, Mariola Sánchez-González. Optimizing the debarking and cutting schedule of cork oak stands. Annals of Forest Science, Springer Nature (since 2011)/EDP Science (until 2010), 2018, 75 (2), pp.61. 10.1007/s13595-018-0732-8. hal-02140098 HAL Id: hal-02140098 https://hal.archives-ouvertes.fr/hal-02140098 Submitted on 27 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Annals of Forest Science (2018) 75: 61 https://doi.org/10.1007/s13595-018-0732-8 RESEARCH PAPER Optimizing the debarking and cutting schedule of cork oak stands María Pasalodos-Tato1 & Timo Pukkala2 & Isabel Cañellas1 & Mariola Sánchez-González 1 Received: 10 November 2017 /Accepted: 30 March 2018 /Published online: 25 May 2018 # The Author(s) 2018 Abstract & Key message Optimal management of cork oak forest stands was analyzed for different site indices and cork growth rates. Optimal debarking intervals varied during the rotation and were sometimes shorter or longer than the officially recommended range of 9–14 years. -
INTERNATIONAL JOURNAL of ENVIRONMENT Volume-5, Issue-3, June-Aug 2016 ISSN 2091-2854 Received:11 October 2015 Revised:6 November 2015 Accepted:02 July 2016
INTERNATIONAL JOURNAL OF ENVIRONMENT Volume-5, Issue-3, June-Aug 2016 ISSN 2091-2854 Received:11 October 2015 Revised:6 November 2015 Accepted:02 July 2016 INVENTORY OF NON-TIMBER FOREST PRODUCTS IN WESTERN NEPAL AND STRATEGIES FOR SUSTAINABLE MANAGEMENT Pramila Dhakal1*, Dev R. Paudel2 and Dilli Ram Baral3 Institute of Agriculture and Animal Science, Tribhuvan University, Nepal *Corresponding author: [email protected] Abstract Non-timber Forest Products (NTFPs) play an important role as traditional source for food, fiber, fodder, and medicine and offer income opportunities for poverty alleviation especially in rural households in Nepal who engage in a widespread trade of NTFPs. Adequate planning for sustainable use of NTFPs is imperative so we explored the inventory of multipurpose trees and herbs that are being used as NTFPs in Chitwan, Nepal. 70 households from Sukranagar and Mangalpur VDCs of Chitwan district were randomly selected and personal interviews were taken with them as well as focus group discussions were done. The community had been utilizing 49 plant species from the nearby community forest. Implementation of the policy of community forestry was found to have a positive impact on the sustainable production of NTFPs. More than 80% of the respondents believed that indigenous knowledge promoted sustainable NTFP production. Kurilo (Asparagus officinalis) was found to be the best NTFP for the study site. Various policy level reforms are proposed that will help in improving the sustainable production of NTFPs. Better utilization -
Common Forest Trees of Hawaii, Native and Introduced
Common Forest Trees of Hawaii (Native and Introduced) Eucalyptus, eucalypt bark, while the iron-barks have thick hard furrowed bark that is often black. Bloodwoods have uniform scaly bark. Eucalyptus The 13 species of Eucalyptus in this handbook in- clude the most widely tested and most successful in for- Myrtle family (Myrtaceae) est plantations in Hawaii. However, many other species have been introduced; Bryan and Walker (1966) listed Post-Cook introductions 77, but the total count is now more than 90. Several technical publications on this genus in Aus- The genus Eucalyptus is probably the best known of all tralia may be consulted for reference and further identi- Hawaii’s introduced forest trees. Recognition of the fication. Titles by the following authors are listed under group is easy, but further identification is less simple, Selected References: Hall et al. (1975) (contains key to because of the very large number of species. This ge- most species listed); Blakely (1965), Johnston and neric description is followed by a key, based mainly on Marryatt (1965), Kelly (1959), Maiden (1902–24; 1903– bark and other vegetative characters. Thirteen species 33) (source of three drawings reproduced here); Mueller are described and illustrated in this compilation. (1879–84) (the classic 10-volume monograph and source Eucalyptus contains about 500 species of trees, of seven drawings reproduced here); Penfold and Willis nearly all confined to Australia (there are a few in Indo- (1961), Pryor (1976), Pryor and Johnson (1971). nesia to the Philippines). Among them are very large trees and the world’s tallest hardwoods, up to 318 ft (97 m) in height. -
Productivity and Profitability of Jackfruit-Eggplant Agroforestry System in the Terrace Ecosystem of Bangladesh
