1 Review: Message Authentication Codes (Macs)

Total Page:16

File Type:pdf, Size:1020Kb

1 Review: Message Authentication Codes (Macs) EE 418 Network Security and Cryptography Lecture #15 November 22, 2016 Message Authentication Codes (MACs). Digital Signatures. Lecture notes prepared by Professor Radha Poovendran. Tamara Bonaci Department of Electrical Engineering University of Washington, Seattle Outline: 1. Review: Message Authentication Codes (MACs) { Review: MAC from Block Cipher: CBC-MAC 2. Introduction to Digital Signatures 3. RSA digital signature scheme 4. ElGamal digital signature scheme 5. Schnoor Digital signature scheme 6. The Digital signature algorithm 1 Review: Message Authentication Codes (MACs) Last time, we started our discussion about message authentication codes (MACs), and we defined a MAC as a code that is appended to a message in order to provide message integrity1. In MACs, communicating parties share a secret key that is used to generate the code, and if a MAC is well-designed, then only a user with the shared key can compute a valid MAC for a given message. Two parties Alice and Bob who share a key K can use a MAC for message integrity as follows (illustrated in Figure 1): 1. Alice computes a MAC for message m as y = MAC(K; m), and sends pair (m; y) through the channel to Bob. 2. Bob receives (m; y). Using the secret key, Bob computes MAC(K; m) and checks y =? MAC(K; m). 3. If y = MAC(K; m), then Bob accepts the message. Otherwise, Bob rejects the message, since the message and MAC are inconsistent. Alice Bob MAC Generation Computes y = MAC(K,m) from secret key K and message m [m, y] MAC Verification Extracts m, computes y’=MAC(K,m) If y + y’ =0, accept the message If y + y’≠ 0, discard the message Fig. 1. Block diagram for message integrity using a message authentication code (MAC). We said that there are two basic methods for constructing MACs. In the first method, the MAC is constructed by incorporating a key K into the hash function computation. In the second method, the MAC is constructed by using block encryption techniques. 1 Unlike a regular hash function, where the hash output needs to be exchanged via a secure side channel. 1 1.1 Review: MAC from Block Cipher: CBC-MAC We then showed another approach for constructing MACs, by using block ciphers. An advantage of using block ciphers to compute a MAC is that the same hardware or software implementation can be used for both encryption and authentication (but the best practice is to use different keys for encryption and message authentication). Block ciphers can also be used to develop authenticated encryption mechanisms, which provides both message confidentiality and integrity. The most common MAC construction using block ciphers is CBC-MAC, which is recommended by NIST 800-38B and NIST 800-38C. CBC-MAC computation is illustrated in Figure 2 and as Algorithm 1. CBC- n n MAC uses a symmetric key encryption function EK as a building block, with EK : f0; 1g ! f0; 1g (examples are DES with n = 64 or AES with n = 128). The steps in CBC-MAC computation are as follows: 1. The message m is divided into r blocks, each of length n, denoted m1; : : : ; mr. The last block is padded with zeros to ensure that the length is n. 2. The first iteration is computed as y1 = EK (m1 ⊕ IV ); where IV represents an initialization vector. 3. For each i = 2; : : : ; r, compute yi = EK (mi ⊕ yi−1). 4. The MAC value is given by CBC-MAC(K; m) = yr. Note that, unlike the CBC encryption mode, only the last block yr is transmitted. As in CBC encryption mode, either a fixed value of IV can be used, or a random value of IV can be used and sent along with the message. Algorithm 1 MAC construction using CBC encryption mode. 1: procedure CBC-MAC(m, h, K, IV ) 2: Input: Message m of length jmj = k, m = m1jj · · · jjmr where jmij = n. 3: Key K n n 4: Symmetric-key encryption function EK : f0; 1g ! f0; 1g . 5: Vector IV used to compute hash function. 6: Output: MAC value CBC-MAC(K; m) 7: y1 EK (m1 ⊕ IV ) 8: for i = 1;:::; (r − 1) do 9: yi+1 EK (mi+1 ⊕ yi) 10: end for 11: CBC-MAC(K; m) yr 12: return yr 13: end procedure 2 Digital Signatures A digital signature is a public-key mechanism for providing message integrity and authentication. Like public-key cryptosystems, a digital signature scheme requires two keys, a private (signing) key and a public (verifying) key. Any digital signature scheme includes the following basic steps, as depicted in Figure 3: 1. A user Alice generates a public key PKA and a private key SKA. Alice publishes the public key, while keeping the private key a secret. 