AI-Based Integration of Imaging, Omics, and Clinical Data

Total Page:16

File Type:pdf, Size:1020Kb

AI-Based Integration of Imaging, Omics, and Clinical Data European Journal of Nuclear Medicine and Molecular Imaging (2019) 46:2722–2730 https://doi.org/10.1007/s00259-019-04382-9 ORIGINAL ARTICLE Why imaging data alone is not enough: AI-based integration of imaging, omics, and clinical data Andreas Holzinger1 · Benjamin Haibe-Kains2,3 · Igor Jurisica3,4,5 Received: 12 May 2019 / Accepted: 28 May 2019 /Published online: 15 June 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Artificial intelligence (AI) is currently regaining enormous interest due to the success of machine learning (ML), and in particular deep learning (DL). Image analysis, and thus radiomics, strongly benefits from this research. However, effectively and efficiently integrating diverse clinical, imaging, and molecular profile data is necessary to understand complex diseases, and to achieve accurate diagnosis in order to provide the best possible treatment. In addition to the need for sufficient computing resources, suitable algorithms, models, and data infrastructure, three important aspects are often neglected: (1) the need for multiple independent, sufficiently large and, above all, high-quality data sets; (2) the need for domain knowledge and ontologies; and (3) the requirement for multiple networks that provide relevant relationships among biological entities. While one will always get results out of high-dimensional data, all three aspects are essential to provide robust training and validation of ML models, to provide explainable hypotheses and results, and to achieve the necessary trust in AI and confidence for clinical applications. Keywords Precision medicine · Artificial intelligence · Machine learning · Decision support · Integrative computational biology · Network-based analysis · Radiomics Data explosion and the vital need extremely sensitive to poor data quality [2]. In the medi- for high-quality data cal domain, data quality (i.e., completeness, correctness) is further extended by confidentiality requirements, and the First and foremost, the biggest problem in the AI world is need for comprehensive annotation. It is amazing how bad the quality and sufficient volume of data. The most suc- the standard data sets in the medical domain are (noisy, cessful machine learning methods are data hungry [1], and sparse, wrong, biased, etc.), which was already described by Komaroff in 1979, when he stated that “the taking of a medi- This article is part of the Topical Collection on Advanced Image cal history, the performance of the physical examination, the Analyses (Radiomics and Artificial Intelligence) interpretation of laboratory tests, even the definition of dis- Igor Jurisica eases, are surprisingly inexact” [3]. Unfortunately, with the [email protected] introduction of sophisticated electronic patient record sys- tems this is often even worse today, as incorrect data escape routine checks and the errors are compounded across com- 1 Institute for Medical Informatics / Statistics, Medical University Graz, Auenbruggerplatz 2/V, putational workflows, frequently increasing clinical errors 8036 Graz, Austria [4]. Therefore, within a whole ML pipeline the aspect of 2 Princess Margaret Cancer Centre, University Health Network, data processing is of utmost importance. Consequently, for Toronto, ON, Canada AI applications to be successfully applied to the medical 3 Departments of Medical Biophysics and Computer Science, domain, an integrative machine learning approach might University of Toronto, Toronto, Canada be necessary [5], calling for the integration and fusion of 4 Krembil Research Institute, UHN, 60 Leonard Avenue, heterogeneous data sets, e.g., images, physiological data, 5KD-407, Toronto, Ontario, M5T 0S8, Canada text (non-standardized“unstructure” and structured patient 5 Institute of Neuroimmunology, Slovak Academy of Sciences, records), and diverse omics profiles (gene, microRNA, pro- Bratislava, Slovakia tein, metabolic, etc.) [6]. Eur J Nucl Med Mol Imaging (2019) 46:2722–2730 2723 Generally, in the health domain one can identify different to reproduce the results, for examples and a discussion areas of data volumes depending on the medical context in see [9]. which they have been created [7]: • Patient data from the electronic patient records (EPR), Integrative computational biology including clinical reports, mainly unstructured informa- tion in written clinical reports, but also lab test data, and Developing effective knowledge systems to support the all types of biomedical signals (ECG, EEG, EOG, etc). governance, processing, inference, analysis and interactive • Imaging data, e.g., from radiology, pathology (whole visualization of integrated omics data is critical to maximize slide images), dermatology (dermoscopy), but also the impact