Structural Adaptations for Ram Ventilation: Gill Fusions in Scombrids and Billfishes

Total Page:16

File Type:pdf, Size:1020Kb

Structural Adaptations for Ram Ventilation: Gill Fusions in Scombrids and Billfishes JOURNAL OF MORPHOLOGY 000:000–000 (2012) Structural Adaptations for Ram Ventilation: Gill Fusions in Scombrids and Billfishes Nicholas C. Wegner,1,2* Chugey A. Sepulveda,3 Scott A. Aalbers,3 and Jeffrey B. Graham1 1Center for Marine Biotechnology and Biomedicine, Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093 2Fisheries Resource Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, California 92037 3Pfleger Institute of Environmental Research, Oceanside, California 92054 ABSTRACT For ram-gill ventilators such as tunas and mized, both respiratory and swimming efficiency mackerels (family Scombridae) and billfishes (families are increased (Freadman, 1979, 1981; Steffensen, Istiophoridae, Xiphiidae), fusions binding the gill lamellae 1985). However, at the relatively high swimming and filaments prevent gill deformation by a fast and con- speeds attained by scombrids and billfishes, ram tinuous ventilatory stream. This study examines the gills ventilation poses two challenges. First, the ram- from 28 scombrid and seven billfish species in order to determine how factors such as body size, swimming ventilatory current must be slowed to create opti- speed, and the degree of dependence upon ram ventilation mal flow conditions for efficient gas exchange at influence the site of occurrence and type of fusions. In the the respiratory lamellae (Brown and Muir, 1970; family Scombridae there is a progressive increase in the Stevens and Lightfoot, 1986; Wegner et al., 2012). reliance on ram ventilation that correlates with the elabo- Second, the gills must be reinforced in order to ration of gill fusions. This ranges from mackerels (tribe maintain normal orientation with respect to a Scombrini), which only utilize ram ventilation at fast high-pressure branchial stream, the force of which cruising speeds and lack gill fusions, to tunas (tribe Thun- increases with swimming speed (Muir and Ken- nini) of the genus Thunnus, which are obligate ram venti- dall, 1968; Brown and Muir, 1970). Recent work by lators and have two distinct fusion types (one binding the Wegner et al. (2010) showed that the morphomet- gill lamellae and a second connecting the gill filaments). The billfishes appear to have independently evolved gill rics of scombrid and billfish gills (e.g., shape, size, fusions that rival those of tunas in terms of structural and number of gill lamellae) increase branchial re- complexity. Examination of a wide range of body sizes for sistance and help slow ram-ventilatory flow. To some scombrids and billfishes shows that gill fusions increase the overall rigidity of the branchial sieve, begin to develop at lengths as small as 2.0 cm fork length. some scombrids and billfishes have structural sup- In addition to securing the spatial configuration of the gill ports in the form of gill fusions (Muir and Kendall, sieve, gill fusions also appear to increase branchial resist- 1968; Muir, 1969; Johnson, 1986; Wegner et al., ance to slow the high-speed current produced by ram ven- 2006). tilation to distribute flow evenly and optimally to the re- In most teleost fishes, the gill filaments are not spiratory exchange surfaces. J. Morphol. 000:000–000, interconnected and extend independently from the 2012. Ó 2012 Wiley Periodicals, Inc. gill arch, with lamellae extending freely from the KEY WORDS: tuna; mackerel; marlin; swordfish; gill filament; gill lamellae Contract grant sponsor: National Science Foundation; Contract grant number: IOS-0817774; Contract grant sponsors: The Tuna Industry Endowment Fund at Scripps Institution of Oceanography, the Pfleger Institute of Environmental Research, the George T. Pfleger Foundation, the Moore Family Foundation, the Nadine A. INTRODUCTION and Edward M. Carson Scholarship awarded by the Achievement Tunas, bonitos, and mackerels (family Rewards for College Scientists (ARCS), Los Angeles Chapter (N.C.W.), a National Research Council Associateship (N.C.W.), and Scombridae) and billfishes (families Istiophoridae, the Kennel-Haymet Student Lecture Award (N.C.W.). Xiphiidae) are continuous swimmers and breathe using ram ventilation, the mechanism through *Correspondence