Flaws in Applying Proof Methodologies to Signature Schemes
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Jeffrey Hoffstein Jill Pipher Joseph H. Silverman
Undergraduate Texts in Mathematics Je rey Ho stein Jill Pipher Joseph H. Silverman An Introduction to Mathematical Cryptography Second Edition Undergraduate Texts in Mathematics Undergraduate Texts in Mathematics Series Editors: Sheldon Axler San Francisco State University, San Francisco, CA, USA Kenneth Ribet University of California, Berkeley, CA, USA Advisory Board: Colin Adams, Williams College, Williamstown, MA, USA Alejandro Adem, University of British Columbia, Vancouver, BC, Canada Ruth Charney, Brandeis University, Waltham, MA, USA Irene M. Gamba, The University of Texas at Austin, Austin, TX, USA Roger E. Howe, Yale University, New Haven, CT, USA David Jerison, Massachusetts Institute of Technology, Cambridge, MA, USA Jeffrey C. Lagarias, University of Michigan, Ann Arbor, MI, USA Jill Pipher, Brown University, Providence, RI, USA Fadil Santosa, University of Minnesota, Minneapolis, MN, USA Amie Wilkinson, University of Chicago, Chicago, IL, USA Undergraduate Texts in Mathematics are generally aimed at third- and fourth- year undergraduate mathematics students at North American universities. These texts strive to provide students and teachers with new perspectives and novel approaches. The books include motivation that guides the reader to an appreciation of interre- lations among different aspects of the subject. They feature examples that illustrate key concepts as well as exercises that strengthen understanding. More information about this series at http://www.springer.com/series/666 Jeffrey Hoffstein • Jill Pipher Joseph -
11 Digital Signatures
This is a Chapter from the Handbook of Applied Cryptography, by A. Menezes, P. van Oorschot, and S. Vanstone, CRC Press, 1996. For further information, see www.cacr.math.uwaterloo.ca/hac CRC Press has granted the following specific permissions for the electronic version of this book: Permission is granted to retrieve, print and store a single copy of this chapter for personal use. This permission does not extend to binding multiple chapters of the book, photocopying or producing copies for other than personal use of the person creating the copy, or making electronic copies available for retrieval by others without prior permission in writing from CRC Press. Except where over-ridden by the specific permission above, the standard copyright notice from CRC Press applies to this electronic version: Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher. The consent of CRC Press does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from CRC Press for such copying. c 1997 by CRC Press, Inc. Chapter 11 Digital Signatures Contents in Brief 11.1 Introduction :::::::::::::::::::::::::::::425 11.2 A framework for digital signature mechanisms ::::::::::426 11.3 RSA and related signature schemes :::::::::::::::::433 11.4 Fiat-Shamir signature schemes :::::::::::::::::::447 11.5 The DSA and related signature schemes ::::::::::::::451 11.6 One-time digital signatures :::::::::::::::::::::462 11.7 Other signature schemes ::::::::::::::::::::::471 11.8 Signatures with additional functionality ::::::::::::::474 11.9 Notes and further references ::::::::::::::::::::481 11.1 Introduction This chapter considers techniques designed to provide the digital counterpart to a handwrit- ten signature. -
Multiplicative Differentials