2. A user Bob downloads PKA (later we will discuss methods for Bob to verify that the public key was generated by Alice, instead of a different user impersonating Alice). 3. Alice signs a message m using the private key SKA and a signing function sigSKA (m). Alice appends the σ = sigSKA (m) to message m and transmits it to Bob. 4. Bob receives the message and signature (m; σ). Bob computes a verification function verPKA (m; σ) using Alice's public key. If verPKA (m; σ) returns true, Bob accepts the message; otherwise, Bob concludes that the message has been modified and discards it. 2 m1 m2 m3 m4 m5 mr−1 mr IV ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ··· E E E E E E E Enc. with secret key K y1 y2 y3 y4 y5 yr−1 yr CBC-MAC(K; m) Fig. 2. CBC-MAC computation. More formally, a digital signature can be defined as follows: Definition 1: A digital signature scheme is a five-tuple (P; A; K; S; V), where: 1. P is a finite set of possible messages. 2. A is a finite set of possible signatures. 3. K is a finite set of possible keys. 4. sigK (m) 2 S is a signing algorithm that takes as an input key K and message m and outputs a signature σ, often called a tag. 5. verK 2 V is a verification algorithm that takes as input a message m and a signature σ and outputs true if the signature is accepted, and false if the signature is not accepted. For every message m 2 P and signature σ 2 A, the verification algorithm verK (m; σ): P × A ! ftrue; falseg satisfies: verK (m; σ) = true; σ = sigK (m) (1) verK (m; σ) = false; σ 6= sigK (m) (2) Alice Bob True, accept =sigK(m) [m, ] m sigK(.) verK(.) False, reject K Fig. 3. Providing message integrity using digital signatures. The advantage of digital signatures is that Alice and Bob do not need to share a secret key K in order for Bob to verify a message sent by Alice. Signing is done with the private key SKA, while anyone can verify the signature using the public key PKA. In what follows, we will define four digital signature schemes, namely: (i) RSA, (ii) ElGamal, (iii) Schnorr, and (iv) the Digital Signature Algorithm (DSA), but let's first investigate a general security of digital signatures. 3 Security of Digital Signatures An attacker against digital signature schemes may have different capabilities, such as: 1. Key-only attack An attacker mounts the attack using only knowledge of the public key. 3 2. Known message attack An attacker possesses a list of valid (message, signature) pairs (x1; y1); (x2; y2);::: . This attacker model is analogous to the known plaintext attacker model. 3. Chosen message attack An attacker requests signatures for a set of messages x1; x2;::: , and obtains valid signatures, y1; y2;::: . This attacker model is analogous to chosen plaintext attack. An attacker may also have different goals, such as: 1. Total break: Recovery of the private key. 2. Selective forgery: An attacker is given a message m, and (s)he is able to find a signature σ such that verK (m; ) = true. 3. Existential forgery: An attacker is able to find at least one (m; σ) pair such that verK (m; σ)= true. 4 RSA Digital Signature Scheme The RSA digital signature scheme was proposed in 1978 by Rivest, Shamir, and Adelman in the same paper as the RSA cryptosystem. The RSA is one digital signature that is adopted by NIST in FIPS 186-4. Like RSA encryption, the security of RSA digital signatures relies on the difficulty of factoring large integers. The RSA digital signature consists of three components, namely Key Generation, Signature Generation, and Signature Verification. These components are described as follows. 4.1 RSA Key Generation Alice generates keys for the RSA digital signature scheme via the following procedure: 1. Alice generates two distinct large primes p and q. Alice computes n = pq. In FIPS 186-4, NIST recom- mends that p and q be chosen such that n is at least 1024 bits. Alice computes φ(n) = (p − 1)(q − 1). 2. Alice generates a random integer a satisfying gcd (a; n) = 1 and gcd (a; φ(n)) = 1. 3. Alice computes b such that ab ≡ 1 mod φ(n). 4. The public key PKA is given by (b; n), and is published by Alice. The private key is SKA = (a; n) and is kept secret. Note: The public key and private key for the RSA digital signature are generated in the same way as the public and private keys for RSA encryption. 4.2 RSA Signature Generation Alice generates a signature on a message m by computing: a sigSKA (m) = m mod n: We observe that signature generation in RSA is similar to encryption in the RSA cryptosystem.
