The Great Barrier Reef Experiences Coral Bleaching During El Nin˜O–Southern Oscillation Neutral Conditions

Total Page:16

File Type:pdf, Size:1020Kb

The Great Barrier Reef Experiences Coral Bleaching During El Nin˜O–Southern Oscillation Neutral Conditions CSIRO PUBLISHING Journal of Southern Hemisphere Earth Systems Science, 2019, 69, 310–330 Seasonal Climate Summary https://doi.org/10.1071/ES19006 Seasonal climate summary for the southern hemisphere (autumn 2017): the Great Barrier Reef experiences coral bleaching during El Nin˜o–Southern Oscillation neutral conditions Grant A. Smith Bureau of Meteorology, 700 Collins Street, Melbourne, Vic., Australia. Email: [email protected] Abstract. Austral autumn 2017 was classified as neutral in terms of the El Nin˜o–Southern Oscillation (ENSO), although tropical rainfall and sub-surface Pacific Ocean temperature anomalies were indicative of a weak La Nin˜a. Despite this, autumn 2017 was anomalously warm for most of Australia, consistent with the warming trend that has been observed for the last several decades due to global warming. The mean temperatures for Queensland, New South Wales, Victoria, Tasmania and South Australia were all amongst the top 10. The mean maximum temperature for all of Australia was seventh warmest on record, and amongst the top 10 for all states but Western Australia, with a region of warmest maximum temperature on record in western Queensland. The mean minimum temperature was also above average nationally, and amongst top 10 for Queensland, Victoria and Tasmania. In terms of rainfall, there were very mixed results, with wetter than average for the east coast, western Victoria and parts of Western Australia, and drier than average for western Tasmania, western Queensland, the southeastern portion of the Northern Territory and the far western portion of Western Australia. Dry conditions in Tasmania and southwest Western Australia were likely due to a positive Southern Annular Mode, and the broader west coast and central dry conditions were likely due to cooler eastern Indian Ocean sea-surface temperatures (SSTs) that limited the supply of moisture available to the atmosphere across the country. Other significant events during autumn 2017 were the coral bleaching in the Great Barrier Reef (GBR), cyclone Debbie and much lower than average Antarctic sea-ice extent. Coral bleaching in the GBR is usually associated on broad scales with strong El Nin˜o events but is becoming more common in ENSO neutral years due to global warming. The southern GBR was saved from warm SST anomalies by severe tropical cyclone Debbie which caused ocean cooling in late March and flooding in Queensland and New South Wales. The Antarctic sea-ice extent was second lowest on record for autumn, with the March extent being lowest on record. Received 7 November 2018, accepted 16 May 2019, published online 11 June 2020 1 Introduction 2 Pacific and Indian Basin climate indices Australautumnin2017followedayearofrecordhigh- 2.1 Southern Oscillation Index surface temperature in 2016 that was dominated by a strong The Troup Southern Oscillation Index (SOI) for the period El Nin˜o at the beginning of the year and transitioned to weak La Nin˜a–like conditions by the end of 2016 and start of 2017 January 2013 to May 2017 is shown in Fig. 1 (Troup 1965), (National Oceanic and Atmospheric Administration 2017). In together with a 5-month weighted moving average to smooth Australia for 2016, temperatures were very warm (fourth out volatility (Wright 1989). Following positive SOI values for warmest on record) driven by both El Nin˜o and anthropogenic the second half of 2016, the first 5 months of 2017 alternated climate change (Bureau of Meteorology and CSIRO 2017). between positive and negative. The SOI values for March, The Australian national average rainfall in 2016 was ,17% April and May were þ5.1, À6.3, þ0.5 respectively, giving a above average. neutral seasonal average of À0.2. The 5-month weighted This summary reviews the climate patterns for Austral moving average finished negative at À3.3 at the end of autumn. autumn 2017, with particular attention given to the Australasian The monthly mean sea-level pressure (MSLP) anomalies for and Pacific regions. The main sources of information for this both Darwin (provided by the Bureau of Meteorology) and report are analyses prepared by the Bureau of Meteorology using Tahiti (provided by the Me´te´o France inter-regional direction data sourced from a range of centres and data sets. for French Polynesia) were near to neutral in the 3-month Journal compilation Ó BoM 2019 Open Access CC BY-NC-ND www.publish.csiro.au/journals/es BoM climate summary: autumn 2017 Journal of Southern Hemisphere Earth Systems Science 311 20 3 15 2 10 5 1 0 0 –5 –10 –1 –15 –2 –20 –25 –3 2013 2014 2015 2016 2017 2013 2014 2015 2016 2017 SOI 5-month weighted average 5VAR 3-month weighted average Fig. 1. Southern Oscillation Index (SOI), from January 2013 to May 2017, Fig. 2. 