to: Nicholas C. Wegner, National Marine Fish- which forward swimming provides the force eries Service, Southwest Fisheries Science Center, 8901 La Jolla required to drive water into the mouth and Shores Dr., La Jolla, CA 92037. E-mail: [email protected] through the branchial chamber (Brown and Muir, 1970; Stevens, 1972; Roberts, 1975, 1978; Stevens Received 4 April 2012; Revised 21 July 2012; Accepted 23 August 2012 and Lightfoot, 1986; Wegner et al., 2012). Ram ventilation transfers the energetic cost of active Published online in gill ventilation to the swimming musculature, and Wiley Online Library (wileyonlinelibrary.com) because mouth and opercular motions are mini- DOI: 10.1002/jmor.20082 Ó 2012 WILEY PERIODICALS, INC. 2 N.C. WEGNER ET AL. Fig. 1. Basic gill morphology and fusion structure described for tunas and billfishes. (A) First gill arch taken from the left side of the branchial chamber of a scombrid showing the gill filaments emanating from the arch. (B–E) Magnified views of black box in A showing the leading (water-entry) edges of three adjacent gill filaments (each containing two rows of gill lamellae) with different fusion types: (B) No gill fusions, (C) Interlamellar fusions, (D) Complete lamellar fusions, and (E) Filament fusions (with complete lamellar fusions extending underneath). Water flow direction in B-E is into the page. IF, interlamellar fusion; F, filament; FF filament fusions; L, lamellae; LF, complete lamellar fusion. gill filaments (Fig. 1A,B). The gill fusions of scom- (Istiophorus, Kajikia, and Xiphias; Muir and Ken- brids and billfishes connect these normally inde- dall, 1968; Johnson, 1986). In the tuna genus, pendent structures to form lamellar fusions (Fig. Thunnus, filament fusions are formed by the 1C–E) and filament fusions (Fig. 1E). Lamellar expansion of the mucosal filament epithelium fusions, which bind the gill lamellae near their (Muir and Kendall, 1968). In contrast, wahoo and leading (water-entry) edge and thus secure the billfish filament fusions are formed by bony epithe- spatial integrity of the interlamellar channels lial toothplates, which on the trailing edges of the (5lamellar pores), can be further categorized into filaments cover cartilaginous connections of the fil- two forms. Interlamellar fusions (Fig. 1C) bind ad- ament rods (Johnson, 1986). jacent lamellae on the same filament and have The diversity of gill fusion type and structure been described for wahoo, Acanthocybium solandri can be expected to reflect interspecific differences (a non-tuna scombrid), and striped marlin, Kajikia in reliance upon, or specialization for, ram ventila- audax (Wegner et al., 2006). Complete lamellar tion. Although all scombrids and billfishes use fusions (Fig. 1D) connect the lamellae on one fila- ram ventilation, basic information about the occur- ment to the closely positioned and opposing lamel- rence of fusions and their structure is not avail- lae of the adjacent filament, thus providing sup- able for many species, and there are few data port to both the gill lamellae and filaments (Muir addressing how fusion structure may change with and Kendall, 1968; Muir, 1969; Wegner et al., body size or the range of swimming speeds 2006). Complete lamellar fusions have been employed by these fishes. Because the family reported in several tuna species and in the striped Scombridae demonstrates a progression in adapta- marlin, where, in some areas of the gills, the inter- tions for fast, continuous swimming (from least lamellar fusions of adjacent filaments join together derived mackerels to most derived tunas) and an (i.e., the striped marlin has both complete lamellar associated increase in reliance on ram ventilation, and interlamellar fusions; Wegner et al., 2006). determination of gill fusion type and pattern along Filament fusions (Fig. 1E) bridge the interfila- this gradient can provide insight into the struc- ment space in a lattice-like pattern, binding adja- tural requirements of ram ventilation. This com- cent filaments on the same gill hemibranch (Muir parative study thus examines the gills of 28 scom- and Kendall, 1968; Johnson, 1986; Davie, 1990). brid and seven billfish species in order to deter- These fusions, which form on the trailing (water- mine how factors such as body size, swimming exit) and often leading (water-entry) edges of