Recommended publications
  • Protecting Public Keys and Signature Keys
    Public-key cryptography offers certain advantages, providing the keys can be 3 adequately protected. For every security threat there must be an appropriate j countermeasure. Protecting Public Keys and Signature Keys Dorothy E. Denning, Purdue University With conventional one-key cryptography, the sender Consider an application environment in which each and receiver of a message share a secret encryption/ user has an intelligent terminal or personal workstation decryption key that allows both parties to encipher (en- where his private key is stored and all cryptographic crypt) and decipher (decrypt) secret messages transmitted operations are performed. This terminal is connected to between them. By separating the encryption and decryp- a nationwide network through a shared host, as shown in tion keys, public-key (two-key) cryptography has two at- Figure 1. The public-key directory is managed by a net- tractive properties that conventional cryptography lacks: work key server. Users communicate with each other or the ability to transmit messages in secrecy without any prior exchange of a secret key, and the ability to imple- ment digital signatures that are legally binding. Public- key encryption alone, however, does not guarantee either message secrecy or signatures. Unless the keys are ade- quately protected, a penetrator may be able to read en- crypted messages or forge signatures. This article discusses the problem ofprotecting keys in a nationwide network using public-key cryptography for secrecy and digital signatures. Particular attention is given to detecting and recovering from key compromises, especially when a high level of security is required. Public-key cryptosystems The concept of public-key cryptography was intro- duced by Diffie and Hellman in 1976.1 The basic idea is that each user A has a public key EA, which is registered in a public directory, and a private key DA, which is known only to the user.
    [Show full text]
  • Secure Remote Password (SRP) Authentication
    Secure Remote Password (SRP) Authentication Tom Wu Stanford University [email protected] Authentication in General ◆ What you are – Fingerprints, retinal scans, voiceprints ◆ What you have – Token cards, smart cards ◆ What you know – Passwords, PINs 2 Password Authentication ◆ Concentrates on “what you know” ◆ No long-term client-side storage ◆ Advantages – Convenience and portability – Low cost ◆ Disadvantages – People pick “bad” passwords – Most password methods are weak 3 Problems and Issues ◆ Dictionary attacks ◆ Plaintext-equivalence ◆ Forward secrecy 4 Dictionary Attacks ◆ An off-line, brute force guessing attack conducted by an attacker on the network ◆ Attacker usually has a “dictionary” of commonly-used passwords to try ◆ People pick easily remembered passwords ◆ “Easy-to-remember” is also “easy-to-guess” ◆ Can be either passive or active 5 Passwords in the Real World ◆ Entropy is less than most people think ◆ Dictionary words, e.g. “pudding”, “plan9” – Entropy: 20 bits or less ◆ Word pairs or phrases, e.g. “hate2die” – Represents average password quality – Entropy: around 30 bits ◆ Random printable text, e.g. “nDz2\u>O” – Entropy: slightly over 50 bits 6 Plaintext-equivalence ◆ Any piece of data that can be used in place of the actual password is “plaintext- equivalent” ◆ Applies to: – Password databases and files – Authentication servers (Kerberos KDC) ◆ One compromise brings entire system down 7 Forward Secrecy ◆ Prevents one compromise from causing further damage Compromising Should Not Compromise Current password Future passwords Old password Current password Current password Current or past session keys Current session key Current password 8 In The Beginning... ◆ Plaintext passwords – e.g. unauthenticated Telnet, rlogin, ftp – Still most common method in use ◆ “Encoded” passwords – e.g.
