The Symmetric Group. Let G Be a Group Written Multiplicatively with Identity E

Total Page:16

File Type:pdf, Size:1020Kb

The Symmetric Group. Let G Be a Group Written Multiplicatively with Identity E Graduate Texts in Mathematics 203 Editorial Board S. Axler F.W. Gehring K.A. Ribet Springer Science+Business Media, LLC Graduate Texts in Mathematics T AKEUTI/ZARING. Introduction to 35 ALEXANDERIWERMER. Several Complex Axiomatic Set Theory. 2nd ed. Variables and Banach Algebras. 3rd ed. 2 OXTOBY. Measure and Category. 2nd ed. 36 KELLEYINAMIOKA et al. Linear 3 SCHAEFER. Topological Vector Spaces. Topological Spaces. 2nd ed. 37 MoNK. Mathematical Logic. 4 HILTON/STAMMBACH. A Course in 38 GRAUERT/FRITZSCHE. Several Complex Homological Algebra. 2nd ed. Variables. 5 MAC LANE. Categories for the Working 39 ARVESON. An Invitation to C*-Algebras. Mathematician. 2nd ed. 40 KEMENY/SNELL/KNAPP. Denumerable 6 HUGHES/PIPER. Projective Planes. Markov Chains. 2nd ed. 7 SERRE. A Course in Arithmetic. 41 APOSTOL. Modular Functions and Dirichlet 8 TAKEUTIIZARING. Axiomatic Set Theory. Series in Number Theory. 9 HUMPHREYS. Introduction to Lie Algebras 2nd ed. and Representation Theory. 42 SERRE. Linear Representations of Finite 10 CoHEN. A Course in Simple Homotopy Groups. Theory. 43 GILLMANIJERISON. Rings of Continuous II CONWAY. Functions of One Complex Functions. Variable I. 2nd ed. 44 KENDIG. Elementary Algebraic Geometry. 12 BEALS. Advanced Mathematical Analysis. 45 LOEVE. Probability Theory !. 4th ed. 13 ANDERSON/FULLER. Rings and Categories 46 LOEVE. Probability Theory II. 4th ed. of Modules. 2nd ed. 47 MOISE. Geometric Topology in 14 GoLUBITSKY/GuiLLEMIN. Stable Mappings Dimensions 2 and 3. and Their Singularities. 48 SACHS/Wu. General Relativity for 15 BERBERIAN. Lectures in Functional Mathematicians. Analysis and Operator Theory. 49 GRUENBERG/WEIR. Linear Geometry. 16 WINTER. The Structure of Fields. 2nd ed. 17 RosENBLATT. Random Processes. 2nd ed. 50 EDWARDS. Fermat's Last Theorem. 18 HALMOS. Measure Theory. 51 KLINGENBERG. A Course in Differential 19 HALMOS. A Hilbert Space Problem Book. Geometry. 2nd ed. 52 HARTSHORNE. Algebraic Geometry. 20 HUSEMOLLER. Fibre Bundles. 3rd ed. 53 MANIN. A Course in Mathematical Logic. 21 HUMPHREYS. Linear Algebraic Groups. 54 ORA VERIW ATKINS. Combinatorics with 22 BARNES/MACK. An Algebraic Introduction Emphasis on the Theory of Graphs. to Mathematical Logic. 55 BROWN/PEARCY. Introduction to Operator 23 GREUB. Linear Algebra. 4th ed. Theory I: Elements of Functional 24 HOLMES. Geometric Functional Analysis Analysis. and Its Applications. 56 MASSEY. Algebraic Topology: An 25 HEWITT/STROMBERG. Real and Abstract Introduction. Analysis. 57 CROWELL/Fox. Introduction to Knot 26 MANES. Algebraic Theories. Theory. 27 KELLEY. General Topology. 58 KoBLITZ. p-adic Numbers, p-adic Analysis, 28 ZARISKIISAMUEL. Commutative Algebra. and Zeta-Functions. 2nd ed. Vol.!. 59 LANG. Cyclotomic Fields. 29 ZARISKIISAMUEL. Commutative Algebra. 60 ARNOLD. Mathematical Methods in Vol.!!. Classical Mechanics. 2nd ed. 30 JACOBSON. Lectures in Abstract Algebra I. 61 WHITEHEAD. Elements of Homotopy Basic Concepts. Theory. 31 JACOBSON. Lectures in Abstract Algebra II. 62 KARGAPOLOV/MERLZJAKOV. Fundamentals Linear Algebra. of the Theory of Groups. 32 JACOBSON. Lectures in Abstract Algebra 63 BOLLOBAS. Graph Theory. Ill. Theory of Fields and Galois Theory. 64 EDWARDS. Fourier Series. Vol. I. 2nd ed. 33 HIRSCH. Differential Topology. 65 WELLS. Differential Analysis on Complex 34 SPITZER. Principles of Random Walk. Manifolds. 2nd ed. 2nd ed. (continued after index) Bruce E. Sagan The Symmetric Group Representations, Combinatorial Algorithms, and Symmetric Functions Second Edition With 31 Figures Springer Bruce E. Sagan Department of Mathematics Michigan State University East Lansing, MI 48824-1027 USA Editorial Board S. Axler F.W. Gehring K.A. Ribet Mathematics Department Mathematics Department Mathematics Department San Francisco State East Hall University of California University University of Michigan at Berkeley San Francisco, CA 94132 Ann Arbor, MI 48109 Berkeley, CA 94720-3840 USA USA USA Mathematics Subject Classification (2000): 20Cxx, 20C30, 20C32, 05C85 Library of Congress Cataloging-in-Publication Data Sagan, Bruce Eli. The symmetric group : representations, combinatorial algorithms, and symmetric functions I Bruce E. Sagan. p. em. - (Graduate texts in mathematics ; 203) Includes bibliographical references and index. ISBN 978-1-4419-2869-6 ISBN 978-1-4757-6804-6 (eBook) DOI 10.1007/978-1-4757-6804-6 I. Representations of groups. 