the speed, and the degree of dependence upon ram filaments, have been documented in tunas of the ventilation correlate with the site of occurrence genus Thunnus, the wahoo, and some billfishes and elaboration of fusions. Journal of Morphology GILL FUSIONS FOR RAM VENTILATION 3 TABLE 1. Scombrids and billfishes examined in relation to gill fusion type Species Common n total Fork length Mass Lamellar Filament Collection name name (collected) (cm) (kg) fusion fusion location Thunnus alalunga Albacore 4 (2) 39.0–82.0 1.0–11.3 LF ME 1 Thunnus albacares Yellowfin tuna 25 (19) 29.0–182.0 0.38–94.0 LF ME 1,2,3 Thunnus atlanticus Blackfin tuna 11 (5) 45.5–52.0 1.6–2.4 LF ME 4 Thunnus obesus Bigeye tuna 6 (5) 40.0–136.0 1.5–46.0 LF ME 3,5 Thunnus orientalis Pacific bluefin tuna 5 (5) 86.0–120.0 12.2–32.3 LF ME 2 Thunnus tonggol Longtail tuna 9 (2) 38.5–85.5 0.83–9.6 LF ME 6 Katsuwonus pelamis Skipjack tuna 14 (8) 30.4–77.0 0.48–9.6 LF -- 1,2,3 Euthynnus affinis
Recommended publications
  • Ecography ECOG-01937 Hattab, T., Leprieur, F., Ben Rais Lasram, F., Gravel, D., Le Loc’H, F
    Ecography ECOG-01937 Hattab, T., Leprieur, F., Ben Rais Lasram, F., Gravel, D., Le Loc’h, F. and Albouy, C. 2016. Forecasting fine- scale changes in the food-web structure of coastal marine communities under climate change. – Ecography doi: 10.1111/ecog.01937 Supplementary material Forecasting fine-scale changes in the food-web structure of coastal marine communities under climate change by Hattab et al. Appendix 1 List of coastal exploited marine species considered in this study Species Genus Order Family Class Trophic guild Auxis rochei rochei (Risso, 1810) Auxis Perciformes Scombridae Actinopterygii Top predators Balistes capriscus Gmelin, 1789 Balistes Tetraodontiformes Balistidae Actinopterygii Macro-carnivorous Boops boops (Linnaeus, 1758) Boops Perciformes Sparidae Actinopterygii Basal species Carcharhinus plumbeus (Nardo, 1827) Carcharhinus Carcharhiniformes Carcharhinidae Elasmobranchii Top predators Dasyatis pastinaca (Linnaeus, 1758) Dasyatis Rajiformes Dasyatidae Elasmobranchii Top predators Dentex dentex (Linnaeus, 1758) Dentex Perciformes Sparidae Actinopterygii Macro-carnivorous Dentex maroccanus Valenciennes, 1830 Dentex Perciformes Sparidae Actinopterygii Macro-carnivorous Diplodus annularis (Linnaeus, 1758) Diplodus Perciformes Sparidae Actinopterygii Forage species Diplodus sargus sargus (Linnaeus, 1758) Diplodus Perciformes Sparidae Actinopterygii Macro-carnivorous (Geoffroy Saint- Diplodus vulgaris Hilaire, 1817) Diplodus Perciformes Sparidae Actinopterygii Basal species Engraulis encrasicolus (Linnaeus, 1758) Engraulis
    [Show full text]
  • Daily Ration of Japanese Spanish Mackerel Scomberomorus Niphonius Larvae
    FISHERIES SCIENCE 2001; 67: 238–245 Original Article Daily ration of Japanese Spanish mackerel Scomberomorus niphonius larvae J SHOJI,1,* T MAEHARA,2,a M AOYAMA,1 H FUJIMOTO,3 A IWAMOTO3 AND M TANAKA1 1Laboratory of Marine Stock-enhancement Biology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, 2Toyo Branch, Ehime Prefecture Chuyo Fisheries Experimental Station, Toyo, Ehime 799-1303, and 3Yashima Station, Japan Sea-farming Association, Takamatsu, Kagawa 761-0111, Japan SUMMARY: Diel successive samplings of Japanese Spanish mackerel Scomberomorus niphonius larvae were conducted throughout 24 h both in the sea and in captivity in order to estimate their daily ration. Using the Elliott and Persson model, the instantaneous gastric evacuation rate was estimated from the depletion of stomach contents (% dry bodyweight) with time during the night for wild fish (3.0–11.5 mm standard length) and from starvation experiments for reared fish (8, 10, and 15 days after hatching (DAH)). Japanese Spanish mackerel is a daylight feeder and exhibited piscivorous habits from first feeding both in the sea and in captivity. Feeding activity peaked at dusk. The esti- mated daily ration for wild larvae were 111.1 and 127.2% in 1996 and 1997, respectively; and those for reared larvae ranged from 90.6 to 111.7% of dry bodyweight. Based on the estimated value of daily rations for reared fish, the total number of newly hatched red sea bream Pagrus major larvae preyed by a Japanese Spanish mackerel from first feeding (5 DAH) to beginning of juvenile stage (20 DAH) in captivity was calculated to be 1139–1404.
