Northern Beaches 2018 March Caleyi
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effects of Day Length on Flowering and Yield Production of Salicornia And
Scientia Horticulturae 130 (2011) 510–516 Contents lists available at ScienceDirect Scientia Horticulturae journal homepage: www.elsevier.com/locate/scihorti Effects of day length on flowering and yield production of Salicornia and Sarcocornia species Yvonne Ventura a, Wegi A. Wuddineh a, Muki Shpigel b, Tzachi M. Samocha c, Brandon C. Klim c, Shabtai Cohen d, Zion Shemer d, Rui Santos e, Moshe Sagi a,∗ a The Jacob Blaustein Institutes for Desert Research, The Albert Katz Department of Dryland Biotechnologies, Ben-Gurion University, PO Box 653, Beer Sheva 84105, Israel b National Center for Mariculture, Israel Oceanographic and Limnological Research, PO Box 1212, Eilat 88112, Israel c Texas Agricultural Experiment Station, Shrimp Mariculture Research Facility, 4301 Waldron Road, Corpus Christi, TX 78418, USA d Ramat Negev Desert Agro-Research Station, Halutza 85515, Israel e Centre for Marine Sciences (CCMAR), CIMAR-Laboratório Associado, FCMA, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal article info abstract Article history: Salicornia is a new vegetable crop that can be irrigated with highly saline water, even at salt concentrations Received 8 March 2011 equivalent to full-strength seawater. During leafy vegetable cultivation, the onset of the reproductive Received in revised form 24 June 2011 phase is an undesired phenomenon that reduces yield and quality and prevents year-round cultivation. Accepted 4 August 2011 Knowledge about the regulation of floral induction in the members of the tribe Salicornieae, however, is lacking. To establish year-round cultivation, we studied the flower induction of five Salicornia and two Keywords: Sarcocornia varieties. Plants were grown under two day lengths, 13.5 h and 18 h, and harvested by a repet- Biomass yield itive harvest regime. -
N E W S L E T T E R
N E W S L E T T E R PLANTS OF TASMANIA Nursery and Gardens 65 Hall St Ridgeway TAS 7054 Open 7 Days a week – 9 am to 5 pm Closed Christmas Day, Boxing Day and Good Friday Phone: (03) 6239 1583 Fax: (03) 6239 1106 Email: [email protected] Newsletter 26 Spring 2011 Website: www.potn.com.au Hello, and welcome to the spring newsletter for 2011! News from the Nursery We are madly propagating at the moment, with many thousands of new cuttings putting their roots out and seedlings popping their heads up above the propagating mix. It is always an exciting time, as we experiment with seed from new species – sometimes they work, and sometimes we understand why we’ve never grown them before... New plants should start being put out into the sales area soon – fresh-faced little things ready to pop into the ground! We have recently purchased a further block of land from the ex-neighbours Jubilee Nursery, now sadly closed, that will give us a lot more flexibility and the ability to grow and store more plants. As mentioned last newsletter we have done some major revamping in the garden. A lot of work by all the staff has led to a much more open garden with a lovely Westringia brevifolia hedge (well, it will be a hedge when it grows a bit), another Micrantheum hexandrum Cream Cascade hedge-to-be, lots of Correas, Lomatias and Baueras. Where we sell a few forms of a particular species we have tried to plant examples of each so that we can show you what they are like. -
Chenopodiaceae)
Ann. Bot. Fennici 45: 241–254 ISSN 0003-3847 (print) ISSN 1797-2442 (online) Helsinki 29 August 2008 © Finnish Zoological and Botanical Publishing Board 2008 Taxonomic and nomenclatural notes on South American taxa of Sarcocornia (Chenopodiaceae) M. Ángeles Alonso & Manuel B. Crespo* CIBIO, Instituto de la Biodiversidad, Universidad de Alicante, P.O. Box 99, E-03080 Alicante, Spain (*corresponding author’s e-mail: [email protected]) Received 3 Apr. 2007, revised version received 31 May 2007, accepted 8 June 2007 Alonso, M. Á. & Crespo, M. B. 2008: Taxonomic and nomenclatural notes on South American taxa of Sarcocornia (Chenopodiaceae). — Ann. Bot. Fennici 