2. Symmetric functions. I. Title. II. Series. QA171 .S24 2000 512 .. 2-dc21 00-040042 Printed on acid-free paper. First edition© 1991 by Wadsworth, Inc., Belmont, California. © 2001 Springer Science+Business Media New York Originally published by Springer-Verlag New York, Inc. in 2001 Softcover reprint of the hardcover 2nd edition 2001 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher Springer Science+Business Media, LLC , except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use of gl!neral descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone. Production managed by Timothy Taylor; manufacturing supervised by Jeffrey Taub. Photocomposed copy prepared from the author's LaTeX files. 9 8 7 6 5 4 3 2 1 ISBN 978-1-4419-2869-6 SPIN 10770720 Preface to the 2nd Edition I have been very gratified by the response to the first edition, which has resulted in it being sold out. This put some pressure on me to come out with a second edition and now, finally, here it is. The original text has stayed much the same, the major change being in the treatment of the hook formula which is now based on the beautiful Novelli-Pak-Stoyanovskii bijection (NPS 97]. I have also added a chapter on applications of the material from the first edition. This includes Stanley's theory of differential posets (Stn 88, Stn 90] and Fomin's related concept of growths (Fom 86, Fom 94, Fom 95], which extends some of the combinatorics of Sn-representations. Next come a couple of sections showing how groups acting on posets give rise to interesting representations that can be used to prove unimodality results (Stn 82]. Finally, we discuss Stanley's symmetric function analogue of the chromatic polynomial of a graph (Stn 95, Stn ta]. I would like to thank all the people, too numerous to mention, who pointed out typos in the first edition. My computer has been severely reprimanded for making them. Thanks also go to Christian Krattenthaler, Tom Roby, and Richard Stanley, all of whom read portions of the new material and gave me their comments. Finally, I would like to give my heartfelt thanks to my editor at Springer, Ina Lindemann, who has been very supportive and helpful through various difficult times. Ann Arbor, Michigan, 2000 v Preface to the 1st Edition In recent years there has been a resurgence of interest in representations of symmetric groups (as well as other Coxeter groups). This topic can be approached from three directions: by applying results from the general theory of group representations, by employing combinatorial techniques, or by using symmetric functions. The fact that this area is the confluence of several strains of mathematics makes it an exciting one in which to study and work. By the same token, it is more difficult to master. The purpose of this monograph is to bring together, for the first time under one cover, many of the important results in this field. To make the work accessible to the widest possible audience, a minimal amount of prior knowledge is assumed. The only prerequisites are a familiarity with elemen­ tary group theory and linear algebra. All other results about representations, combinatorics, and symmetric functions are developed as they are needed. Hence this book could be read by a graduate student or even a very bright undergraduate. For researchers I have also included topics from recent journal articles and even material that has not yet been published. Chapter 1 is an introduction to group representations, with special empha­ sis on the methods of use when working with the symmetric groups. Because of space limitations, many important topics that are not germane to the rest of the development are not covered. These subjects can be found in any of the standard texts on representation theory. In Chapter 2, the results from the previous chapter are applied to the symmetric group itself, and more highly specialized machinery is developed to handle this case. I have chosen to take the elegant approach afforded by the Specht modules rather than working with idempotents in the group algebra. The third chapter focuses on combinatorics. It starts with the two famous formulae for the dimensions of the Specht modules: the Frame-Robinson­ Thrall hook formula and the Frobenius-Young determinantal formula. The centerpiece is the Robinson-Schensted-Knuth algorithm, which