    [Show full text]
  • Simulations of Fishing Effects on the Southern Benguela Fish Community Using an Individual-Based Model: Learning from a Comparison with Ecosim
    Ecosystem Approaches to Fisheries in the Southern Benguela Afr. J. mar. Sci. 26: 95–114 2004 95 SIMULATIONS OF FISHING EFFECTS ON THE SOUTHERN BENGUELA FISH COMMUNITY USING AN INDIVIDUAL-BASED MODEL: LEARNING FROM A COMPARISON WITH ECOSIM Y-J. SHIN*, L. J. SHANNON† and P. M. CURY* By applying an individual-based model (OSMOSE) to the southern Benguela ecosystem, a multispecies analysis is proposed, complementary to that provided by the application of ECOPATH/ECOSIM models. To reconstruct marine foodwebs, OSMOSE is based on the hypothesis that predation is a size-structured process. In all, 12 fish species, chosen for their importance in terms of biomass and catches, are explicitly modelled. Growth, repro- duction and mortality parameters are required to model their dynamics and trophic interactions. Maps of mean spatial distribution of the species are compiled from published literature. Taking into account the spatial component is necessary because spatial co-occurrence determines potential interactions between predatory fish and prey fish of suitable size. To explore ecosystem effects of fishing, different fishing scenarios, previously examined using ECOSIM, are simulated using the OSMOSE model. They explore the effects of targeting fish species in the southern Benguela considered to be predators (Cape hake Merluccius capensis and M. paradoxus) or prey (anchovy Engraulis encrasicolus, sardine Sardinops sagax, round herring Etrumeus whiteheadi). Simulation results are compared and are generally consistent with those obtained using an ECOSIM model. This cross-validation appears to be a promising means of evaluating the robustness of model outputs, when separate validation of marine ecosystem models are still difficult to perform.