45: 241–254. Five South American species of Sarcocornia (Chenopodiaceae) are accepted, four of which are new combinations in that genus: S. ambigua (Michx.) M.A. Alonso & M.B. Crespo, S. andina (Phil.) Freitag, M.A. Alonso & M.B. Crespo, S. magellanica (Phil.) M.A. Alonso & M.B. Crespo, and S. neei (Lag.) M.A. Alonso & M.B. Crespo. Synonyms and types are cited for the accepted taxa, and three lectotypes, an epitype and a neotype are designated to establish a correct usage of the names. Main diagnostic characters, ecological features and distributions are also reported for each taxon, and a key is provided to facilitate identification. Key words: Chenopodiaceae, nomenclature, Salicornioideae, Sarcocornia, taxonomy Introduction the world (except in eastern Asia), though a few are restricted to arid continental areas where they Sarcocornia (subfamily Salicornioideae, occur on the shores of salt lakes and marshes, and Chenopodiaceae) includes erect to prostrate even in basins between high mountain ranges (cf. dwarf shrubs, sometimes creeping and rooting at Kadereit et al. -
A Fine-Scale Conservation Plan for Cape Lowlands Renosterveld: Technical Report
A Fine-Scale Conservation Plan for Cape Lowlands Renosterveld: Technical Report MAIN REPORT September 2003 Amrei von Hase Mathieu Rouget Kristal Maze Nick Helme Report No. CCU 2/03 Cape Conservation Unit Botanical Society of South Africa Pvt Bag X 10 7735 Claremont www.botanicalsociety.org.za/ccu Key Partners and Sponsors of the Cape Lowlands Renosterveld Project TABLE MOUNTAIN FUND 2 Acknowledgements Many individuals and organizations have contributed generously to the Cape Lowlands Renosterveld Project to whom the Botanical Society and the project team are greatly indebted. We express our appreciation to you in this section and in addition have provided acknowledgement to others in sections of this report where their contribution was relevant. We are particularly indebted to our key project partners, the Western Cape Nature Conservation Board (WCNCB), for putting their full support behind the project from its inception as well as their many contributions to the project. In Scientific Services we especially thank the late Chris Burgers, Helen de Klerk, Ernst Baard, Annelise le Roux, Guy Palmer and Andrew Turner for their guidance in the project planning and initiation stages, particularly on data and GIS matters. We are tremendously grateful to Chris who generously and infectiously shared with us his wealth of knowledge about the lowlands. In Operations we express our appreciation to the business unit managers, extension officers and regional ecologists who played a vital role particularly in shaping the final products of the project. We are especially grateful to Anton Wolfaardt and Chris Martens. Wendy Paisley of the Cape Conservation Unit (CCU) of the Botanical Society provided invaluable administrative and organizational support to the project. -
Great Australian Bight BP Oil Drilling Project
Submission to Senate Inquiry: Great Australian Bight BP Oil Drilling Project: Potential Impacts on Matters of National Environmental Significance within Modelled Oil Spill Impact Areas (Summer and Winter 2A Model Scenarios) Prepared by Dr David Ellis (BSc Hons PhD; Ecologist, Environmental Consultant and Founder at Stepping Stones Ecological Services) March 27, 2016 Table of Contents Table of Contents ..................................................................................................... 2 Executive Summary ................................................................................................ 4 Summer Oil Spill Scenario Key Findings ................................................................. 5 Winter Oil Spill Scenario Key Findings ................................................................... 7 Threatened Species Conservation Status Summary ........................................... 8 International Migratory Bird Agreements ............................................................. 8 Introduction ............................................................................................................ 11 Methods .................................................................................................................... 12 Protected Matters Search Tool Database Search and Criteria for Oil-Spill Model Selection ............................................................................................................. 12 Criteria for Inclusion/Exclusion of Threatened, Migratory and Marine -