on translational research. The importance of sonography, etc. visualization is often underestimated, but it is the quality • Biomedical research data, including clinical trial data of the visualization that enables the experts end users to and all sort of omics data, particularly from next- understand the data in the context of their problems [10]. generation sequencing (NGS), etc. In addition to this Visualization enables more accurate and relevant modeling data, which is produced in a clinical environment, more of healthy and disease states, and in turn support precision and more data is being generated outside the clinical medicine [11]. sector, i.e., • Health business data, including management data, Integrating layers of omics data logistics, and accounting but also more and more prediction (e.g., resource planning); Understanding complex diseases (e.g., arthritis, brain • Private patient data, produced completely outside the disorders, cancer) requires computational analyses that clinical context, which is fostered by the possibilities integrate diverse layers of data—imaging data, omics of modern low-cost smartphones such as sport data, profiles, clinical data, and annotations. Such complex data wellness and data for ambient assisted living (sensor needs to be analyzed using scalable data mining, machine data) learning and statistical methods. In turn, comprehensive The US Department of Health and Human Services integration, further analysis and modeling requires detailed (HHS) created a taxonomy of health data with the following annotations and relationships among these entities (see seven dimensions: Fig. 1). Such integrated network-based analyses help create and validate explainable disease models, and enable 1. Demographics and socioeconomic data including age, improved treatments strategies and patient outcomes. gender, education, etc. Radiomics can aid this process (see Fig. 1), by pro- 2. Health status data, including disabilities, diagnoses, and viding additional features for the analysis, improved dis- symptoms ease characterization and patient stratification. Radiomics 3. Health resources data including the capacities of the enables more accurate disease classification than traditional health system, performance and operating data disease grading; for example, it significantly improves sen- 4. Health-care utilization, including data about treatment sitivity of identifying structural knee osteoarthritis [12]. and duration Imaging data can provide integrated in the ”front end” by 5. Health-care cost and expenditure data, including supporting cancer detection Cameron-2016, characterizing charges, insurance status, etc. micro-environment [13], tracking tumor biology [14], cell 6. Health-care outcomes of current and past prevention, proliferation, and blood vessel formation [15]. This can aid treatments, etc. in more precise and earlier tumor detection and sybtyping 7. Other data including omics data, but also environmental [16], more accurate staging, treatment planning, progno- exposure data such as environmental impacts, etc. sis [17], and non-invasive response monitoring [18–20]. Reproducibility is another recognized but still mostly From the machine learning perspective, this helps reducing ignored issue. Currently, there is a huge trend in the noise and heterogeneity. Radiomics can also be integrated opposite direction: most scientific contributions are judged in the ”back end” by helping quantifying disease dynamics according to their novelty—rarely for their reproducibility, and predicting response to treatment [21] through series of which would be the essential criteria of good science— “digital biopsies”. see the recent debate in Science [8]. A typical example is that the data are considered as inaccessible due to ethical From individual biomarkers to signatures restrictions. Data protection is of course an issue but there must be solutions to publish data along with the results One of the central tasks in precision medicine is the and the international scientific community should be invited identification of groups of markers for aiding diagnosis, 2724 Eur J Nucl Med Mol Imaging (2019) 46:2722–2730 Binding U - Uncharacterized Chlorprothixene Thioridazine Clozapine D - Genome Maintenance VIPR2 CHRM4 TMEM120A PLLP HTR4 CCR9 CCR8 CCR6 CCR4 CERS6 BDKRB2 NPSR1 PRNP FA2H CCR2 MGLL CHRM3 OXTR CCR1 MC4R RXFP4 WHSC2 TR2CYSL SYT1 AFRPT ATP2A2 FZD7 GPR37 GNRHR RHBDD2 ADRB2 DRD2 CALM3 ATP1B1 OAZ1 GPRC5B HTR2C PTGER4 F2RL1 LTB4R2 MID1IP1 HTR2B RXFP3 AGTR1 YIF1A CHRM2 OPRM1 CHRM5 BUD31 1SLC25A1 TTYH1 SLC3A2 GPR35 C4orf3 SYNGR2 DNAJC8 GPRIN2 YIF1B TMEM161A CCR5 HTR6 SMO ADORA2A ADORA1 HRH1 ADRA1A BDKRB1 GABBR1 OPRL1 MBP HNRNPK APLNR GPR77 A1BHSP GPR182 AAR1T TSHR Catalytic Activity HTR4 C - Cellular Fate and Organization
Recommended publications
  • Virus Interactions with Human Signal Transduction Pathways