Turkish Journal of Agriculture - Food Science and Technology, 6(2): 124-129, 2018 Turkish Journal of Agriculture - Food Science and Technology Available online, ISSN: 2148-127X www.agrifoodscience.com, Turkish Science and Technology Productivity and Profitability of Jackfruit-Eggplant Agroforestry System in the Terrace Ecosystem of Bangladesh Atiqur Rahman1, Md. Abiar Rahman1*, Md. Giashuddin Miah1, Md. Azizul Hoque2, Md. Mezanur Rahman1 1Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh 2Department of Horticulture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh A R T I C L E I N F O A B S T R A C T Multistoried agroforestry systems as a form of jackfruit-eggplant based is increasingly Research Article recognized as a promising option to counteract the catastrophic effects of climate change through providing multifaceted benefits. Unfortunately, farmers of Bangladesh did not Received 14 May 2017 manage their jackfruit orchard in a scientific manner. Therefore, the present study was Accepted 20 September 2017 aimed to assess the productivity and profitability of jackfruit-eggplant based agroforestry system after modification from a traditional jackfruit orchard during the period of July Keywords: 2012 to December 2013. Five treatments covering four orientations of jackfruit tree and Climate change an open field was used as a control treatment. To observe the growth and economic Multistoried agroforestry performance of the system; soil moisture and temperature, DBH, number of fruits per Soil moisture and temperature tree, fruit length, fruit width, fruit weight, total yield, BCR, and LER were calculated Yield following different established methods. The yield of jackfruit dramatically increased by Benefit-cost ratio 81% in the agroforestry system in compared to sole cropping, while eggplant shows inverse trend. -
Multipurpose Trees (Mpts) and Their Benefits in Agroforestry
Study-01 Identification of multipurpose trees (MPTs) and their benefits in agroforestry Multipurpose trees (MPTs) and shrubs are woody plant that are deliberately grown and managed for more than one substantial contribution such as products or service functions to the land-use systems in which they are grown. In most cases MPTs and shrubs have a primary role such as being part of a living fence, a windbreak, or used in an alley cropping system. They may supply food, wood, firewood, forage and nitrogen to the soil providing habitat, shade or soil improvement. 1 Multipurpose tree (MPT) 2 Tree species can be multipurpose in two ways: 1. A single tree can yield more than one function. For example, Gliricidia sepium as living fences that provides fuel, fodder and green manure for agricultural crops, fixing nitrogen into the soil, all at the same time. 2. Trees of the same species, when managed differently, can yield different crops. For example, Leucaena leucocephala is managed so that some trees will principally yield wood while other principally produce leaf meal. 3 Benefits/Functions of MPTs A. Food 1. Human food from trees (fruits, nuts, leaves etc.) 2. Livestock feed from trees 3. Improvement of nutritional status of food through: a) Nitrogen fixation. b) Improve availability of nutrient c) Improve availability of CEC and soil organic matter d) Mycorrhizal associations. 4. Improve crop production through Soil and water conservation. 5. Micro-climate amelioration (indirect benefits) 4 B. Water 1. Regulation of stream-flow 2. Protection of irrigation works by hedgerows of trees 3. Improvement of drainage from water-logged soil 4. -
Beijing Olympic Mascots
LEVEL – Lower primary FLORAL EMBLEMS DESCRIPTION In these activities, students learn about the floral emblems of Great Britain. They discuss their own responses to the emblems and explore design elements and features including colours, shapes, lines and their purpose before colouring a picture. These cross-curriculum activities contribute to the achievement of the following: Creative and visual arts • Selects, combines and manipulates images, shapes and forms using a range of skills, techniques and processes. English • Interprets and discusses some relationships between ideas, information and events in visual texts for general viewing. SUGGESTED TIME approximately 15-30 minutes for each activity (this may be customised accordingly) WHAT YOU NEED • photographs or actual samples of the floral emblem for your state or territory http://www.anbg.gov.au/emblems/index.html • photographs or actual samples of the floral emblems of Great Britain – Rose (England), Shamrock (Ireland), Thistle (Scotland) and Daffodil (Wales) o http://www.flickr.com/groups/roses/ o http://www.flickr.com/photos/tags/shamrock/clusters/green-irish-stpatricksday/ o http://www.flickr.com/search/?q=Thistle+ o http://www.flickr.com/groups/daffodilworld/ • copies of Student handout • paint, brushes, markers, crayons, glitter and other art materials ACTIVITIES The following activities may be completed independently or combined as part of a more comprehensive learning sequence, lesson or educational program. Please refer to your own state or territory syllabus for more explicit guidelines. Australia’s floral emblems 1. Show the class a picture or sample of Golden Wattle, along with the floral emblem for your state or territory. Ask the class if anyone has these flowers growing in their garden or local area. -