Origin and Age of Australian Chenopodiaceae
ARTICLE IN PRESS Organisms, Diversity & Evolution 5 (2005) 59–80 www.elsevier.de/ode Origin and age of Australian Chenopodiaceae Gudrun Kadereita,Ã, DietrichGotzek b, Surrey Jacobsc, Helmut Freitagd aInstitut fu¨r Spezielle Botanik und Botanischer Garten, Johannes Gutenberg-Universita¨t Mainz, D-55099 Mainz, Germany bDepartment of Genetics, University of Georgia, Athens, GA 30602, USA cRoyal Botanic Gardens, Sydney, Australia dArbeitsgruppe Systematik und Morphologie der Pflanzen, Universita¨t Kassel, D-34109 Kassel, Germany Received 20 May 2004; accepted 31 July 2004 Abstract We studied the age, origins, and possible routes of colonization of the Australian Chenopodiaceae. Using a previously published rbcL phylogeny of the Amaranthaceae–Chenopodiaceae alliance (Kadereit et al. 2003) and new ITS phylogenies of the Camphorosmeae and Salicornieae, we conclude that Australia has been reached in at least nine independent colonization events: four in the Chenopodioideae, two in the Salicornieae, and one each in the Camphorosmeae, Suaedeae, and Salsoleae. Where feasible, we used molecular clock estimates to date the ages of the respective lineages. The two oldest lineages both belong to the Chenopodioideae (Scleroblitum and Chenopodium sect. Orthosporum/Dysphania) and date to 42.2–26.0 and 16.1–9.9 Mya, respectively. Most lineages (Australian Camphorosmeae, the Halosarcia lineage in the Salicornieae, Sarcocornia, Chenopodium subg. Chenopodium/Rhagodia, and Atriplex) arrived in Australia during the late Miocene to Pliocene when aridification and increasing salinity changed the landscape of many parts of the continent. The Australian Camphorosmeae and Salicornieae diversified rapidly after their arrival. The molecular-clock results clearly reject the hypothesis of an autochthonous stock of Chenopodiaceae dating back to Gondwanan times. -
Box Hill Historical Society Newsletter
Box Hill Historical Society Newsletter For your diary Details of the next meeting of the Society are as follows: Please note the change of day, time and venue for the winter months. The general meetings for June, July and August will be held on Sunday afternoons from 2:00 pm to 4:00 pm at Box Hill Volume 23, Issue 3 Library, 1040 Whitehorse Road, Meeting Room 1, 1st Floor (accessible by lift or stairs). June 2017 Sunday, 16 June 2017 General Meetings of the BHHS Guest speakers: Glenys Grant OAM and Kay Edwards – in February to May and Septem- ‘From Burwood Boy's Home to Bestchance; 120 years’. ber to November are held on the The Burwood Boys' Home was founded and built by Robert 3rd Thursday of each month, Campbell Edwards in 1895. When girls were admitted in 1972 the beginning at 8 pm in the name of the home was changed to Burwood Children's Home. Strabane Chapel Hall 29 Following government social welfare policy changes whereby many Strabane Avenue, Mont Albert children could be supported in their own or foster homes, the North. In the winter months— Burwood Children's Home closed in 1986. With a new location the June, July and august— organisation became Child and Family Care Network and is now meetings are held in Meeting known as Bestchance Family Care. Room 1 of Box Hill Library, 1040 Whitehorse Road, beginning at 2 (For details relating to the other events confirmed to date for this year, pm. and other forthcoming events, see page 3.) Members and friends are always welcome. -
Library List 2016 March