    Int. J. Computational Biology and Drug Design, Vol. 4, No. 1, 2011 83 Virus interactions with human signal transduction pathways Zhongming Zhao Departments of Biomedical Informatics, Psychiatry, and Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA E-mail: [email protected] Junfeng Xia Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA E-mail: [email protected] Oznur Tastan Language Technologies Institute, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA E-mail: [email protected] Irtisha Singh Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA E-mail: [email protected] Meghana Kshirsagar Language Technologies Institute, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA E-mail: [email protected] Copyright © 2011 Inderscience Enterprises Ltd. 84 Z. Zhao et al. Jaime Carbonell Language Technologies Institute, Computer Science Department, Machine Learning Department and Lane Center for Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA E-mail: [email protected] Judith Klein-Seetharaman* Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA E-mail: [email protected] *Corresponding author Abstract: Viruses depend on their hosts at every stage of their life cycles and must therefore communicate with them via Protein-Protein Interactions (PPIs). To investigate the mechanisms of communication by different viruses, we overlay reported pairwise human-virus PPIs on human signalling pathways. Of 671 pathways obtained from NCI and Reactome databases, 355 are potentially targeted by at least one virus.
    [Show full text]
  • Proteomic Analysis Uncovers Measles Virus Protein C Interaction with P65
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.08.084418; this version posted May 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Proteomic Analysis Uncovers Measles Virus Protein C Interaction with p65/iASPP/p53 Protein Complex Alice Meignié1,2*, Chantal Combredet1*, Marc Santolini 3,4, István A. Kovács4,5,6, Thibaut Douché7, Quentin Giai Gianetto 7,8, Hyeju Eun9, Mariette Matondo7, Yves Jacob10, Regis Grailhe9, Frédéric Tangy1**, and Anastassia V. Komarova1, 10** 1 Viral Genomics and Vaccination Unit, Department of Virology, Institut Pasteur, CNRS UMR-3569, 75015 Paris, France 2 Université Paris Diderot, Sorbonne Paris Cité, Paris, France 3 Center for Research and Interdisciplinarity (CRI), Université de Paris, INSERM U1284 4 Network Science Institute and Department of Physics, Northeastern University, Boston, MA 02115, USA 5 Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208-3109, USA 6 Department of Network and Data Science, Central European University, Budapest, H-1051, Hungary 7 Proteomics platform, Mass Spectrometry for Biology Unit (MSBio), Institut Pasteur, CNRS USR 2000, Paris, France. 8 Bioinformatics and Biostatistics Hub, Computational Biology Department, Institut Pasteur, CNRS USR3756, Paris, France 9 Technology Development Platform, Institut Pasteur Korea, Seongnam-si, Republic of Korea 10 Laboratory of Molecular Genetics of RNA Viruses, Institut Pasteur, CNRS UMR-3569,
    [Show full text]
  • XIAO-DISSERTATION-2015.Pdf
    CELLULAR AND PROCESS ENGINEERING TO IMPROVE MAMMALIAN MEMBRANE PROTEIN EXPRESSION By Su Xiao A dissertation is submitted to Johns Hopkins University in conformity with the requirements for degree of Doctor of Philosophy Baltimore, Maryland May 2015 © 2015 Su Xiao All Rights Reserved Abstract Improving the expression level of recombinant mammalian proteins has been pursued for production of commercial biotherapeutics in industry, as well as for biomedical studies in academia, as an adequate supply of correctly folded proteins is a prerequisite for all structure and function studies. Presented in this dissertation are different strategies to improve protein functional expression level, especially for membrane proteins. The model protein is neurotensin receptor 1 (NTSR1), a hard-to- express G protein-coupled receptor (GPCR). GPCRs are integral membrane proteins playing a central role in cell signaling and are targets for most of the medicines sold worldwide. Obtaining adequate functional GPCRs has been a bottleneck in their structure studies because the expression of these proteins from mammalian cells is very low. The first strategy is the adoption of mammalian inducible expression system. A stable and inducible T-REx-293 cell line overexpressing an engineered rat NTSR1 was constructed. 2.5 million Functional copies of NTSR1 per cell were detected on plasma membrane, which is 167 fold improvement comparing to NTSR1 constitutive expression. The second strategy is production process development including suspension culture adaptation and induction parameter optimization. A further 3.5 fold improvement was achieved and approximately 1 milligram of purified functional NTSR1 per liter suspension culture was obtained. This was comparable yield to the transient baculovirus- insect cell system.