Multiplicative Differentials Nikita Borisov, Monica Chew, Rob Johnson, and David Wagner University of California at Berkeley Abstract. We present a new type of differential that is particularly suited to an- alyzing ciphers that use modular multiplication as a primitive operation. These differentials are partially inspired by the differential used to break Nimbus, and we generalize that result. We use these differentials to break the MultiSwap ci- pher that is part of the Microsoft Digital Rights Management subsystem, to derive a complementation property in the xmx cipher using the recommended modulus, and to mount a weak key attack on the xmx cipher for many other moduli. We also present weak key attacks on several variants of IDEA. We conclude that cipher designers may have placed too much faith in multiplication as a mixing operator, and that it should be combined with at least two other incompatible group opera- ¡ tions. 1 Introduction Modular multiplication is a popular primitive for ciphers targeted at software because many CPUs have built-in multiply instructions. In memory-constrained environments, multiplication is an attractive alternative to S-boxes, which are often implemented us- ing large tables. Multiplication has also been quite successful at foiling traditional dif- ¢ ¥ ¦ § ferential cryptanalysis, which considers pairs of messages of the form £ ¤ £ or ¢ ¨ ¦ § £ ¤ £ . These differentials behave well in ciphers that use xors, additions, or bit permutations, but they fall apart in the face of modular multiplication. Thus, we con- ¢ sider differential pairs of the form £ ¤ © £ § , which clearly commute with multiplication. The task of the cryptanalyst applying multiplicative differentials is to find values for © that allow the differential to pass through the other operations in a cipher. -
Fault Analysis of the Ntrusign Digital Signature Scheme
Cryptogr. Commun. (2012) 4:131–144 DOI 10.1007/s12095-011-0061-3 Fault analysis of the NTRUSign digital signature scheme Abdel Alim Kamal · Amr M. Youssef Received: 11 December 2010 / Accepted: 14 December 2011 / Published online: 6 January 2012 © Springer Science+Business Media, LLC 2012 Abstract We present a fault analysis of the NTRUSign digital signature scheme. The utilized fault model is the one in which the attacker is assumed to be able to fault a small number of coefficients in a specific polynomial during the signing process but cannot control the exact location of the injected transient faults. For NTRUsign with parameters (N, q = pl, B, standard, N ), when the attacker is able to skip the norm-bound signature checking step, our attack needs one fault, ≈ − 1 (( )t) succeeds with probability 1 p and requires O qN steps when the number of faulted polynomial coefficients is upper bounded by t. The attack is also applicable to NTRUSign utilizing the transpose NTRU lattice but it requires double the number of fault injections. Different countermeasures against the proposed attack are investigated. Keywords Side channel attacks · Lattice-based public key cryptosystems · Fault analysis and countermeasures · Digital signature schemes · NTRU Mathematics Subject Classification (2010) 94A60 1 Introduction NTRUSign [1–4] is a parameterized family of lattice-based public key digital signa- ture schemes that is currently under consideration for standardization by the IEEE P1363 working group. It was proposed after the original NTRU signature scheme (NSS) [5] was broken [6, 7]. Similar to the GGH cryptosystem [8], the security of A. A. -
Subliminal Channels in High-Speed Signatures
Die approbierte Originalversion dieser Diplom-/ Masterarbeit ist in der Hauptbibliothek der Tech- nischen Universität Wien aufgestellt und zugänglich. http://www.ub.tuwien.ac.at institute of telecommunications The approved original version of this diploma or master thesis is available at the main library of the Vienna University of Technology. http://www.ub.tuwien.ac.at/eng Subliminal Channels in High-Speed Signatures Master’s Thesis for obtaining the academic degree Diplom-Ingenieur as part of the study Electrical Engineering and Information Technology carried out by Alexander Hartl student number: 01125115 Institute of Telecommunications at TU Wien Supervision: Univ. Prof. Dipl.-Ing. Dr.-Ing. Tanja Zseby Dipl.-Ing. Robert Annessi, B.Sc Acknowledgments I want to express my gratitude for everyone who assisted or encouraged me in various ways during my studies. In particular, I would like to thank Prof. Tanja Zseby and Dipl.