allows us to describe some of the earlier theorems in purely combinatorial terms. A thor­ ough discussion of Schiitzenberger's jeu de taquin and related matters is in­ cluded. Chapter 4 recasts much of the previous work in the language of symmet­ ric functions. Schur functions are introduced, first combinatorially as the generating functions for semistandard tableaux and then in terms of sym­ metric group characters. The chapter concludes with the famous Littlewood­ Richardson and Murnaghan-Nakayama rules. My debt to several other books will be evident. Much of Chapter 1 is based on Ledermann's exquisite text on group characters [Led 77]. Chapter Vll viii PREFACE TO THE 1ST EDITION 2 borrows heavily from the monograph of James [Jam 78], whereas Chapter 4 is inspired by Macdonald's already classic book [Mac 79]. Finally, the third chapter is a synthesis of material from the research literature.
Recommended publications
  • On Some Generation Methods of Finite Simple Groups
    Introduction Preliminaries Special Kind of Generation of Finite Simple Groups The Bibliography On Some Generation Methods of Finite Simple Groups Ayoub B. M. Basheer Department of Mathematical Sciences, North-West University (Mafikeng), P Bag X2046, Mmabatho 2735, South Africa Groups St Andrews 2017 in Birmingham, School of Mathematics, University of Birmingham, United Kingdom 11th of August 2017 Ayoub Basheer, North-West University, South Africa Groups St Andrews 2017 Talk in Birmingham Introduction Preliminaries Special Kind of Generation of Finite Simple Groups The Bibliography Abstract In this talk we consider some methods of generating finite simple groups with the focus on ranks of classes, (p; q; r)-generation and spread (exact) of finite simple groups. We show some examples of results that were established by the author and his supervisor, Professor J. Moori on generations of some finite simple groups. Ayoub Basheer, North-West University, South Africa Groups St Andrews 2017 Talk in Birmingham Introduction Preliminaries Special Kind of Generation of Finite Simple Groups The Bibliography Introduction Generation of finite groups by suitable subsets is of great interest and has many applications to groups and their representations. For example, Di Martino and et al. [39] established a useful connection between generation of groups by conjugate elements and the existence of elements representable by almost cyclic matrices. Their motivation was to study irreducible projective representations of the sporadic simple groups. In view of applications, it is often important to exhibit generating pairs of some special kind, such as generators carrying a geometric meaning, generators of some prescribed order, generators that offer an economical presentation of the group.
    [Show full text]
  • Covariances of Symmetric Statistics
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector JOURNAL OF MULTIVARIATE ANALYSIS 41, 14-26 (1992) Covariances of Symmetric Statistics RICHARD A. VITALE Universily of Connecticut Communicared by C. R. Rao We examine the second-order structure arising when a symmetric function is evaluated over intersecting subsets of random variables. The original work of Hoeffding is updated with reference to later results. New representations and inequalities are presented for covariances and applied to U-statistics. 0 1992 Academic Press. Inc. 1. INTRODUCTION The importance of the symmetric use of sample observations was apparently first observed by Halmos [6] and, following the pioneering work of Hoeffding [7], has been reflected in the active study of U-statistics (e.g., Hoeffding [8], Rubin and Vitale [ 111, Dynkin and Mandelbaum [2], Mandelbaum and Taqqu [lo] and, for a lucid survey of the classical theory Serfling [12]). An important feature is the ANOVA-type expansion introduced by Hoeffding and its application to finite-sample inequalities, Efron and Stein [3], Karlin and Rinnott [9], Bhargava Cl], Takemura [ 143, Vitale [16], Steele [ 131). The purpose here is to survey work on this latter topic and to present new results. After some preliminaries, Section 3 organizes for comparison three approaches to the ANOVA-type expansion. The next section takes up characterizations and representations of covariances. These are then used to tighten an important inequality of Hoeffding and, in the last section, to study the structure of U-statistics. 2. NOTATION AND PRELIMINARIES The general setup is a supply X,, X,, .