    [Show full text]
  • NELF-Mediated Stalling of Pol II Can Enhance Gene Expression by Blocking Promoter-Proximal Nucleosome Assembly
    Downloaded from genesdev.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press NELF-mediated stalling of Pol II can enhance gene expression by blocking promoter-proximal nucleosome assembly Daniel A. Gilchrist,1 Sergei Nechaev,1 Chanhyo Lee,2 Saikat Kumar B. Ghosh,2 Jennifer B. Collins,3 Leping Li,4 David S. Gilmour,2 and Karen Adelman1,3,5 1Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA; 2Department of Biochemistry and Molecular Biology, Center for Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania 16802, USA; 3Microarray Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA; 4Biostatistics Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA The Negative Elongation Factor (NELF) is a transcription regulatory complex that induces stalling of RNA polymerase II (Pol II) during early transcription elongation and represses expression of several genes studied to date, including Drosophila Hsp70, mammalian proto-oncogene junB, and HIV RNA. To determine the full spectrum of NELF target genes in Drosophila, we performed a microarray analysis of S2 cells depleted of NELF and discovered that NELF RNAi affects many rapidly inducible genes involved in cellular responses to stimuli. Surprisingly,
    [Show full text]
  • Wolf-Hirschhorn Syndrome
    Wolf-Hirschhorn syndrome Author: Dr. Dagmar Wieczorek Creation date: September 2003 Scientific editor: Professor Alain Verloes Institut fur Humangenetik, Universitatsklinikum Essen, Hufelandstrasse 55, 45122 Essen, Germany. [email protected] Abstract Key words Disease name and synonyms Excluded diseases Diagnostic criteria/ definition Differential diagnosis Frequency Clinical description Management including treatment Etiology Diagnostic methods Genetic counseling Antenatal diagnosis Unresolved questions References Abstract Wolf-Hirschhorn syndrome (WHS) is caused by a deletion of the band 4p16.3 and this deletion may be submicroscopic. The craniofacial phenotype (microcephaly, hypertelorism, prominent glabella, broad and/or beaked nose, short philtrum, micrognathia, downturned corners of the mouth, dysplastic ears, preauricular tags) in combination with mental retardation, seizures, congenital heart defects, genital and renal anomalies is indicative for the diagnosis. A familial translocation is responsible for 5 – 13% of the patients. The remainder of the patients have de novo deletions, usually on the paternal chromosome 4, or de novo translocations in 1.6 %. Submicroscopic deletions require molecular techniques, e.g. microsatellite analysis, or molecular-cytogenetic techniques, e.g. fluorescence in situ hybridisation (FISH), to detect the deletion. Fluorescence in situ hybridisation of the patient and his parents should be performed to confirm/exclude translocations. Recurrence risk is low in de novo deletions and translocations,
    [Show full text]
  • Deletions Involving Genes WHSC1 and LETM1 May Be Necessary, but Are Not Sufficient to Cause Wolf&Ndash;Hirschhorn Syndrome