APS Yarra Yarra: Library list March 2016 No. Title/Date Author 3 A Field Guide to Banksias Holliday, Ivan & Watton, (1975) Geoffrey 4 A Guide to Darwinia and Blake, Trevor Homoranthus (1981) 5 Acacias of Australia, vol 1 Simmons, Marion (rev ed 1987) 6 Attracting Frogs to Your Casey, Kevin Garden (1996) 7 Australian Daisies (1987) Australian Daisy Study Group, The 8 Australian Ferns and Fern Jones & Clemensha Allies (1976) 9 Australian Garden Design Stones, Ellis ARCHIVED 10 Australian Native Gardens Snape, Diana 12 Australian Native Plants Wrigley, John & Fagg, Murray (5th ed 2006 repr) 13 Australian Native Plants for Ratcliffe, David & Ratcliffe, Indoors (1987) Patricia 14 Australian Plants for Small Elliot, Gwen Gardens and Containers (1979) 16 Epacris Australian Plant Study Group 17 The Victorian Naturalist Field Naturalists Club of Victoria 19 Acacias: 2006 F. J. C. Australian Plants Society Victoria Rogers Seminar Inc. 25 Australian Rainforest Plants Nicholson N. & Nicholson A. (1985) 26 Australian Rainforest Plants Nicholson N. & Nicholson A. II (1985) 27 Banksia Study Report 10 Blake, Trevor (leader) (1995) No. Title/Date Author 29 The Beauty of Australian Sparrow, N. Wildflowers (1967) 31 Carnivorous Plants (rev ed Slack, Alan 1983) 33 Dyemaking with Australian Spinners and Weavers Guild of Flora Victoria, The 35 Eucalypts (repr 1974) Kelly, Stan 36 Eucalypts vol 2 (repr 1980) Kelly, Stan 39 A Field Guide to Native Pea Woolcock, Dorothy, Cochrane, Flowers of Victoria and Fuhrer & Rotternham Southeastern Australia (198?) 40 Flowers -
Sarcocornia Obclavata (Amaranthaceae) a New Species from Turkey
Phytotaxa 49: 55–60 (2012) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2012 Magnolia Press Article ISSN 1179-3163 (online edition) Sarcocornia obclavata (Amaranthaceae) a new species from Turkey AHMET EMRE YAPRAK Ankara University, Faculty of Science, Department of Biology, 06100 Ankara, Turkey. E-mail: [email protected] Abstract Sarcocornia obclavata is described as a new species from Mediterranean Turkey. The main morphological characters that separate S. obclavata from other Sarcocornia species are the obclavate shape of its fertile segments, which is more obvious at lower fertile segments. Sarcocornia obclavata differs from S. perennis in having cymes on fertile segments that clearly do not reach the upper edge. It differs from S. fruticosa in having curved hairs on the seed testa. Key words: Mediterranean, Chenopodiaceae Introduction Sarcocornia Scott (1977: 366) is a genus of halophytic perennials with a nearly worldwide distribution, compromising ca 20–25 species (Steffen et al. 2010). Sarcocornia is distinguished from the annual Salicornia Linnaeus (1753: 3) in being shrubby perennials and by having flowers of equal height in the cymes (Scott 1977). Sarcocornia and Salicornia differ from Arthrocnemum Moquin-Tandon (1840: 111) in having membranous seeds that lack endosperm, and in their florets not being hidden behind bracts (Scott 1977). Molecular phylogenetic studies support the morphological distinctions between the three genera (Kadereit et al. 2006, Kadereit et al. 2007). The generic status of Sarcocornia is accepted in many recent taxonomical studies (Alonso & Crespo 2008, Steffen et al. 2009, Steffen et al. 2010). There are two Sarcocornia species known from the Mediterranean region (Piirainen 2009): S. -
Cactodera Salina N. Sp. from the Estuary Plant, Salicornia Bigelovii, in Sonora, Mexico 1
Journal of Nematology 29(4):465-473. 1997. © The Society of Nematologists 1997. Cactodera salina n. sp. from the Estuary Plant, Salicornia bigelovii, in Sonora, Mexico 1 J. G. BALDWIN, 2 M. MUNDO-OCAMPO, 2 AND M. A. McCLURE B Abstract: Cactodera salina n. sp. (Heteroderinae) is described from roots of the estuary plant Salicornia bigelovii (Chenopodiaceae), in Puerto Pefiasco, Sonora, Mexico, at the northern tip of the Sea of Cortez. The halophyte host is grown experimentally for oilseed in plots flooded daily with seawater. Infected plants appear to be adversely affected by C. salina relative to plants in noninfested plots. Cactodera salina extends the moi-phological limits of the genus. Females and cysts have a very small or absent terminal cone and deep cuticular folds in a zigzag pattern more typical of Heterodera mad Globodev'a than of Cactodera spp. Many Cactodera spp. have a tuberculate