    [Show full text]
  • Fisheries of the Northeast
    FISHERIES OF THE NORTHEAST AMERICAN BLUE LOBSTER BILLFISHES ATLANTIC COD MUSSEL (Blue marlin, Sailfish, BLACK SEA BASS Swordfish, White marlin) CLAMS DRUMS BUTTERFISH (Arc blood clam, Arctic surf clam, COBIA Atlantic razor clam, Atlantic surf clam, (Atlantic croaker, Black drum, BLUEFISH (Gulf butterfish, Northern Northern kingfish, Red drum, Northern quahog, Ocean quahog, harvestfish) CRABS Silver sea trout, Southern kingfish, Soft-shelled clam, Stout razor clam) (Atlantic rock crab, Blue crab, Spot, Spotted seatrout, Weakfish) Deep-sea red crab, Green crab, Horseshoe crab, Jonah crab, Lady crab, Northern stone crab) GREEN SEA FLATFISH URCHIN EELS (Atlantic halibut, American plaice, GRAY TRIGGERFISH HADDOCK (American eel, Fourspot flounder, Greenland halibut, Conger eel) Hogchoker, Southern flounder, Summer GROUPERS flounder, Winter flounder, Witch flounder, (Black grouper, Yellowtail flounder) Snowy grouper) MACKERELS (Atlantic chub mackerel, MONKFISH HAKES JACKS Atlantic mackerel, Bullet mackerel, King mackerel, (Offshore hake, Red hake, (Almaco jack, Amberjack, Bar Silver hake, Spotted hake, HERRINGS jack, Blue runner, Crevalle jack, Spanish mackerel) White hake) (Alewife, Atlantic menhaden, Atlantic Florida pompano) MAHI MAHI herring, Atlantic thread herring, Blueback herring, Gizzard shad, Hickory shad, Round herring) MULLETS PORGIES SCALLOPS (Striped mullet, White mullet) POLLOCK (Jolthead porgy, Red porgy, (Atlantic sea Scup, Sheepshead porgy) REDFISH scallop, Bay (Acadian redfish, scallop) Blackbelly rosefish) OPAH SEAWEEDS (Bladder
    [Show full text]
  • Rastrelliger Systematics Inferred from Mitochondrial Cytochrome B Sequences
    African Journal of Biotechnology Vol. 9(21), pp. 3063-3067, 24 May, 2010 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB09.1569 ISSN 1684–5315 © 2010 Academic Journals Full Length Research Paper Rastrelliger systematics inferred from mitochondrial cytochrome b sequences Jamsari Amirul Firdaus Jamaluddin1, Abu Talib Ahmad3, Samsudin Basir3, Masazurah Abdul Rahim3 and Siti Azizah Mohd Nor1,2* 1School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia. 2Centre for Marine and Coastal Studies, Universiti Sains Malaysia, Penang, Malaysia. 3Fisheries Research Institute, Batu Maung, Penang, Malaysia. Accepted 20 April, 2010 The fish genus Rastrelliger is composed of three morphologically recognized species; Rastrelliger kanagurta, Rastrelliger brachysoma and Rastrelliger faughni. In this study, cytochrome b gene sequencing was applied to address the systematics and phylogenetic relationships of these species. In agreement with previous morphological data, the results corroborate monophyletic discrimination between all the species. However, inconsistent bootstrap support (< 50 to 88%) between R. kanagurta and R. brachysoma was observed indicating limited divergence between these two species. R. faughni is recognized as the most basal species for this genus with high statistical support (99 and 100%). Diversification of Rastrelliger might have happen in two epochs, Miocene and early Pleistocene. Key words: Molecular systematics, cytochrome b, genus Rastrelliger. INTRODUCTION Rastrelliger genus is comprised of three recognized areas while R. kanagurta and R. faughni are more species: Rastrelliger kanagurta (Indian mackerel), oceanic (Chee, 2000). In the West Coast of Peninsular Rastrelliger brachysoma (Indo Pacific mackerel) and Malaysia, Rastrelliger landings make up a large portion of Rastrelliger faughni (island mackerel) (Matsui, 1967; the total catch of small pelagic fishes.
    [Show full text]
  • © Iccat, 2007
    A5 By-catch Species APPENDIX 5: BY-CATCH SPECIES A.5 By-catch species By-catch is the unintentional/incidental capture of non-target species during fishing operations. Different types of fisheries have different types and levels of by-catch, depending on the gear used, the time, area and depth fished, etc. Article IV of the Convention states: "the Commission shall be responsible for the study of the population of tuna and tuna-like fishes (the Scombriformes with the exception of Trichiuridae and Gempylidae and the genus Scomber) and such other species of fishes exploited in tuna fishing in the Convention area as are not under investigation by another international fishery organization". The following is a list of by-catch species recorded as being ever caught by any major tuna fishery in the Atlantic/Mediterranean. Note