    [Show full text]
  • Jeffrey Hoffstein Jill Pipher Joseph H. Silverman
    Undergraduate Texts in Mathematics Je rey Ho stein Jill Pipher Joseph H. Silverman An Introduction to Mathematical Cryptography Second Edition Undergraduate Texts in Mathematics Undergraduate Texts in Mathematics Series Editors: Sheldon Axler San Francisco State University, San Francisco, CA, USA Kenneth Ribet University of California, Berkeley, CA, USA Advisory Board: Colin Adams, Williams College, Williamstown, MA, USA Alejandro Adem, University of British Columbia, Vancouver, BC, Canada Ruth Charney, Brandeis University, Waltham, MA, USA Irene M. Gamba, The University of Texas at Austin, Austin, TX, USA Roger E. Howe, Yale University, New Haven, CT, USA David Jerison, Massachusetts Institute of Technology, Cambridge, MA, USA Jeffrey C. Lagarias, University of Michigan, Ann Arbor, MI, USA Jill Pipher, Brown University, Providence, RI, USA Fadil Santosa, University of Minnesota, Minneapolis, MN, USA Amie Wilkinson, University of Chicago, Chicago, IL, USA Undergraduate Texts in Mathematics are generally aimed at third- and fourth- year undergraduate mathematics students at North American universities. These texts strive to provide students and teachers with new perspectives and novel approaches. The books include motivation that guides the reader to an appreciation of interre- lations among different aspects of the subject. They feature examples that illustrate key concepts as well as exercises that strengthen understanding. More information about this series at http://www.springer.com/series/666 Jeffrey Hoffstein • Jill Pipher Joseph
    [Show full text]
  • NSS: an NTRU Lattice –Based Signature Scheme
    ISSN(Online) : 2319 - 8753 ISSN (Print) : 2347 - 6710 International Journal of Innovative Research in Science, Engineering and Technology (An ISO 3297: 2007 Certified Organization) Vol. 4, Issue 4, April 2015 NSS: An NTRU Lattice –Based Signature Scheme S.Esther Sukila Department of Mathematics, Bharath University, Chennai, Tamil Nadu, India ABSTRACT: Whenever a PKC is designed, it is also analyzed whether it could be used as a signature scheme. In this paper, how the NTRU concept can be used to form a digital signature scheme [1] is described. I. INTRODUCTION Digital Signature Schemes The notion of a digital signature may prove to be one of the most fundamental and useful inventions of modern cryptography. A digital signature or digital signature scheme is a mathematical scheme for demonstrating the authenticity of a digital message or document. The creator of a message can attach a code, the signature, which guarantees the source and integrity of the message. A valid digital signature gives a recipient reason to believe that the message was created by a known sender and that it was not altered in transit. Digital signatures are commonly used for software distribution, financial transactions etc. Digital signatures are equivalent to traditional handwritten signatures. Properly implemented digital signatures are more difficult to forge than the handwritten type. 1.1A digital signature scheme typically consists of three algorithms A key generationalgorithm, that selects a private key uniformly at random from a set of possible private keys. The algorithm outputs the private key and a corresponding public key. A signing algorithm, that given a message and a private key produces a signature.
    [Show full text]
  • Basics of Digital Signatures &
    > DOCUMENT SIGNING > eID VALIDATION > SIGNATURE VERIFICATION > TIMESTAMPING & ARCHIVING > APPROVAL WORKFLOW Basics of Digital Signatures & PKI This document provides a quick background to PKI-based digital signatures and an overview of how the signature creation and verification processes work. It also describes how the cryptographic keys used for creating and verifying digital signatures are managed. 1. Background to Digital Signatures Digital signatures are essentially “enciphered data” created using cryptographic algorithms. The algorithms define how the enciphered data is created for a particular document or message. Standard digital signature algorithms exist so that no one needs to create these from scratch. Digital signature algorithms were first invented in the 1970’s and are based on a type of cryptography referred to as “Public Key Cryptography”. By far the most common digital signature algorithm is RSA (named after the inventors Rivest, Shamir and Adelman in 1978), by our estimates it is used in over 80% of the digital signatures being used around the world. This algorithm has been standardised (ISO, ANSI, IETF etc.) and been extensively analysed by the cryptographic research community and you can say with confidence that it has withstood the test of time, i.e. no one has been able to find an efficient way of cracking the RSA algorithm. Another more recent algorithm is ECDSA (Elliptic Curve Digital Signature Algorithm), which is likely to become popular over time. Digital signatures are used everywhere even when we are not actually aware, example uses include: Retail payment systems like MasterCard/Visa chip and pin, High-value interbank payment systems (CHAPS, BACS, SWIFT etc), e-Passports and e-ID cards, Logging on to SSL-enabled websites or connecting with corporate VPNs.