5VAR composite standardised monthly El Nin˜o–Southern Oscilla- together with a 5-month binomially weighted moving average. The Troup tion (ENSO) index from January 2013 to May 2017, together with a SOI is 10 times the standardised monthly anomaly of the difference in mean weighted 3-month moving average. The principal component analysis and sea-level pressure between Tahiti and Darwin. The calculation is based on a standardisation of this ENSO index is performed over the period 1950–99. 60-year climatology (1933–92). La Nin˜a signal, and therefore the ENSO indicators pointing period (between À0.2 and þ0.8 hPa). The 5-month weighted towards El Nin˜o had little impact on the Australian climate for moving average was trending towards negative territory for the autumn 2017. autumn period. 2.3 Tropical convection and rainfall 2.2 Composite monthly El Nin˜o–Southern Oscillation Index Outgoing long-wave radiation (OLR) is a good proxy for trop- (5VAR) and multivariate El Nin˜o–Southern Oscillation Index ical convection and rainfall. Decreased OLR usually indicates The 5VAR is a composite monthly El Nin˜o–Southern Oscilla- increased convection and enhanced associated cloudiness and tion (ENSO) Index developed by the Bureau of Meteorology, rainfall, and increased OLR usually indicates decreased con- calculated as the standardised amplitude of the first principal vection. During El Nin˜o, OLR is often decreased near the Date component of monthly Darwin and Tahiti MSLP (data obtained Line indicating increased convection (and rainfall) as the from http://www.bom.gov.au/climate/current/soihtm1.shtml, Walker Circulation weakens, and the warm pool and associated accessed 29 April 2020) and monthly NINO3, NINO3.4 and tropical rainfall is displaced to the east. The reverse is true NINO4 sea-surface temperatures (SSTs) from the National during La Nin˜a events. Centers for Environment Prediction (NCEP), obtained from Standardised monthly anomalies of OLR are computed for an 8 8 8 8 ftp://ftp.cpc.ncep.noaa.gov/wd52dg/data/indices/sstoi.indices, equatorial region from 5 Sto5N and 160 E to 160 Wby accessed 29 April 2020 (Kuleshov et al. 2009). Persistent pos- NOAA’s Climate Prediction Centre (obtained from http://www. itive or negative 5VAR values in excess of 1 standard deviation cpc.ncep.noaa.gov/data/indices/olr, accessed 29 April 2020). þ þ þ À2 are typically associated with El Nin˜o or La Nin˜a events Monthly values for autumn were 1.1, 0.4, 0.1 W m for respectively. The monthly 5VAR values for the period January March, April and May respectively, indicating that convection 2013 to May 2017 are shown in Fig. 2, along with the 3-month was suppressed in that area during autumn. The overall autumn þ moving average. The autumn period of March/April/May 2017 mean was 0.5, with the countries in the region reporting exhibited mildly positive values of þ0.16, þ0.75 and þ0.72 drought conditions, for example, Kiribati Meteorological respectively, which were all below the 1 standard deviation Service (2017), and the northern Marshall Islands (UNOCHA threshold for El Nin˜o events. ROAP 2017). The spatial patterns of seasonal OLR anomalies 8 8 The multivariate ENSO index (MEI), produced by the across the Asia–Pacific region between 40 S and 40 N for Physical Sciences Division of the Earth Systems Research autumn 2017 are shown in Fig. 3. Across Indonesia in locales Laboratory (formerly known as the US Climate Diagnostics of Sulawesi, Borneo and West Sumatra, there were reports of Centre), is a standardised anomaly derived from a number of widespread floods and landslides during the autumn period atmospheric and oceanic parameters calculated as a 2-month (Davies 2017a). Rainfall associated with cyclone Debbie can mean (Wolter and Timlin 1993, 1998). As for 5VAR, significant be seen crossing the Queensland border in Fig. 4. The OLR and positive anomalies are typically associated with El Nin˜o, rainfall patterns in western Pacific and Indonesia are consistent whereas large negative anomalies indicate La Nin˜a. The 2017 with a weak La Nin˜a, which is in contrast to what the 5VAR and February/March (À0.08), March/April (þ0.74) and April/May MEI indicators were suggesting for this period. (þ1.44) values were increasing over the autumn period, similar to the 5VAR, although did not reach significant magnitudes. 2.4 Indian Ocean Dipole Contrary to this, rainfall patterns (Section 2.3) and sub-surface The Indian Ocean Dipole (IOD) describes the pattern of SST Pacific warming (Section 4.2) were more indicative of a weak anomalies across the equatorial Indian Ocean. A positive phase 312 Journal of Southern Hemisphere Earth Systems Science G. A. Smith OLR 2.5 × 2.5 NOAA REAL TIME-OLRAV (W/M–2) 20170301 0000 20170528 0000 55 45 35 25 15 5 –5 –15 –25 –35 –45 –55 © Commonwealth of Australia 2017, Australian Bureau of Meteorology Issued: 05/06/2017 Fig.