    [Show full text]
  • 14.2 Covers of Symmetric and Alternating Groups
    Remark 206 In terms of Galois cohomology, there an exact sequence of alge- braic groups (over an algebrically closed field) 1 → GL1 → ΓV → OV → 1 We do not necessarily get an exact sequence when taking values in some subfield. If 1 → A → B → C → 1 is exact, 1 → A(K) → B(K) → C(K) is exact, but the map on the right need not be surjective. Instead what we get is 1 → H0(Gal(K¯ /K), A) → H0(Gal(K¯ /K), B) → H0(Gal(K¯ /K), C) → → H1(Gal(K¯ /K), A) → ··· 1 1 It turns out that H (Gal(K¯ /K), GL1) = 1. However, H (Gal(K¯ /K), ±1) = K×/(K×)2. So from 1 → GL1 → ΓV → OV → 1 we get × 1 1 → K → ΓV (K) → OV (K) → 1 = H (Gal(K¯ /K), GL1) However, taking 1 → µ2 → SpinV → SOV → 1 we get N × × 2 1 ¯ 1 → ±1 → SpinV (K) → SOV (K) −→ K /(K ) = H (K/K, µ2) so the non-surjectivity of N is some kind of higher Galois cohomology. Warning 207 SpinV → SOV is onto as a map of ALGEBRAIC GROUPS, but SpinV (K) → SOV (K) need NOT be onto. Example 208 Take O3(R) =∼ SO3(R)×{±1} as 3 is odd (in general O2n+1(R) =∼ SO2n+1(R) × {±1}). So we have a sequence 1 → ±1 → Spin3(R) → SO3(R) → 1. 0 × Notice that Spin3(R) ⊆ C3 (R) =∼ H, so Spin3(R) ⊆ H , and in fact we saw that it is S3. 14.2 Covers of symmetric and alternating groups The symmetric group on n letter can be embedded in the obvious way in On(R) as permutations of coordinates.
    [Show full text]
  • Generating Functions from Symmetric Functions Anthony Mendes And
    Generating functions from symmetric functions Anthony Mendes and Jeffrey Remmel Abstract. This monograph introduces a method of finding and refining gen- erating functions. By manipulating combinatorial objects known as brick tabloids, we will show how many well known generating functions may be found and subsequently generalized. New results are given as well. The techniques described in this monograph originate from a thorough understanding of a connection between symmetric functions and the permu- tation enumeration of the symmetric group. Define a homomorphism ξ on the ring of symmetric functions by defining it on the elementary symmetric n−1 function en such that ξ(en) = (1 − x) /n!. Brenti showed that applying ξ to the homogeneous symmetric function gave a generating function for the Eulerian polynomials [14, 13]. Beck and Remmel reproved the results of Brenti combinatorially [6]. A handful of authors have tinkered with their proof to discover results about the permutation enumeration for signed permutations and multiples of permuta- tions [4, 5, 51, 52, 53, 58, 70, 71]. However, this monograph records the true power and adaptability of this relationship between symmetric functions and permutation enumeration. We will give versatile methods unifying a large number of results in the theory of permutation enumeration for the symmet- ric group, subsets of the symmetric group, and assorted Coxeter groups, and many other objects. Contents Chapter 1. Brick tabloids in permutation enumeration 1 1.1. The ring of formal power series 1 1.2. The ring of symmetric functions 7 1.3. Brenti’s homomorphism 21 1.4. Published uses of brick tabloids in permutation enumeration 30 1.5.