    [Show full text]
  • 11 Digital Signatures
    This is a Chapter from the Handbook of Applied Cryptography, by A. Menezes, P. van Oorschot, and S. Vanstone, CRC Press, 1996. For further information, see www.cacr.math.uwaterloo.ca/hac CRC Press has granted the following specific permissions for the electronic version of this book: Permission is granted to retrieve, print and store a single copy of this chapter for personal use. This permission does not extend to binding multiple chapters of the book, photocopying or producing copies for other than personal use of the person creating the copy, or making electronic copies available for retrieval by others without prior permission in writing from CRC Press. Except where over-ridden by the specific permission above, the standard copyright notice from CRC Press applies to this electronic version: Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher. The consent of CRC Press does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from CRC Press for such copying. c 1997 by CRC Press, Inc. Chapter 11 Digital Signatures Contents in Brief 11.1 Introduction :::::::::::::::::::::::::::::425 11.2 A framework for digital signature mechanisms ::::::::::426 11.3 RSA and related signature schemes :::::::::::::::::433 11.4 Fiat-Shamir signature schemes :::::::::::::::::::447 11.5 The DSA and related signature schemes ::::::::::::::451 11.6 One-time digital signatures :::::::::::::::::::::462 11.7 Other signature schemes ::::::::::::::::::::::471 11.8 Signatures with additional functionality ::::::::::::::474 11.9 Notes and further references ::::::::::::::::::::481 11.1 Introduction This chapter considers techniques designed to provide the digital counterpart to a handwrit- ten signature.
    [Show full text]
  • A Study on the Security of Ntrusign Digital Signature Scheme
    A Thesis for the Degree of Master of Science A Study on the Security of NTRUSign digital signature scheme SungJun Min School of Engineering Information and Communications University 2004 A Study on the Security of NTRUSign digital signature scheme A Study on the Security of NTRUSign digital signature scheme Advisor : Professor Kwangjo Kim by SungJun Min School of Engineering Information and Communications University A thesis submitted to the faculty of Information and Commu- nications University in partial fulfillment of the requirements for the degree of Master of Science in the School of Engineering Daejeon, Korea Jan. 03. 2004 Approved by (signed) Professor Kwangjo Kim Major Advisor A Study on the Security of NTRUSign digital signature scheme SungJun Min We certify that this work has passed the scholastic standards required by Information and Communications University as a thesis for the degree of Master of Science Jan. 03. 2004 Approved: Chairman of the Committee Kwangjo Kim, Professor School of Engineering Committee Member Jae Choon Cha, Assistant Professor School of Engineering Committee Member Dae Sung Kwon, Ph.D NSRI M.S. SungJun Min 20022052 A Study on the Security of NTRUSign digital signature scheme School of Engineering, 2004, 43p. Major Advisor : Prof. Kwangjo Kim. Text in English Abstract The lattices have been studied by cryptographers for last decades, both in the field of cryptanalysis and as a source of hard problems on which to build encryption schemes. Interestingly, though, research about building secure and efficient
    [Show full text]
  • Elliptic Curve Cryptography and Digital Rights Management
    Lecture 14: Elliptic Curve Cryptography and Digital Rights Management Lecture Notes on “Computer and Network Security” by Avi Kak ([email protected]) March 9, 2021 5:19pm ©2021 Avinash Kak, Purdue University Goals: • Introduction to elliptic curves • A group structure imposed on the points on an elliptic curve • Geometric and algebraic interpretations of the group operator • Elliptic curves on prime finite fields • Perl and Python implementations for elliptic curves on prime finite fields • Elliptic curves on Galois fields • Elliptic curve cryptography (EC Diffie-Hellman, EC Digital Signature Algorithm) • Security of Elliptic Curve Cryptography • ECC for Digital Rights Management (DRM) CONTENTS Section Title Page 14.1 Why Elliptic Curve Cryptography 3 14.2 The Main Idea of ECC — In a Nutshell 9 14.3 What are Elliptic Curves? 13 14.4 A Group Operator Defined for Points on an Elliptic 18 Curve 14.5 The Characteristic of the Underlying Field and the 25 Singular Elliptic Curves 14.6 An Algebraic Expression for Adding Two Points on 29 an Elliptic Curve 14.7 An Algebraic Expression for Calculating 2P from 33 P 14.8 Elliptic Curves Over Zp for Prime p 36 14.8.1 Perl and Python Implementations of Elliptic 39 Curves Over Finite Fields 14.9 Elliptic Curves Over Galois Fields GF (2n) 52 14.10 Is b =0 a Sufficient Condition for the Elliptic 62 Curve6 y2 + xy = x3 + ax2 + b to Not be Singular 14.11 Elliptic Curves Cryptography — The Basic Idea 65 14.12 Elliptic Curve Diffie-Hellman Secret Key 67 Exchange 14.13 Elliptic Curve Digital Signature Algorithm (ECDSA) 71 14.14 Security of ECC 75 14.15 ECC for Digital Rights Management 77 14.16 Homework Problems 82 2 Computer and Network Security by Avi Kak Lecture 14 Back to TOC 14.1 WHY ELLIPTIC CURVE CRYPTOGRAPHY? • As you saw in Section 12.12 of Lecture 12, the computational overhead of the RSA-based approach to public-key cryptography increases with the size of the keys.