    European Journal of Human Genetics (2014) 22, 464–470 & 2014 Macmillan Publishers Limited All rights reserved 1018-4813/14 www.nature.com/ejhg ARTICLE Deletions involving genes WHSC1 and LETM1 may be necessary, but are not sufficient to cause Wolf–Hirschhorn Syndrome Erica F Andersen*,1,2, John C Carey3, Dawn L Earl4, Deyanira Corzo5, Michael Suttie6, Peter Hammond6 and Sarah T South1,2,3 Wolf–Hirschhorn syndrome (WHS) is a complex genetic disorder caused by the loss of genomic material from the short arm of chromosome 4. Genotype–phenotype correlation studies indicated that the loss of genes within 4p16.3 is necessary for expression of the core features of the phenotype. Within this region, haploinsufficiency of the genes WHSC1 and LETM1 is thought to be a major contributor to the pathogenesis of WHS. We present clinical findings for three patients with relatively small (o400 kb) de novo interstitial deletions that overlap WHSC1 and LETM1. 3D facial analysis was performed for two of these patients. Based on our findings, we propose that hemizygosity of WHSC1 and LETM1 is associated with a clinical phenotype characterized by growth deficiency, feeding difficulties, and motor and speech delays. The deletion of additional genes nearby WHSC1 and LETM1 does not result in a marked increase in the severity of clinical features, arguing against their haploinsufficiency. The absence of seizures and typical WHS craniofacial findings in our cohort suggest that deletion of distinct or additional 4p16.3 genes is necessary for expression of these features. Altogether, these results show that although loss-of- function for WHSC1 and/or LETM1 contributes to some of the features of WHS, deletion of additional genes is required for the full expression of the phenotype, providing further support that WHS is a contiguous gene deletion disorder.
    [Show full text]
  • LETM1 Haploinsufficiency Causes Mitochondrial Defects in Cells From
    © 2014. Published by The Company of Biologists Ltd | Disease Models & Mechanisms (2014) 7, 535-545 doi:10.1242/dmm.014464 RESEARCH ARTICLE LETM1 haploinsufficiency causes mitochondrial defects in cells from humans with Wolf-Hirschhorn syndrome: implications for dissecting the underlying pathomechanisms in this condition Lesley Hart1,2, Anita Rauch3, Antony M. Carr2, Joris R. Vermeesch4 and Mark O’Driscoll1,* ABSTRACT abnormalities, a characteristic facial dysmorphology, hypotonia, and Wolf-Hirschhorn syndrome (WHS) represents an archetypical epileptic seizures (Hirschhorn and Cooper, 1961; Hirschhorn et al., example of a contiguous gene deletion disorder – a condition 1965; Wolf et al., 1965). The spectrum and severity of these clinical comprising a complex set of developmental phenotypes with a features typically correlate with deletion size (Battaglia et al., 2008; multigenic origin. Epileptic seizures, intellectual disability, growth Maas et al., 2008; Van Buggenhout et al., 2004; Zollino et al., 2000). restriction, motor delay and hypotonia are major co-morbidities in WHS is generally regarded as a multigenic disorder, although two WHS. Haploinsufficiency of LETM1, which encodes a mitochondrial critical regions have been described: WHSCR1 and WHSCR2, for inner-membrane protein functioning in ion transport, has been WHS critical region 1 and 2, respectively (see Fig. 1). These critical proposed as an underlying pathomechanism, principally for seizures regions are based on the demarcation of the minimum region of but also for other core features of WHS, including growth and motor overlap in individuals exhibiting WHS-like phenotypes. WHSCR1 delay. Growing evidence derived from several model organisms incorporates part of the WHS candidate gene WHSC1 and the entire suggests that reduced LETM1 expression is associated with some WHSC2 gene (White et al., 1995; Wright et al., 1997).