that the lists are qualitative and are not indicative of quantity or mortality. Thus, the presence of a species in the lists does not imply that it is caught in significant quantities, or that individuals that are caught necessarily die. Skates and rays Scientific names Common name Code LL GILL PS BB HARP TRAP OTHER Dasyatis centroura Roughtail stingray RDC X Dasyatis violacea Pelagic stingray PLS X X X X Manta birostris Manta ray RMB X X X Mobula hypostoma RMH X Mobula lucasana X Mobula mobular Devil ray RMM X X X X X Myliobatis aquila Common eagle ray MYL X X Pteuromylaeus bovinus Bull ray MPO X X Raja fullonica Shagreen ray RJF X Raja straeleni Spotted skate RFL X Rhinoptera spp Cownose ray X Torpedo nobiliana Torpedo
    [Show full text]
  • PROXIMATE and GENETIC ANALYSIS of BLACKFIN TUNA (T. Atlanticus)
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.03.366153; this version posted November 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. PROXIMATE AND GENETIC ANALYSIS OF BLACKFIN TUNA (T. atlanticus). Yuridia M. Núñez-Mata1, Jesse R. Ríos Rodríguez 1, Adriana L. Perales-Torres 1, Xochitl F. De la Rosa-Reyna2, Jesús A. Vázquez-Rodríguez 3, Nadia A. Fernández-Santos2, Humberto Martínez Montoya 1 * 1 Unidad Académica Multidisciplinaria Reynosa Aztlán – Universidad Autónoma de Tamaulipas. Reynosa, Tamaulipas. 2 Centro de Biotecnología Genómica – Instituto Politécnico Nacional. Reynosa, Tamaulipas. 3 Centro de Investigación en Salud Pública y Nutrición – Universidad Autónoma de Nuevo León. Monterrey, Nuevo León. *Correspondence: [email protected] ORCID: 0000-0003-3228-0054 bioRxiv preprint doi: https://doi.org/10.1101/2020.11.03.366153; this version posted November 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT The tuna meat is a nutritious food that possesses high content of protein, its low content of saturated fatty acids makes it a high demand food in the world. The Thunnus genus is composed of eight species, albacore (T. alalunga), bigeye (T. obesus), long tail tuna (T. tonggol), yellowfin tuna (T. albacares), pacific bluefin tuna (T. orientalis), bluefin tuna (T. maccoyii), Atlantic bluefin tuna ( T. thynnus) and blackfin tuna (T. atlanticus). The blackfin tuna (BFT) (Thunnus atlanticus) represent the smallest species within the Thunnus genus.
    [Show full text]
  • Notice Calling for Suggestions, Views, Comments Etc from WTO- SPS Committee Members Within a Period of 60 Days on the Draft Noti
    Notice Calling for suggestions, views, comments etc from WTO- SPS Committee members within a period of 60 days on the draft notification related to Standards for list of Histamine Forming Fish Species and limits of Histamine level for Fish and Fishery Products. 1. In the Food Safety and Standards (Contaminants, toxins and Residues) Regulations, 2011, in regulation 2.5, relating to “Other Contaminants”, after sub-regulation 2.5.1 the following sub-regulation shall be inserted, namely:- “2.5.2 Histamine in Fish and Fishery Products contaminants, Toxins and Residues 1. Fish species having potential to cause histamine poisoning Sl.No. Family Scientific Name Common Name 1. Carangidae Alectis indica Indian Threadfish Alepes spp. Scad Atropus atropos Cleftbelly trevally Carangoides Yellow Jack bartholomaei Carangoides spp. Trevally Caranx crysos Blue runner Caranx spp. Jack/Trevally Decapterus koheru Koheru Decapterus russelli Indian scad Decapterus spp. Scad Elagatis bipinnulata Rainbow Runner Megalaspis cordyla Horse Mackerel/Torpedo Scad Nematistius pectoralis Roosterfish Oligoplites saurus Leather Jacket Pseudocaranx dentex White trevally Sl.No. Family Scientific Name Common Name Scomberoides Talang queenfish commersonnianus Scomberoides spp. Leather Jacket/Queen Fish Selene spp. Moonfish Seriola dumerili Greater/Japanese Amberjack or Rudder Fish Seriola lalandi Yellowtail Amberjack Seriola quinqueradiata Japanese Amberjack Seriola rivoliana Longfin Yellowtail Seriola spp. Amberjack or Yellowtail Trachurus capensis Cape Horse Mackerel Trachurus japonicas Japanese Jack Mackerel Trachurus murphyi Chilean Jack Mackerel Trachurus Yellowtail Horse Mackerel novaezelandiae Trachurus spp. Jack Mackerel/Horse Mackerel Trachurus trachurus Atlantic Horse Mackerel Uraspis secunda Cottonmouth jack 2. Chanidae Chanos chanos Milkfish 3. Clupeidae Alosa pseudoharengus Alewife Alosa spp. Herring Amblygaster sirm Spotted Sardinella Anodontostoma chacunda Chacunda gizzard shad Brevoortia patronus Gulf Menhaden Brevoortia spp.