Recommended publications
  • THE BATTLE of the CORAL SEA — an OVERVIEW by A.H
    50 THE BATTLE OF THE CORAL SEA — AN OVERVIEW by A.H. Craig Captain Andrew H. Craig, RANEM, served in the RAN 1959 to 1988, was Commanding officer of 817 Squadron (Sea King helicopters), and served in Vietnam 1968-1979, with the RAN Helicopter Flight, Vietnam and No.9 Squadroom RAAF. From December 1941 to May 1942 Japanese armed forces had achieved a remarkable string of victories. Hong Kong, Malaya and Singapore were lost and US forces in the Philippines were in full retreat. Additionally, the Japanese had landed in Timor and bombed Darwin. The rapid successes had caught their strategic planners somewhat by surprise. The naval and army staffs eventually agreed on a compromise plan for future operations which would involve the invasion of New Guinea and the capture of Port Moresby and Tulagi. Known as Operation MO, the plan aimed to cut off the eastern sea approaches to Darwin and cut the lines of communication between Australia and the United States. Operation MO was highly complex and involved six separate naval forces. It aimed to seize the islands of Tulagi in the Solomons and Deboyne off the east coast of New Guinea. Both islands would then be used as bases for flying boats which would conduct patrols into the Coral Sea to protect the flank of the Moresby invasion force which would sail from Rabaul. That the Allied Forces were in the Coral Sea area in such strength in late April 1942 was no accident. Much crucial intelligence had been gained by the American ability to break the Japanese naval codes.
    [Show full text]
  • Queensland in January 2011
    HOME ABOUT MEDIA CONTACTS Search NSW VIC QLD WA SA TAS ACT NT AUSTRALIA GLOBAL ANTARCTICA Bureau home Climate The Recent Climate Regular statements Tuesday, 1 February 2011 - Monthly Climate Summary for Queensland - Product code IDCKGC14R0 Queensland in January 2011: Widespread flooding continued Special Climate Statement 24 (SCS 24) titled 'Frequent heavy rain events in late 2010/early 2011 lead to Other climate summaries widespread flooding across eastern Australia' was first issued on 7th Jan 2011 and updated on 25th Jan 2011. Latest season in Queensland High rainfall totals in the southeast and parts of the far west, Cape York Peninsula and the Upper Climate Carpentaria Latest year in Queensland Widespread flooding continued Outlooks Climate Summary archive There was a major rain event from the 10th to the 12th of January in southeast Queensland Reports & summaries TC Anthony crossed the coast near Bowen on the 30th of January Earlier months in Drought The Brisbane Tropical Cyclone Warning Centre (TCWC) took over responsibility for TC Yasi on the Queensland Monthly weather review 31st of January Earlier seasons in Weather & climate data There were 12 high daily rainfall and 13 high January total rainfall records Queensland Queensland's area-averaged mean maximum temperature for January was 0.34 oC lower than Long-term temperature record Earlier years in Queensland average Data services All Climate Summary Maps – recent conditions Extremes Records Summaries Important notes the top archives Maps – average conditions Related information Climate change Summary January total rainfall was very much above average (decile 10) over parts of the Far Southwest district, the far Extremes of climate Monthly Weather Review west, Cape York Peninsula, the Upper Carpentaria, the Darling Downs and most of the Moreton South Coast About Australian climate district, with some places receiving their highest rainfall on record.
    [Show full text]
  • The Lower Bathyal and Abyssal Seafloor Fauna of Eastern Australia T
    O’Hara et al. Marine Biodiversity Records (2020) 13:11 https://doi.org/10.1186/s41200-020-00194-1 RESEARCH Open Access The lower bathyal and abyssal seafloor fauna of eastern Australia T. D. O’Hara1* , A. Williams2, S. T. Ahyong3, P. Alderslade2, T. Alvestad4, D. Bray1, I. Burghardt3, N. Budaeva4, F. Criscione3, A. L. Crowther5, M. Ekins6, M. Eléaume7, C. A. Farrelly1, J. K. Finn1, M. N. Georgieva8, A. Graham9, M. Gomon1, K. Gowlett-Holmes2, L. M. Gunton3, A. Hallan3, A. M. Hosie10, P. Hutchings3,11, H. Kise12, F. Köhler3, J. A. Konsgrud4, E. Kupriyanova3,11,C.C.Lu1, M. Mackenzie1, C. Mah13, H. MacIntosh1, K. L. Merrin1, A. Miskelly3, M. L. Mitchell1, K. Moore14, A. Murray3,P.M.O’Loughlin1, H. Paxton3,11, J. J. Pogonoski9, D. Staples1, J. E. Watson1, R. S. Wilson1, J. Zhang3,15 and N. J. Bax2,16 Abstract Background: Our knowledge of the benthic fauna at lower bathyal to abyssal (LBA, > 2000 m) depths off Eastern Australia was very limited with only a few samples having been collected from these habitats over the last 150 years. In May–June 2017, the IN2017_V03 expedition of the RV Investigator sampled LBA benthic communities along the lower slope and abyss of Australia’s eastern margin from off mid-Tasmania (42°S) to the Coral Sea (23°S), with particular emphasis on describing and analysing patterns of biodiversity that occur within a newly declared network of offshore marine parks. Methods: The study design was to deploy a 4 m (metal) beam trawl and Brenke sled to collect samples on soft sediment substrata at the target seafloor depths of 2500 and 4000 m at every 1.5 degrees of latitude along the western boundary of the Tasman Sea from 42° to 23°S, traversing seven Australian Marine Parks.