    [Show full text]
  • COBRA1 Monoclonal Antibody, Clone F7E4
    COBRA1 monoclonal antibody, Gene Symbol: COBRA1 clone F7E4 Gene Alias: DKFZp586B0519, KIAA1182, NELF-B, NELFB Catalog Number: MAB8174 Gene Summary: NELFB is a subunit of negative Regulatory Status: For research use only (RUO) elongation factor (NELF), which also includes NELFA (WHSC2; MIM 606026), either NELFC or NELFD (TH1L; Product Description: Mouse monoclonal antibody MIM 605297), and NELFE (RDBP; MIM 154040). NELF raised against full length recombinant COBRA1. acts with DRB sensitivity-inducing factor (DSIF), a Clone Name: F7E4 heterodimer of SPT4 (SUPT4H1; MIM 603555) and SPT5 (SUPT5H; MIM 602102), to cause transcriptional Immunogen: Recombinant protein corresponding to full pausing of RNA polymerase II (see MIM 180660) (Narita length human COBRA1. et al., 2003 [PubMed 12612062]).[supplied by OMIM] Host: Mouse References: 1. COBRA1 inhibits AP-1 transcriptional activity in Theoretical MW (kDa): 62 transfected cells. Zhong H, Zhu J, Zhang H, Ding L, Sun Y, Huang C, Ye Q. Biochem Biophys Res Commun. Reactivity: Human,Mouse,Rat 2004 Dec 10;325(2):568-73. 2. Attenuation of estrogen receptor alpha-mediated Applications: WB-Ti transcription through estrogen-stimulated recruitment of (See our web site product page for detailed applications a negative elongation factor. Aiyar SE, Sun JL, Blair AL, information) Moskaluk CA, Lu YZ, Ye QN, Yamaguchi Y, Mukherjee A, Ren DM, Handa H, Li R. Genes Dev. 2004 Sep Protocols: See our web site at 1;18(17):2134-46. http://www.abnova.com/support/protocols.asp or product page for detailed protocols Specificity: This antibody has been directly tested for reactivity in Western blots with human, mouse and rat tissue.
    [Show full text]
  • Wolf-Hirschhorn Syndrome-Associated Genes Are Enriched in Motile Neural Crest and Affect Craniofacial Development in Xenopus Laevis
    bioRxiv preprint doi: https://doi.org/10.1101/471672; this version posted November 15, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Wolf-Hirschhorn Syndrome-associated genes are enriched in motile neural crest and affect craniofacial development in Xenopus laevis Alexandra Mills1,*, Elizabeth Bearce1,*, Rachael Cella1, Seung Woo Kim1, Megan Selig1, Sangmook Lee1, and Laura Anne Lowery1, 1Boston College, Biology Depart, Chestnut Hill, MA, USA *These authors contributed equally Wolf-Hirschhorn Syndrome (WHS) is a human developmental may hold especially critical roles in this tissue. To this end, disorder arising from a hemizygous perturbation, typically we investigated the roles of four WHS-associated genes a microdeletion, on the short arm of chromosome four. during neural crest cell migration and facial patterning. We In addition to pronounced intellectual disability, seizures, show that during normal development, expression of these and delayed growth, WHS presents with a characteristic genes is enriched in migratory neural crest and craniofacial facial dysmorphism and varying prevalence of microcephaly, structures. Subsequently, we examine their functional roles micrognathia, cartilage malformation in the ear and nose, during facial patterning, cartilage formation, and forebrain and facial asymmetries. These affected craniofacial tissues all derive from a shared embryonic precursor, the cranial neural development, and find that their depletion recapitulates crest, inviting the hypothesis that one or more WHS-affected features of WHS craniofacial malformation. Additionally, genes may be critical regulators of neural crest development two of these genes directly affect neural crest cell migration or migration.
    [Show full text]
  • WHSC2 Antibody (Center) Blocking Peptide Synthetic Peptide Catalog # Bp14802c
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 WHSC2 Antibody (Center) Blocking Peptide Synthetic peptide Catalog # BP14802c Specification WHSC2 Antibody (Center) Blocking WHSC2 Antibody (Center) Blocking Peptide - Peptide - Background Product Information This gene is expressed ubiquitously with Primary Accession Q9H3P2 higher levels infetal than in adult tissues. It encodes a protein sharing 93%sequence identity with the mouse protein. WHSC2 Antibody (Center) Blocking Peptide - Additional Information Wolf-Hirschhorn syndrome(WHS) is a malformation syndrome associated with a hemizygousdeletion of the distal short arm of Gene ID 7469 chromosome 4. This gene ismapped to the 165 kb WHS critical region, and may play a role Other Names inthe phenotype of the WHS or Negative elongation factor A, NELF-A, Pitt-Rogers-Danks syndrome. The Wolf-Hirschhorn syndrome candidate 2 encodedprotein is found to be capable of protein, NELFA, WHSC2 reacting with HLA-A2-restrictedand Format tumor-specific cytotoxic T lymphocytes, Peptides are lyophilized in a solid powder suggesting a target foruse in specific format. Peptides can be reconstituted in immunotherapy for a large number of solution using the appropriate buffer as cancerpatients. This protein has also been needed. shown to be a member of theNELF (negative elongation factor) protein complex that Storage participatesin the regulation of RNA Maintain refrigerated at 2-8°C for up to 6 polymerase II transcription elongation. months. For long term storage store at -20°C. WHSC2 Antibody (Center) Blocking Peptide - References Precautions This product is for research use only. Not Rose, J.E., et al. Mol.