-Ing. Robert Annessi for giving me the opportunity to write this thesis, for supporting me actively while I was working on it and for many valuable comments and suggestions. I owe special thanks to my family, especially my parents Edith and Rudolf, for their endless support during all these years. Thank you, Sabrina, for encouraging me and for so many cheerful hours in my life. Abstract One of the fundamental building blocks for achieving security in data networks is the use of digital signatures. A digital signature is a bit string which allows the receiver of a message to ensure that the message indeed originated from the apparent sender and has not been altered along the path. -
Public-Key Cryptography
Public-key Cryptogra; Theory and Practice ABHIJIT DAS Department of Computer Science and Engineering Indian Institute of Technology Kharagpur C. E. VENIMADHAVAN Department of Computer Science and Automation Indian Institute ofScience, Bangalore PEARSON Chennai • Delhi • Chandigarh Upper Saddle River • Boston • London Sydney • Singapore • Hong Kong • Toronto • Tokyo Contents Preface xiii Notations xv 1 Overview 1 1.1 Introduction 2 1.2 Common Cryptographic Primitives 2 1.2.1 The Classical Problem: Secure Transmission of Messages 2 Symmetric-key or secret-key cryptography 4 Asymmetric-key or public-key cryptography 4 1.2.2 Key Exchange 5 1.2.3 Digital Signatures 5 1.2.4 Entity Authentication 6 1.2.5 Secret Sharing 8 1.2.6 Hashing 8 1.2.7 Certification 9 1.3 Public-key Cryptography 9 1.3.1 The Mathematical Problems 9 1.3.2 Realization of Key Pairs 10 1.3.3 Public-key Cryptanalysis 11 1.4 Some Cryptographic Terms 11 1.4.1 Models of Attacks 12 1.4.2 Models of Passive Attacks 12 1.4.3 Public Versus Private Algorithms 13 2 Mathematical Concepts 15 2.1 Introduction 16 2.2 Sets, Relations and Functions 16 2.2.1 Set Operations 17 2.2.2 Relations 17 2.2.3 Functions 18 2.2.4 The Axioms of Mathematics 19 Exercise Set 2.2 20 2.3 Groups 21 2.3.1 Definition and Basic Properties . 21 2.3.2 Subgroups, Cosets and Quotient Groups 23 2.3.3 Homomorphisms 25 2.3.4 Generators and Orders 26 2.3.5 Sylow's Theorem 27 Exercise Set 2.3 29 2.4 Rings 31 2.4.1 Definition and Basic Properties 31 2.4.2 Subrings, Ideals and Quotient Rings 34 2.4.3 Homomorphisms 37 2.4.4 -
Efficient Implementations of Attribute-Based Credentials on Smart Cards
Efficient Implementations of Attribute-based Credentials on Smart Cards Pim Vullers Copyright c 2014 Pim Vullers IPA Dissertation Series: 2014-15 ISBN: 978-94-6259-376-3 NUR: 980 Typeset using LATEX 2ε (TEXLive 2013) Cover design by Koen Vullers Printed by Ipskamp Drukkers (http://proefschriften.net/) The work in this thesis has been carried out under the auspices of the research school IPA (Institute for Programming research and Algorithmics). The author was employed at the Radboud University Nijmegen. This research was sponsored by Trans Link Systems / Open Ticketing. This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International license. To view a copy of this license, please visit http://creativecommons.org/licenses/by-sa/4.0/. Efficient Implementations of Attribute-based Credentials on Smart Cards Proefschrift ter verkrijging van de graad van doctor aan de Radboud Universiteit Nijmegen op gezag van de rector magnificus prof. dr. Th.L.M. Engelen, volgens besluit van het college van decanen in het openbaar te verdedigen op vrijdag 28 november 2014 om 10.30 uur precies. door Pim Vullers geboren op 20 juni 1986 te Venlo Promotor: Prof. dr. B.P.F. Jacobs Manuscriptcommissie: Prof. dr. E.R. Verheul Prof. dr. S. Mauw Université du Luxembourg, Luxemburg Prof. dr. ir. B. de Decker KU Leuven, België Dr. G. Neven IBM Research Zürich, Zwitserland Dr. ir. E. Poll Samenvatting We leven in een wereld waarin computers een steeds grotere rol spelen. Daarom wordt het alsmaar belangrijker om gebruikers en objecten digitaal te kunnen iden- tificeren. Om dit te bereiken gebruiken veel bestaande systemen unieke nummers, denk bijvoorbeeld aan je burgerservicenummer (BSN). -
User Manual V.1.3 (“NTRU Release”) 1 What Is Goldbug?