US Air Force Pollinator Conservation
U.S. Air Force Pollinator Conservation Reference Guide - Appendix A: Species maps and profiles Photo: Jim Hudgins/USFWS CC BY 2.0 2017 U.S. Air Force Pollinator Conservation Reference Guide Appendix A: Species maps and profiles Prepared for U.S. Air Force Civil Engineer Center Prepared by U.S. Fish and Wildlife Service Recommended citation: USFWS. 2017. U.S. Air Force Pollinator Conservation Reference Guide, Appendix A: Species information maps and profiles, Air Force Civil Engineer Center, San Antonio, TX, 88 pp. Page i ABBREVIATIONS AND TERMINOLOGY AFB = Air Force Base AFR = Air Force Range AGFD = Arizona Game and Fish Department ATV = all-terrain vehicle Bivoltine = two generations per year BLM = Bureau of Land Management BoR = Bureau of Reclamation CABI = Centre for Agriculture and Biosciences International Caterpillar = larva of a butterfly, skipper or moth Chrysalis = pupa of a butterfly, skipper or moth Diapause = a dormant phase DoD = Department of Defense Eclose = emerge from a pupa ECOS = Environmental Conservation Online System ESBB = El Segundo blue butterfly FR = Federal Register FS (in text) or USFS(on maps)= Forest Service Gynes = reproductive females Half-life = estimated number of years until an additional 50% of the population is lost Host plant = food plant for larval butterflies, skippers and moths Instar = time between larval molts (larval stage) LLNB = lesser long-nosed bat NPS = National Park Service Oviposit = lay an egg or multiple eggs PIF = Partners in Flight PIF Yellow Watch List = Bird species that have restricted ranges and small populations. These species require constant care and long-term assessment to prevent population declines. Senesce = age and wither Univoltine = one generation per year USDA = U.S. -
Impact of Non-Timber Forest Product Use on the Tree Community in North-Western Vietnam
Article Impact of Non-Timber Forest Product Use on the Tree Community in North-Western Vietnam Thi Hoa Hong Dao 1,2,* and Dirk Hölscher 1,3 1 University of Goettingen, Tropical Silviculture and Forest Ecology, 37077 Göttingen, Germany; [email protected] 2 Forest Inventory and Planning, Faculty of Silviculture, Vietnam National University of Forestry, 024840 Hanoi, Vietnam 3 University of Goettingen, Centre of Biodiversity and Sustainable Land Use, 37077 Göttingen, Germany * Correspondence: [email protected]; Tel.: +49-(0)551-39-33652; Fax: +49-(0)551-39-4019 Received: 18 May 2018; Accepted: 16 July 2018; Published: 18 July 2018 Abstract: Trees providing non-timber forest products (NTFPs) are valuable forest resources, and their management can support conservation objectives. We analyzed the abundance of tree species providing NTFPs, recognized by local H’mong people, in both the strictly protected core zone and the low-intensity forest use buffer zone in north-western Vietnam. We identified 249 tree species, of which 48% were classified as NTFP species. The abundance of 35% of the NTFP tree species was significantly correlated with footpaths, indicating an influence of human activity. A multiple logistic regression model indicates that using NTFP trees for food, medicine, and root harvesting, increases the probability of an NTFP tree absence in the buffer zone. In contrast, the high density of species, and collections of fruit, leaf, and resin decrease the probability of an NTFP tree absence in the buffer zone. Further assessment with a logistic model indicated that NTFP use has lower impacts on the tree community than timber use. -
Exempted Trees List