    [Show full text]
  • Representations of the Infinite Symmetric Group
    Representations of the infinite symmetric group Alexei Borodin1 Grigori Olshanski2 Version of February 26, 2016 1 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia 2 Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia National Research University Higher School of Economics, Moscow, Russia Contents 0 Introduction 4 I Symmetric functions and Thoma's theorem 12 1 Symmetric group representations 12 Exercises . 19 2 Theory of symmetric functions 20 Exercises . 31 3 Coherent systems on the Young graph 37 The infinite symmetric group and the Young graph . 37 Coherent systems . 39 The Thoma simplex . 41 1 CONTENTS 2 Integral representation of coherent systems and characters . 44 Exercises . 46 4 Extreme characters and Thoma's theorem 47 Thoma's theorem . 47 Multiplicativity . 49 Exercises . 52 5 Pascal graph and de Finetti's theorem 55 Exercises . 60 6 Relative dimension in Y 61 Relative dimension and shifted Schur polynomials . 61 The algebra of shifted symmetric functions . 65 Modified Frobenius coordinates . 66 The embedding Yn ! Ω and asymptotic bounds . 68 Integral representation of coherent systems: proof . 71 The Vershik{Kerov theorem . 74 Exercises . 76 7 Boundaries and Gibbs measures on paths 82 The category B ............................. 82 Projective chains . 83 Graded graphs . 86 Gibbs measures . 88 Examples of path spaces for branching graphs . 91 The Martin boundary and Vershik{Kerov's ergodic theorem . 92 Exercises . 94 II Unitary representations 98 8 Preliminaries and Gelfand pairs 98 Exercises . 108 9 Spherical type representations 111 10 Realization of spherical representations 118 Exercises .
    [Show full text]
  • Spinorial Representations of Symmetric Groups 3
    SPINORIAL REPRESENTATIONS OF SYMMETRIC GROUPS JYOTIRMOY GANGULY AND STEVEN SPALLONE Abstract. A real representation π of a finite group may be regarded as a homomorphism to an orthogonal group O(V ). For symmetric groups Sn, al- ternating groups An, and products Sn × Sn′ of symmetric groups, we give criteria for whether π lifts to the double cover Pin(V ) of O(V ), in terms of character values. From these criteria we compute the second Stiefel-Whitney classes of these representations. Contents 1. Introduction 1 Acknowledgements 2 2. Notation and Preliminaries 3 3. Symmetric Groups 3 4. Alternating Groups 6 5. Tables 8 6. Stiefel-Whitney Classes 10 7. Products 13 References 14 1. Introduction A real representation π of a finite group G can be viewed as a group homomor- phism from G to the orthogonal group O(V ) of a Euclidean space V . Recall the double cover ρ : Pin(V ) O(V ). We say that π is spinorial, provided it lifts to Pin(V ), meaning there is→ a homomorphismπ ˆ : G Pin(V ) so that ρ πˆ = π. → ◦ arXiv:1906.07481v1 [math.RT] 18 Jun 2019 When the image of π lands in SO(V ), the representation is spinorial precisely when its second Stiefel-Whitney class w2(π) vanishes. Equivalently, when the as- sociated vector bundle over the classifying space BG has a spin structure. (See Section 2.6 of [Ben98], [GKT89], and Theorem II.1.7 in [LM16].) Determining spinoriality of Galois representations also has applications in number theory: see [Ser84], [Del76], and [PR95]. In this paper we give lifting criteria for representations of the symmetric groups S , the alternating groups A , and a product S S ′ of two symmetric groups.
    [Show full text]
  • Math 263A Notes: Algebraic Combinatorics and Symmetric Functions
    MATH 263A NOTES: ALGEBRAIC COMBINATORICS AND SYMMETRIC FUNCTIONS AARON LANDESMAN CONTENTS 1. Introduction 4 2. 10/26/16 5 2.1. Logistics 5 2.2. Overview 5 2.3. Down to Math 5 2.4. Partitions 6 2.5. Partial Orders 7 2.6. Monomial Symmetric Functions 7 2.7. Elementary symmetric functions 8 2.8. Course Outline 8 3. 9/28/16 9 3.1. Elementary symmetric functions eλ 9 3.2. Homogeneous symmetric functions, hλ 10 3.3. Power sums pλ 12 4. 9/30/16 14 5. 10/3/16 20 5.1. Expected Number of Fixed Points 20 5.2. Random Matrix Groups 22 5.3. Schur Functions 23 6. 10/5/16 24 6.1. Review 24 6.2. Schur Basis 24 6.3. Hall Inner product 27 7. 10/7/16 29 7.1. Basic properties of the Cauchy product 29 7.2. Discussion of the Cauchy product and related formulas 30 8. 10/10/16 32 8.1. Finishing up last class 32 8.2. Skew-Schur Functions 33 8.3. Jacobi-Trudi 36 9. 10/12/16 37 1 2 AARON LANDESMAN 9.1. Eigenvalues of unitary matrices 37 9.2. Application 39 9.3. Strong Szego limit theorem 40 10. 10/14/16 41 10.1. Background on Tableau 43 10.2. KOSKA Numbers 44 11. 10/17/16 45 11.1. Relations of skew-Schur functions to other fields 45 11.2. Characters of the symmetric group 46 12. 10/19/16 49 13. 10/21/16 55 13.1.