Secure Instant Messenger User Manual v.1.3 (“NTRU Release”) http://goldbug.sf.net 1 What is GoldBug? GoldBug is a secure Instant Messenger. You can be sure with using GoldBug (GB), that no third party can look into your chat communication. Private user-to-user communication remains private. GoldBug therefore uses strong multi-encryption with different layers of modern encryption technologies of well known and revised crypto libraries (like libgcrypt (GnuPG) and OpenSSL). For example it generates more than 8 public / private encryption keys based on RSA or NTRU or ElGamal. The app offers as well decentral and encrypted Email and decentral public E*IRC-Chat. As in every Messenger, you can share and transfer files. With tools like Rosetta Cryptopad and/or the File-Encryption tool you can convert text and files into ciphertext. 2 Why encryption matters: Today mostly every WIFI is protected with a password. In a few years as well every plaintext message or email to friends over the internet will be encrypted too. It is not a question to have something to hide or not, • it is a question to control by yourself the security of your communications - or having it controled by others. • It‘ s a question of free thinking and • taking away the presumption of innocence.*) • Democracy requires the thinking and debate of alternatives in private and public. "The question is not 'do you have something to hide?' Strong-Multi-Encryption ensures the The question is whether we control declaration of human rights in broad constitutional consensi and is a digital or they controls us." - Oliver Stone self-defense, everyone needs to learn http://www.youtube.com/watch?v=0U37hl0n9mY and utilize. -
Flaws in Applying Proof Methodologies to Signature Schemes
Flaws in Applying Proof Methodologies to Signature Schemes Jacques Stern1?, David Pointcheval1, John Malone-Lee2, and Nigel P. Smart2 1 D´ept d'Informatique, ENS { CNRS, 45 rue d'Ulm, 75230 Paris Cedex 05, France. E-mail: fJacques.Stern,[email protected] URL: http://www.di.ens.fr/~fstern,pointcheg 2 Computer Science Dept, Woodland Road, University of Bristol, BS8 1UB, UK. E-mail: fmalone, [email protected] URL: http://www.cs.bris.ac.uk/~fmalone,nigelg Abstract. Methods from provable security, developed over the last twenty years, have been recently extensively used to support emerging standards. However, the fact that proofs also need time to be validated through public discussion was somehow overlooked. This became clear when Shoup found that there was a gap in the widely believed security proof of OAEP against adaptive chosen-ciphertext attacks. We give more examples, showing that provable security is more subtle than it at first appears. Our examples are in the area of signature schemes: one is related to the security proof of ESIGN and the other two to the security proof of ECDSA. We found that the ESIGN proof does not hold in the usual model of security, but in a more restricted one. Concerning ECDSA, both examples are based on the concept of duplication: one shows how to manufacture ECDSA keys that allow for two distinct messages with identical signatures, a duplicate signature; the other shows that from any message-signature pair, one can derive a second signature of the same message, the malleability. The security proof provided by Brown [7] does not account for our first example while it surprisingly rules out malleabil- ity, thus offering a proof of a property, non-malleability, that the actual scheme does not possess. -
1 Review: Message Authentication Codes (Macs)
EE 418 Network Security and Cryptography Lecture #15 November 22, 2016 Message Authentication Codes (MACs). Digital Signatures. Lecture notes prepared by Professor Radha Poovendran. Tamara Bonaci Department of Electrical Engineering University of Washington, Seattle Outline: 1. Review: Message Authentication Codes (MACs) { Review: MAC from Block Cipher: CBC-MAC 2. Introduction to Digital Signatures 3. RSA digital signature scheme 4. ElGamal digital signature scheme 5. Schnoor Digital signature scheme 6. The Digital signature algorithm 1 Review: Message Authentication Codes (MACs) Last time, we started our discussion about message authentication codes (MACs), and we defined a MAC as a code that is appended to a message in order to provide message integrity1. In MACs, communicating parties share a secret key that is used to generate the code, and if a MAC is well-designed, then only a user with the shared key can compute a valid MAC for a given message. Two parties Alice and Bob who share a key K can use a MAC for message integrity as follows (illustrated in Figure 1): 1. Alice computes a MAC for message m as y = MAC(K; m), and sends pair (m; y) through the channel to Bob. 2. Bob receives (m; y). Using the secret key, Bob computes MAC(K; m) and checks y =? MAC(K; m). 