egg surface, whereas C. salina shares the character of a smooth egg with C. amaranthi, C. weissi, and C. acnidae. Only C. miUeri and C. acnidae have larger cysts than C. salina. Face patterns of males and second-stage juveniles, as viewed with scanning electron microscopy, reveal the full complement of six lip sectors as in other Cactodera spp. Circumfenestrae of C. salina are typical for the genus. Key words: Cactodera salina, cyst nematodes, halophyte, Heteroderinae, nematode, new species, Sali- co~zia bigelovii, scanning electron microscopy, Sea of Cortez, taxonomy. Cactodera Krall and Krall, 1978 (Hetero- y Oceanos (CEDO) in Puerto Pefiasco, So- derinae Filipjev and Schuurmans Stek- nora, Mexico, at the northern tip of the Sea hoven, sensu Luc et al., 1988) includes nine of Cortez. -
080057-03.001.Pdf
'urirJo uels pu€ r"IToJ olur uorsr^rp e lset8ns pFoc l"ql ql?oqs eql ur uorl"cr"rusp ,{l?punoq Jo I€rJol?ru 'ut{€.{) Jo ou sI eJeql l?ql luer?dd€ sr lI tcoJJoc sI aoIA Jo^aqclql6 (€96I segol "uts ol peanpor oJBse^"el eql l?ql pu€ xolroc enJl ? slueseJdeJql€eqs lualn$ns eql lEql paunss€ 'ue{leJ) sI 1r qclq,^Aut pasodord ueeq s"q eJnlcnJls e^rl"uJell€ uV (Lg6I ses"q Jeel ;o suorlrod I?u"q? luoJlnaop eql -,{qpepuno:rns srx€ ruels e;o dn epeu eq ol petunss€ ueaq .{11zreue3el"rl e€eproruJocrT?Soq} Jo crlsrlolr?J?qc s3qJusrq ol€lnJllJ" eyL :wals ,{SoloqdroN '(Z/6I uoslrlA) poqsllqnd ueeq ^p?orl€ se\I ou)oru)al snue8 eql uorsr,\er 'posr^eJ Jo v eJB"rJe.rlsny ur lusseJd Sureqs? pesruSoceJDJeueB xrs eql Jo e^g .radsdslql ul 'Bxel luenlrlsuoc JJor{l ^ueut osrsSocoJpu? €roue8 eql eleeullep ,{lJ"elc oloru ol 'sJerllo Jo 'se^rl"lussoJdeJ elqlssod uooq s"q lr Jo suerurcedspeup pooB pu€ atuosJo lEl.roleu pol{cld ro qse.ggo ,{11rge1e,r"eql qll,^A 'sercedspue ereue8 oq1 q}oq os"q o} q3lq,r uo 'uleql sJelr?J?gc oql o-lenp-,(pred pu" ol olq"lr"As ppq o^?q s}s[uouox€l eql luql Jo,{lrcned 'el?qop I"LrelEruJooo oql ol enp ,\ll.rBou00q sBq srqJ alqBloprsuoJJo esn€oeql uesq s"q ereue8 eql go uo4drrcsrunc:rc eq1 'e8€lqurass"elercsrp ? s? pesruSoceJ-,{lI?JeueB ueeq e^eq e€eploluloarl"S eql ellq,4A. -
World Heritage Values and to Identify New Values
FLORISTIC VALUES OF THE TASMANIAN WILDERNESS WORLD HERITAGE AREA J. Balmer, J. Whinam, J. Kelman, J.B. Kirkpatrick & E. Lazarus Nature Conservation Branch Report October 2004 This report was prepared under the direction of the Department of Primary Industries, Water and Environment (World Heritage Area Vegetation Program). Commonwealth Government funds were contributed to the project through the World Heritage Area program. The views and opinions expressed in this report are those of the authors and do not necessarily reflect those of the Department of Primary Industries, Water and Environment or those of the Department of the Environment and Heritage. ISSN 1441–0680 Copyright 2003 Crown in right of State of Tasmania Apart from fair dealing for the purposes of private study, research, criticism or review, as permitted under the Copyright Act, no part may be reproduced by any means without permission from the Department of Primary Industries, Water and Environment. Published by Nature Conservation Branch Department of Primary Industries, Water and Environment GPO Box 44 Hobart Tasmania, 7001 Front Cover Photograph: Alpine bolster heath (1050 metres) at Mt Anne. Stunted Nothofagus cunninghamii is shrouded in mist with Richea pandanifolia scattered throughout and Astelia alpina in the foreground. Photograph taken by Grant Dixon Back Cover Photograph: Nothofagus gunnii leaf with fossil imprint in deposits dating from 35-40 million years ago: Photograph taken by Greg Jordan Cite as: Balmer J., Whinam J., Kelman J., Kirkpatrick J.B. & Lazarus E. (2004) A review of the floristic values of the Tasmanian Wilderness World Heritage Area. Nature Conservation Report 2004/3. Department of Primary Industries Water and Environment, Tasmania, Australia T ABLE OF C ONTENTS ACKNOWLEDGMENTS .................................................................................................................................................................................1 1.