    [Show full text]
  • 6 Permutation Groups
    Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 6 Permutation Groups Let S be a nonempty set and M(S) be the collection of all mappings from S into S. In this section, we will emphasize on the collection of all invertible mappings from S into S. The elements of this set will be called permutations because of Theorem 2.4 and the next definition. Definition 6.1 Let S be a nonempty set. A one-to-one mapping from S onto S is called a permutation. Consider the collection of all permutations on S. Then this set is a group with respect to composition. Theorem 6.1 The set of all permutations of a nonempty set S is a group with respect to composition. This group is called the symmetric group on S and will be denoted by Sym(S). Proof. By Theorem 2.4, the set of all permutations on S is just the set I(S) of all invertible mappings from S to S. According to Theorem 4.3, this set is a group with respect to composition. Definition 6.2 A group of permutations , with composition as the operation, is called a permutation group on S. Example 6.1 1. Sym(S) is a permutation group. 2. The collection L of all invertible linear functions from R to R is a permu- tation group with respect to composition.(See Example 4.4.) Note that L is 1 a proper subset of Sym(R) since we can find a function in Sym(R) which is not in L, namely, the function f(x) = x3.
    [Show full text]
  • Some New Symmetric Function Tools and Their Applications
    Some New Symmetric Function Tools and their Applications A. Garsia ∗Department of Mathematics University of California, La Jolla, CA 92093 [email protected] J. Haglund †Department of Mathematics University of Pennsylvania, Philadelphia, PA 19104-6395 [email protected] M. Romero ‡Department of Mathematics University of California, La Jolla, CA 92093 [email protected] June 30, 2018 MR Subject Classifications: Primary: 05A15; Secondary: 05E05, 05A19 Keywords: Symmetric functions, modified Macdonald polynomials, Nabla operator, Delta operators, Frobenius characteristics, Sn modules, Narayana numbers Abstract Symmetric Function Theory is a powerful computational device with applications to several branches of mathematics. The Frobenius map and its extensions provides a bridge translating Representation Theory problems to Symmetric Function problems and ultimately to combinatorial problems. Our main contributions here are certain new symmetric func- tion tools for proving a variety of identities, some of which have already had significant applications. One of the areas which has been nearly untouched by present research is the construction of bigraded Sn modules whose Frobenius characteristics has been conjectured from both sides. The flagrant example being the Delta Conjecture whose symmetric function side was conjectured to be Schur positive since the early 90’s and there are various unproved recent ways to construct the combinatorial side. One of the most surprising applications of our tools reveals that the only conjectured bigraded Sn modules are remarkably nested by Sn the restriction ↓Sn−1 . 1 Introduction Frobenius constructed a map Fn from class functions of Sn to degree n homogeneous symmetric poly- λ nomials and proved the identity Fnχ = sλ[X], for all λ ⊢ n.