    [Show full text]
  • Disorders of Sex Development in Wolf–Hirschhorn Syndrome: a Genotype
    Rjiba et al. Mol Cytogenet (2021) 14:12 https://doi.org/10.1186/s13039-021-00531-8 RESEARCH Open Access Disorders of sex development in Wolf– Hirschhorn syndrome: a genotype–phenotype correlation and MSX1 as candidate gene Khouloud Rjiba1,2,3, Hédia Ayech4, Olfa Kraiem5, Wafa Slimani1,2,3, Afef Jelloul1, Imen Ben Hadj Hmida1, Nabiha Mahdhaoui4, Ali Saad1,3 and Soumaya Mougou‑Zerelli1,3* Abstract Background: Wolf–Hirschhorn (WHS) is a set of congenital physical anomalies and mental retardation associated with a partial deletion of the short arm of chromosome 4. To establish a genotype–phenotype correlation; we carried out a molecular cytogenetic analysis on two Tunisian WHS patients. Patient 1 was a boy of 1‑year‑old, presented a typical WHS phenotype while patient 2, is a boy of 2 days presented an hypospadias, a micropenis and a cryptorchidie in addition to the typical WHS phenotype. Both the array comparative genomic hybridization and fuorescence in situ hybridization techniques were used. Results: Results of the analysis showed that patient 2 had a greater deletion size (4.8 Mb) of chromosome 4 than patient 1 (3.4 Mb). Here, we notice that the larger the deletion, the more genes are likely to be involved, and the more severe the phenotype is likely to be. If we analyze the uncommon deleted region between patient1 and patient 2 we found that the Muscle Segment Homeobox (MSX1) gene is included in this region. MSX1 is a critical transcriptional repressor factor, expressed in the ventral side of the developing anterior pituitary and implicated in gonadotrope diferentiation.
    [Show full text]
  • Modulation of WHSC2 Expression in Human Endothelial Cells
    FEBS Letters 487 (2000) 166^170 FEBS 24427 View metadata, citation and similar papers at core.ac.uk brought to you by CORE Modulation of WHSC2 expression in human endothelialprovided cells by Elsevier - Publisher Connector M. Mariotti1, M. Manganini1, J.A.M. Maier* Department of Preclinical Sciences-LITA Vialba, University of Milano, Via G.B. Grassi, 74, 20157 Milan, Italy Received 15 August 2000; revised 15 November 2000; accepted 21 November 2000 First published online 5 December 2000 Edited by Takashi Gojobori ¢broblast growth factor (bFGF) [16]. Moreover, tat transgen- Abstract WHSC2, a novel gene recently isolated within the critical region of Wolf^Hirschhorn syndrome, is expressed in ic mice develop KS-like lesions [17]. In addition, Tat activates endothelial cells. WHSC2 is downregulated by HIV-1 Tat, ECs by stimulating the expression of E-selectin and IL-6 [18]. whereas it is not modulated by angiogenic and pro-differentiative Because of the multiple e¡ects of Tat on EC, we isolated molecules. WHSC2 encodes a basic polypeptide of 528 amino di¡erentially expressed genes in Tat-treated EC to yield in- acids. The in vitro translated protein shows a molecular weight of sights into the molecular mechanisms contributing to endo- 57 kDa. WHSC2 has two nuclear translocation sequences which thelial dysfunction in HIV-infected individuals, in KS and, actively mediate its transport to the nucleus, as shown in whsc2- more generally, in angiogenesis. Here we report that Tat GFP-transfected NIH-3T3. We also found a helix-loop-helix downregulates the expression of whsc2 [19] in human EC. (HLH) motif in region 130^185.
    [Show full text]