    [Show full text]
  • Management of Scombroid Fisheries
    Management of Scombroid Fisheries Editors N.G.K. Pillai N.G. Menon P.P. Pillai U. Ganga ICAR CENTRAL MARINE FISHERIES RESEARCH INSTITUTE (Indian Council of Agricultural Research) Post Box No. 1603, Tatapuram P.O. Kochi-682 014, India Field identification of scombroids from Indian seas U.Ganga and N.G.K.Pillai Central Marine Fisheries Research Institute, Kochi Scombroids are a diverse group of pelagic fishes ranging in size from about 30 cm to over 3 m in length. Most of them, especially the tunas and billfishes perform considerable and sometimes even transoceanic migrations. Being highly valued table fishes, they are of significant importance both as a commercial and recreational fishery. In Indian waters, this group includes, 1. Tuna and tuna-like fishes belonging to 6 genera, namely, Thunnus, Katsuwonus, Euthynnus, Auxis (tribe Thunnini) and the bonitos, Sarda and Gymnosarda (tribe Sardini) 2. Four genera of Billfishes, namely, Istiophorus, Makaira and Tetrapturus (family Istiophoridae) and Xiphias (family Xiphiidae) 3. Mackerels of the genus Rastrelliger (tribe Scombrini) and Spanish mack- erels of the genera Scomberomorus and Acanthocybium (tribe Scomberomorini) Species-wise field identification characters and line diagrams of these fishes are presented below: 1. TUNAS Euthynnus affinis (Little tunny); A medium sized coastal species. Upper part of body has numerous blue black broken wavy lines directed backwards and upwards while belly is sil­ very white. The first and sec­ ond dorsal fins are contiguous. A few conspicuous black spots are present on sides of body be­ tween pectoral and pelvic fins. Scales on body are confined to corselet and lateral line only.
    [Show full text]
  • A Global Valuation of Tuna an Update February 2020 (Final)
    Netting Billions: a global valuation of tuna an update February 2020 (Final) ii Report Information This report has been prepared with the financial support of The Pew Charitable Trusts. The views expressed in this study are purely those of the authors. The content of this report may not be reproduced, or even part thereof, without explicit reference to the source. Citation: Macfadyen, G., Huntington, T., Defaux, V., Llewellin, P., and James, P., 2019. Netting Billions: a global valuation of tuna (an update). Report produced by Poseidon Aquatic Resources Management Ltd. Client: The Pew Charitable Trusts Version: Final Report ref: 1456-REG/R/02/A Date issued: 7 February 2020 Acknowledgements: Our thanks to the following consultants who assisted with data collection for this study: Richard Banks, Sachiko Tsuji, Charles Greenwald, Heiko Seilert, Gilles Hosch, Alicia Sanmamed, Anna Madriles, Gwendal le Fol, Tomasz Kulikowski, and Benoit Caillart. 7 February 2020 iii CONTENTS 1. BACKGROUND AND INTRODUCTION ................................................................... 1 2. STUDY METHODOLOGY ......................................................................................... 3 3. TUNA LANDINGS ..................................................................................................... 5 3.1 METHODOLOGICAL ISSUES ....................................................................................... 5 3.2 RESULTS ...............................................................................................................