    [Show full text]
  • PFLASH - Secure Asymmetric Signatures on Smartcards
    PFLASH - Secure Asymmetric Signatures on Smartcards Ming-Shing Chen 1 Daniel Smith-Tone 2 Bo-Yin Yang 1 1Academia Sinica, Taipei, Taiwan 2National Institute of Standards and Technology, Gaithersburg, MD, USA 20th July, 2015 20th July, 2015 M-S Chen, D Smith-Tone & B-Y Yang PFLASH - Secure Asymmetric Signatures on Smartcards 1/20 Minimalism Low power 20th July, 2015 M-S Chen, D Smith-Tone & B-Y Yang PFLASH - Secure Asymmetric Signatures on Smartcards 2/20 Minimalism Low power No arithmetic coprocessor 20th July, 2015 M-S Chen, D Smith-Tone & B-Y Yang PFLASH - Secure Asymmetric Signatures on Smartcards 2/20 Minimalism Low power No arithmetic coprocessor Minimalist Architecture 20th July, 2015 M-S Chen, D Smith-Tone & B-Y Yang PFLASH - Secure Asymmetric Signatures on Smartcards 2/20 Minimalism Low power No arithmetic coprocessor Minimalist Architecture Little Cost 20th July, 2015 M-S Chen, D Smith-Tone & B-Y Yang PFLASH - Secure Asymmetric Signatures on Smartcards 2/20 SFLASH In 2003, the NESSIE consortium considered SFLASH the most attractive digital signature algorithm for use in low cost smart cards. 20th July, 2015 M-S Chen, D Smith-Tone & B-Y Yang PFLASH - Secure Asymmetric Signatures on Smartcards 3/20 SFLASH In 2003, the NESSIE consortium considered SFLASH the most attractive digital signature algorithm for use in low cost smart cards. Very Fast 20th July, 2015 M-S Chen, D Smith-Tone & B-Y Yang PFLASH - Secure Asymmetric Signatures on Smartcards 3/20 SFLASH In 2003, the NESSIE consortium considered SFLASH the most attractive digital signature algorithm for use in low cost smart cards.
    [Show full text]
  • Fault Analysis of the Ntrusign Digital Signature Scheme
    Cryptogr. Commun. (2012) 4:131–144 DOI 10.1007/s12095-011-0061-3 Fault analysis of the NTRUSign digital signature scheme Abdel Alim Kamal · Amr M. Youssef Received: 11 December 2010 / Accepted: 14 December 2011 / Published online: 6 January 2012 © Springer Science+Business Media, LLC 2012 Abstract We present a fault analysis of the NTRUSign digital signature scheme. The utilized fault model is the one in which the attacker is assumed to be able to fault a small number of coefficients in a specific polynomial during the signing process but cannot control the exact location of the injected transient faults. For NTRUsign with parameters (N, q = pl, B, standard, N ), when the attacker is able to skip the norm-bound signature checking step, our attack needs one fault, ≈ − 1 (( )t) succeeds with probability 1 p and requires O qN steps when the number of faulted polynomial coefficients is upper bounded by t. The attack is also applicable to NTRUSign utilizing the transpose NTRU lattice but it requires double the number of fault injections. Different countermeasures against the proposed attack are investigated. Keywords Side channel attacks · Lattice-based public key cryptosystems · Fault analysis and countermeasures · Digital signature schemes · NTRU Mathematics Subject Classification (2010) 94A60 1 Introduction NTRUSign [1–4] is a parameterized family of lattice-based public key digital signa- ture schemes that is currently under consideration for standardization by the IEEE P1363 working group. It was proposed after the original NTRU signature scheme (NSS) [5] was broken [6, 7]. Similar to the GGH cryptosystem [8], the security of A. A.