3. If y = MAC(K; m), then Bob accepts the message. Otherwise, Bob rejects the message, since the message and MAC are inconsistent. Alice Bob MAC Generation Computes y = MAC(K,m) from secret key K and message m [m, y] MAC Verification Extracts m, computes y’=MAC(K,m) If y + y’ =0, accept the message If y + y’≠ 0, discard the message Fig. -
Statistical Cryptanalysis of Block Ciphers
STATISTICAL CRYPTANALYSIS OF BLOCK CIPHERS THÈSE NO 3179 (2005) PRÉSENTÉE À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS Institut de systèmes de communication SECTION DES SYSTÈMES DE COMMUNICATION ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES PAR Pascal JUNOD ingénieur informaticien dilpômé EPF de nationalité suisse et originaire de Sainte-Croix (VD) acceptée sur proposition du jury: Prof. S. Vaudenay, directeur de thèse Prof. J. Massey, rapporteur Prof. W. Meier, rapporteur Prof. S. Morgenthaler, rapporteur Prof. J. Stern, rapporteur Lausanne, EPFL 2005 to Mimi and Chlo´e Acknowledgments First of all, I would like to warmly thank my supervisor, Prof. Serge Vaude- nay, for having given to me such a wonderful opportunity to perform research in a friendly environment, and for having been the perfect supervisor that every PhD would dream of. I am also very grateful to the president of the jury, Prof. Emre Telatar, and to the reviewers Prof. em. James L. Massey, Prof. Jacques Stern, Prof. Willi Meier, and Prof. Stephan Morgenthaler for having accepted to be part of the jury and for having invested such a lot of time for reviewing this thesis. I would like to express my gratitude to all my (former and current) col- leagues at LASEC for their support and for their friendship: Gildas Avoine, Thomas Baign`eres, Nenad Buncic, Brice Canvel, Martine Corval, Matthieu Finiasz, Yi Lu, Jean Monnerat, Philippe Oechslin, and John Pliam. With- out them, the EPFL (and the crypto) would not be so fun! Without their support, trust and encouragement, the last part of this thesis, FOX, would certainly not be born: I owe to MediaCrypt AG, espe- cially to Ralf Kastmann and Richard Straub many, many, many hours of interesting work. -
Pairing Cryptography and Verifiable Secret Sharing Scheme
GROUP KEY ESTABLISHMENT PROTOCOLS: PAIRING CRYPTOGRAPHY AND VERIFIABLE SECRET SHARING SCHEME A Thesis Submitted to the Graduate School of Engineering and Science of İzmir Institute of Technology in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in Computer Engineering by Rabia ASLANOĞLU July 2013 İZMİR We approve the thesis of Rabia ASLANOĞLU Examining Committee Members: Assist. Prof. Dr. Serap ŞAHİN Department of Computer Engineering, İzmir Institute of Technology Assist. Prof. Dr. Kaan KURTEL Department of Software Engineering, İzmir University of Economics Assist. Prof. Dr. Selma TEKİR Department of Computer Engineering, İzmir Institute of Technology 1 July 2013 Assist. Prof. Dr. Serap ŞAHİN Supervisor, Department of Computer Engineering, İzmir Institute of Technology Prof. Dr. İ. Sıtkı AYTAÇ Prof. Dr. R. Tuğrul SENGER Head of the Department of Dean of the Graduate School of Computer Engineering Engineering and Sciences ACKNOWLEDGEMENTS I would like to express my deep appreciation to my thesis advisor Assist. Prof. Dr. Serap Şahin for her motivation, patience, enthusiasm and immense knowledge. She has provided invaluable suggestions and encouragement from the beginning of my research. Her wisdom always will guide me in the rest of my life. It is impossible to achieve my work without her support. I would also like to state my gratitude to my lecturer in İzmir Institute of Technology, Assist. Prof. Dr. Selma Tekir for her deepest kindness and support. It has been a pleasure to know and work with her. Finally, I would like to dedicate my thesis to my epic hero; my mum, Hatice Nurcan Aslanoğlu. She is the main character of my life journey and beyond the all human titles that I carry, I am honored to have the title of being of her daughter.