Prohibited Plants List The following plants should not be planted within the City of North Miami. They do not require a Tree Removal Permit to remove. City of North Miami, 2017 Comprehensive List of Exempted Species Pg. 1/4 Scientific Name Common Name Abrus precatorius Rosary pea Acacia auriculiformis Earleaf acacia Adenanthera pavonina Red beadtree, red sandalwood Aibezzia lebbek woman's tongue Albizia lebbeck Woman's tongue, lebbeck tree, siris tree Antigonon leptopus Coral vine, queen's jewels Araucaria heterophylla Norfolk Island pine Ardisia crenata Scratchthroat, coral ardisia Ardisia elliptica Shoebutton, shoebutton ardisia Bauhinia purpurea orchid tree; Butterfly Tree; Mountain Ebony Bauhinia variegate orchid tree; Mountain Ebony; Buddhist Bauhinia Bischofia javanica bishop wood Brassia actino-phylla schefflera Calophyllum antillanum =C inophyllum Casuarina equisetifolia Australian pine Casuarina spp. Australian pine, sheoak, beefwood Catharanthus roseus Madagascar periwinkle, Rose Periwinkle; Old Maid; Cape Periwinkle Cestrum diurnum Dayflowering jessamine, day blooming jasmine, day jessamine Cinnamomum camphora Camphortree, camphor tree Colubrina asiatica Asian nakedwood, leatherleaf, latherleaf Cupaniopsis anacardioides Carrotwood Dalbergia sissoo Indian rosewood, sissoo Dioscorea alata White yam, winged yam Pg. 2/4 Comprehensive List of Exempted Species Scientific Name Common Name Dioscorea bulbifera Air potato, bitter yam, potato vine Eichhornia crassipes Common water-hyacinth, water-hyacinth Epipremnum pinnatum pothos; Taro -
Sesbania Sesban (L.) Merrill: Potential Uses of an Underutilized Multipurpose Tree in Ethiopia
Vol. 7(10), pp. 468-475, October 2013 DOI: 10.5897/AJPS2012.0716 ISSN 1996-0824 ©2013 Academic Journals African Journal of Plant Science http://www.academicjournals.org/AJPS Review Sesbania sesban (L.) Merrill: Potential uses of an underutilized multipurpose tree in Ethiopia Zerihun Nigussie* and Getachew Alemayehu College of Agriculture and Environmental Sciences, Bahir Dar University, P.O. Box 1094, Bahir Dar, Ethiopia. Accepted 29 July, 2013 Sesbania sesban (L.) Merrill is the most productive multipurpose tree widely distributed in tropics and subtropics; and usually planted by smallholder farmers mostly for its fodder and soil improvement values. The objective of the present study was to review the various aspects (with emphasis on its importance) of S. sesban and generate comprehensive technical information for scholars who wish to study the plant in detail. Different parts of S. sesban is reputed for various purposes such as weed control, phytoremediation, anti-inflammation and antioxidant effect, abortion and antifertility agent, antimicrobial activity, firewood source, livestock feed and pasture improvement, green manure, mosquito repellant, live support and Schistosoma control. Having these and other multiple uses, S. sesban can contribute to sustainable livelihoods by improving household food, nutrition and health security. Key words: Sesbania sesban, phytoremediation, anti-inflammation, antioxidant, livelihood. INTRODUCTION Ethiopia is an agriculture based country where the and deep rooting shrub with good-quality foliage is one of majority of the population engage in subsistence level the most promising species for short-duration cover crop and livestock production (Nigussie, 2012), that is, cropping (Desaeger and Rao, 2001) and serve as protein mixed crop-livestock farming systems. -
EUCALYPTUS ASSESSMENT City of Santa Monica
EUCALYPTUS ASSESSMENT City of Santa Monica PREPARED FOR: City of Santa Monica Open Space Management Division 2600 Ocean Park Blvd. Santa Monica CA 90405 PREPARED BY HortScience, Inc. 4125 Mohr Ave., Suite F Pleasanton CA 94566 September 2005 Eucalyptus Assessment Santa Monica CA Table of Contents Page I. Introduction and Methods 1 Eucalyptus assessment Tree evaluation procedure Tree risk rating system II. Results and Evaluation 6 Description of trees Results of decay testing Tree risk ratings III. Tree Risk Abatement 12 List of Tables & Figures Table 1. Eucalyptus tree condition & frequency of occurrence 7 Table 2. Results of decay testing Table 3. Summary of tree hazard ratings 11 Table 4. Recommendations for specific action Attachments Eucalyptus assessment procedure Tree Survey Forms Eucalyptus Assessment HortScience, Inc. City of Santa Monica Page 1 I. Introduction and Methods Thousands of trees line Santa Monica’s streets and grace its parks. Planted over the course of the City’s history, these trees are an important component of Santa Monica’s urban forest. Management of this resource falls under the purview of the City’s Open Space Management Division. Many of the trees in the City are species of the genus Eucalyptus, native to Australia. The three types of eucalyptus, commonly known as gums, ironbarks and yates, add a distinctive character to the community. One of the issues faced by the City of Santa Monica is enhancing the safety of those who live, work and visit there. The Open Space Management Division wants to manage the eucalyptus trees to conserve the resource while protecting public safety.