    [Show full text]
  • Subliminal Channels in High-Speed Signatures
    Die approbierte Originalversion dieser Diplom-/ Masterarbeit ist in der Hauptbibliothek der Tech- nischen Universität Wien aufgestellt und zugänglich. http://www.ub.tuwien.ac.at institute of telecommunications The approved original version of this diploma or master thesis is available at the main library of the Vienna University of Technology. http://www.ub.tuwien.ac.at/eng Subliminal Channels in High-Speed Signatures Master’s Thesis for obtaining the academic degree Diplom-Ingenieur as part of the study Electrical Engineering and Information Technology carried out by Alexander Hartl student number: 01125115 Institute of Telecommunications at TU Wien Supervision: Univ. Prof. Dipl.-Ing. Dr.-Ing. Tanja Zseby Dipl.-Ing. Robert Annessi, B.Sc Acknowledgments I want to express my gratitude for everyone who assisted or encouraged me in various ways during my studies. In particular, I would like to thank Prof. Tanja Zseby and Dipl.-Ing. Robert Annessi for giving me the opportunity to write this thesis, for supporting me actively while I was working on it and for many valuable comments and suggestions. I owe special thanks to my family, especially my parents Edith and Rudolf, for their endless support during all these years. Thank you, Sabrina, for encouraging me and for so many cheerful hours in my life. Abstract One of the fundamental building blocks for achieving security in data networks is the use of digital signatures. A digital signature is a bit string which allows the receiver of a message to ensure that the message indeed originated from the apparent sender and has not been altered along the path.
    [Show full text]
  • Public-Key Cryptography
    Public-key Cryptogra; Theory and Practice ABHIJIT DAS Department of Computer Science and Engineering Indian Institute of Technology Kharagpur C. E. VENIMADHAVAN Department of Computer Science and Automation Indian Institute ofScience, Bangalore PEARSON Chennai • Delhi • Chandigarh Upper Saddle River • Boston • London Sydney • Singapore • Hong Kong • Toronto • Tokyo Contents Preface xiii Notations xv 1 Overview 1 1.1 Introduction 2 1.2 Common Cryptographic Primitives 2 1.2.1 The Classical Problem: Secure Transmission of Messages 2 Symmetric-key or secret-key cryptography 4 Asymmetric-key or public-key cryptography 4 1.2.2 Key Exchange 5 1.2.3 Digital Signatures 5 1.2.4 Entity Authentication 6 1.2.5 Secret Sharing 8 1.2.6 Hashing 8 1.2.7 Certification 9 1.3 Public-key Cryptography 9 1.3.1 The Mathematical Problems 9 1.3.2 Realization of Key Pairs 10 1.3.3 Public-key Cryptanalysis 11 1.4 Some Cryptographic Terms 11 1.4.1 Models of Attacks 12 1.4.2 Models of Passive Attacks 12 1.4.3 Public Versus Private Algorithms 13 2 Mathematical Concepts 15 2.1 Introduction 16 2.2 Sets, Relations and Functions 16 2.2.1 Set Operations 17 2.2.2 Relations 17 2.2.3 Functions 18 2.2.4 The Axioms of Mathematics 19 Exercise Set 2.2 20 2.3 Groups 21 2.3.1 Definition and Basic Properties . 21 2.3.2 Subgroups, Cosets and Quotient Groups 23 2.3.3 Homomorphisms 25 2.3.4 Generators and Orders 26 2.3.5 Sylow's Theorem 27 Exercise Set 2.3 29 2.4 Rings 31 2.4.1 Definition and Basic Properties 31 2.4.2 Subrings, Ideals and Quotient Rings 34 2.4.3 Homomorphisms 37 2.4.4
    [Show full text]