    [Show full text]
  • Rastrelliger Kanangurta (Cuvier) 1817 - Adult Common Name (If Available): Indian Mackerel Language: English
    NATIONAL BIORESOURCE DEVELOPMENT BOARD Dept. of Biotechnology Government of India, New Delhi For office use: MARINE BIORESOURCES FORMS DATA ENTRY: Form- 1(general) Fauna: √ Flora Microorganisms General Category: Vertebrata (Zooplankton) Fish larvae Scientific name &Authority: Rastrelliger kanangurta (Cuvier) 1817 - Adult Common Name (if available): Indian mackerel Language: English Synonyms: Author(s) Status Rastrelliger Jorden and Starks 1908 Scomber canangurta Cuvier 1829 Classification: Phylum: Vertebrata Sub-Phylum: Super class: Pisces Class: Osteichthyes Sub- Class: Actinopterygii Super order: Teleostei Order: Perciformes Sub Order: Scombroidei Super Family: Family: Scombridae Sub-Family: Scombrinae Genus: Rastrelliger Species: kanangurta Authority: Rastrelliger kanangurta (Cuvier) 1817 Reference No.: Cuiver, G. 1817. Regene Animal, 2: 313. Peter, K.J. (1967) Larvae of Rastrelliger (mackerel) from the Indian Ocean. Bull. Nat. Inst. Sci. India, 38,854-863. Geographical Location: Tropical Indo – Pacific Coastal waters. Latitude: Place: Longitude: State: Environment Freshwater: Yes/ No Habitat: Salinity: Brackish: Yes/No Migrations: Temperature: Salt Water: Yes Depth range : Picture (scanned images or photographs of larval stages) Figs. 1-3. Larvae of Rastrelliger (Peter, 1967). Fig. 1. 2.7 mm. larva. Fig.2. 3.1 mm. Fig 3. 5.3 mm. larva Fig.4-6. Juveniles of Rastrelliger (Balakrishnan and Rao 1971) Fig.4. 16.9 mm. Fig. 5. 19.3 mm. Fig. 6. 22.4 mm. DATA ENTRY FORM: Form –2 (Fish/ Shell fish/ Others ) Ref. No.: (Please answer only relevant
    [Show full text]
  • Sarda Orientalis (Temminck and Schlegel) 1842-Adult Common Name ( If Available) : Oriental Bonito
    NATIONAL BIORESOURCE DEVELOPMENT BOARD Dept. of Biotechnology Government of India, New Delhi For office use: MARINE BIORESOURCES FORMS DATA ENTRY: Form- 1(general ) Ref. No.: (please answer only relevant fields;add additional fields if you require) Fauna : √ Flora Microorganisms General Category : Vertebrata (Zooplankton), Fish larvae Scientific name &Authority : Sarda orientalis (Temminck and Schlegel) 1842-Adult Common Name ( if available) : Oriental bonito Synonyms: Author(s) Status Pelamis orientalis Temminck and Schlegel 1842 Pelamis orientalis Gunther 1860 Sarda chilensis Day 1889 Sarda velox Meek and Hildebrand 1923 Sarda orientalis serventyi Whitley 1945, 1962 Classification: Phylum: Vertebrata Super Class : Pisces Sub- Phylum Super Order: Teleostei Class : Osteichthyes Sub- Class: Actinopterygii Super Family: Order: Perciformes Sub Order : Scombroidei Genus : Sarda Family : Scombridae Sub-Family: Thunninae Species : orientalis Authority: Sarda orientalis (Temminck and Schlegel) 1842 Reference No. Temminck, C.J, and H. Schlegel, 1842-50. Sive descripto animaliu, quae in itinere per Japonian suspeto, annis 1823-30 collegit, notis observation bus et adumbrationibus illustravit P.F.Siebold. Fauna Japonica, Pt.2. Pisces 1-323; Pt.3, 73-112 pls. Lugduni, Batavorum. Gorbunova, N.N. 1974. A review of larvae of scombroid fishes (Scombridae, Pisces). Akad. Nauk SSSR, Inst. Okeanol. Trudy, 96, 23-76 (in Russian) Klawe, W.L. 1960. Notes on larvae, juveniles and spawning of Bonito (Sarda) from the Eastern Pacific Ocean. Pacific Science, 15 (4) : 100-115. Geographical Location: Indian, Pacific and Atlantic ocean. Latitude: Place: Longitude: State: Environment Fresh water: Yes/ No Habitat : Salinity : Brackish : Yes / No Migrations : Temperature : Salt water : Yes√ / No Depth range : Picture (scanned images or photographs of adult / larval stages) Figs.
    [Show full text]