    [Show full text]
  • Quasi P Or Not Quasi P? That Is the Question
    Rose-Hulman Undergraduate Mathematics Journal Volume 3 Issue 2 Article 2 Quasi p or not Quasi p? That is the Question Ben Harwood Northern Kentucky University, [email protected] Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj Recommended Citation Harwood, Ben (2002) "Quasi p or not Quasi p? That is the Question," Rose-Hulman Undergraduate Mathematics Journal: Vol. 3 : Iss. 2 , Article 2. Available at: https://scholar.rose-hulman.edu/rhumj/vol3/iss2/2 Quasi p- or not quasi p-? That is the Question.* By Ben Harwood Department of Mathematics and Computer Science Northern Kentucky University Highland Heights, KY 41099 e-mail: [email protected] Section Zero: Introduction The question might not be as profound as Shakespeare’s, but nevertheless, it is interesting. Because few people seem to be aware of quasi p-groups, we will begin with a bit of history and a definition; and then we will determine for each group of order less than 24 (and a few others) whether the group is a quasi p-group for some prime p or not. This paper is a prequel to [Hwd]. In [Hwd] we prove that (Z3 £Z3)oZ2 and Z5 o Z4 are quasi 2-groups. Those proofs now form a portion of Proposition (12.1) It should also be noted that [Hwd] may also be found in this journal. Section One: Why should we be interested in quasi p-groups? In a 1957 paper titled Coverings of algebraic curves [Abh2], Abhyankar conjectured that the algebraic fundamental group of the affine line over an algebraically closed field k of prime characteristic p is the set of quasi p-groups, where by the algebraic fundamental group of the affine line he meant the family of all Galois groups Gal(L=k(X)) as L varies over all finite normal extensions of k(X) the function field of the affine line such that no point of the line is ramified in L, and where by a quasi p-group he meant a finite group that is generated by all of its p-Sylow subgroups.
    [Show full text]
  • A Proof of the Equivalence Between the Polytabloid Bases and Specht Polynomials for Irreducible Representations of the Symmetric Group
    Ball State Undergraduate Mathematics Exchange https://lib.bsu.edu/beneficencepress/mathexchange Vol. 14, No. 1 (Fall 2020) Pages 25 – 33 A Proof of the Equivalence Between the Polytabloid Bases and Specht Polynomials for Irreducible Representations of the Symmetric Group R. Michael Howe, Hengzhou Liu, and Michael Vaughan Dr. R. Michael Howe received his Ph.D in mathematics from the University of Iowa in 1996. He is an emeritus Pro- fessor of Mathematics at the University of Wisconsin-Eau Claire, where he enjoyed working on numerous undergrad- uate research projects with students. Hengzhou “Sookie” Liu is a graduate student in the University of South Florida-Tampa where she is working on her Ph.D. in applied physics and optics. In 2016, she gained an applied physics degree from Hefei University of Technology (HUT) and an applied math and physics degree from University of Wisconsin-Eau Claire (UWEC) while she was in a 121-exchange program between UWEC and HUT. In 2018, she gained her master’s degree in physics. Michael Vaughan is a graduate student at the Univer- sity of Alabama Tuscaloosa. He is currently conducting research involving the Colored HOMFLY knot invariant. Abstract We show an equivalence between the standard basis vectors in the space of polytabloids and the basis vectors of Specht polynomials for irreducible representations of the symmetric group. The authors have been unable to find any published proof of this result. 26 BSU Undergraduate Mathematics Exchange Vol. 14, No. 1 (Fall 2020) 1 Introduction Given a partition λ of an integer n, there is a way to construct an irreducible representation of the symmetric group Sn, and all irreducible representations of Sn can be constructed in this way.
    [Show full text]
  • Symmetric Group Characters As Symmetric Functions, Arxiv:1605.06672
    SYMMETRIC GROUP CHARACTERS AS SYMMETRIC FUNCTIONS (EXTENDED ABSTRACT) ROSA ORELLANA AND MIKE ZABROCKI Abstract. The irreducible characters of the symmetric group are a symmetric polynomial in the eigenvalues of a permutation matrix. They can therefore be realized as a symmetric function that can be evaluated at a set of variables and form a basis of the symmetric functions. This basis of the symmetric functions is of non-homogeneous degree and the (outer) product structure coefficients are the stable Kronecker coefficients. We introduce the irreducible character basis by defining it in terms of the induced trivial char- acters of the symmetric group which also form a basis of the symmetric functions. The irreducible character basis is closely related to character polynomials and we obtain some of the change of basis coefficients by making this connection explicit. Other change of basis coefficients come from a repre- sentation theoretic connection with the partition algebra, and still others are derived by developing combinatorial expressions. This document is an extended abstract which can be used as a review reference so that this basis can be implemented in Sage. A more full version of the results in this abstract can be found in arXiv:1605.06672. 1. Introduction We begin with a very basic question in representation theory. Can the irreducible characters of the symmetric group be realized as functions of the eigenvalues of the permutation matrices? In general, characters of matrix groups are symmetric functions in the set of eigenvalues of the matrix and (as we will show) the symmetric group characters define a basis of inhomogeneous degree for the space of symmetric functions.
    [Show full text]