    [Show full text]
  • Visioning of the Coral Sea Marine Park
    2020 5 AUSTRALIA VISIONING THE CORAL SEA MARINE PARK #VisioningCoralSea 04/29/2020 - 06/15/2020 James Cook University, The University of Cairns, Australia Sydney, Geoscience Australia, Queensland Dr. Robin Beaman Museum, Museum of Tropical Queensland, Biopixel, Coral Sea Foundation, Parks Australia Expedition Objectives Within Australia’s largest marine reserve, the recently established Coral Sea Marine Geological Evolution Insight Park, lies the Queensland Plateau, one of the To collect visual data to allow the understanding of the world’s largest continental margin plateaus physical and temporal changes that have occurred at nearly 300,000 square kilometers. Here historically on the Queensland Plateau. a wide variety of reef systems range from large atolls and long banks to shallow coral pinnacles. This region is virtually unmapped. This project addresses a range of priorities Mapping Seafloor of the Australian Government in terms of mapping and characterizing a poorly known To map, in detail, the steeper reef flanks using frontier area of the Australian marine estate. high-resolution multibeam mapping. The seabed mapping of reefs and seamounts in the Coral Sea Marine Park is a high priority for Parks Australia, the managers of ROV Expedition Australia’s Commonwealth Marine Parks. The new multibeam data acquired will be To document deep-sea faunas and their habitats, as added to the national bathymetry database well as the biodiversity and distribution patterns of hosted by Geoscience Australia and released these unexplored ecosystems. Additionally, the ROV through the AusSeabed Data Portal. dives will help to determine the extent and depth of coral bleaching. REPORT IMPACT 6 We celebrated World Ocean Day during the expedition with a livestream bringing together Falkor ́s crew with scientist, students, and athletes to share their ocean experiences.
    [Show full text]
  • Oceania & Antarctica, Locate and Describe
    Oceania & Antarctica, locate and describe » Activity 1. In pairs, match geographical features names in the word bank with the correct description. ___ Antarctic Peninsula ___ Ayers Rock/Uluru ___ Darling River ___ Great Barrier Reef ___ Great Dividing Range ___ Melanesia ___ Micronesia ___ New Zealand ___ Polynesia ___ Tasmania 'Meeting points': Torres Strait Note: In bold, description verbs for your cards. southern Pacific Ocean. Historically, the islands have been known as South Sea Islands even | 1 | • It is a group of islands situated some 1,500 though the Hawaiian Islands are located in the North kilometres east of Australia. In fact, it is an island Pacific. country in the southwestern Pacific Ocean and it comprises two main landmasses and around 600 | 6 | • It is an island located 240 km to the south of smaller islands. the Australian mainland, separated by the Bass Strait. The island covers 64,519 km². | 2 | • It is a large sandstone rock formation in central Australia. This rock is sacred to the Aboriginal | 7 | • It is Australia's most substantial mountain people of the area. It lies 335 km south west of the range. It stretches more than 3,500 kmfrom the nearest large town, Alice Springs. The area around northeastern tip of Queensland, running the entire the formation is home to ancient paintings. length of the eastern coastline. | 3 | • It is a subregion of Oceania extending from | 8 | • It is the third longest river in Australia, New Guinea island in the southwestern Pacific measuring 1,472 km from its source in northern Ocean to the Torres Strait, and eastward to Fiji.
    [Show full text]
  • The Great Barrier Reef and Coral Sea 20 Tom C.L
    The Great Barrier Reef and Coral Sea 20 Tom C.L. Bridge, Robin J. Beaman, Pim Bongaerts, Paul R. Muir, Merrick Ekins, and Tiffany Sih Abstract agement approaches that explicitly considered latitudinal The Coral Sea lies in the southwestern Pacific Ocean, bor- and cross-shelf gradients in the environment resulted in dered by Australia, Papua New Guinea, the Solomon mesophotic reefs being well-represented in no-take areas in Islands, Vanuatu, New Caledonia, and the Tasman Sea. The the GBR. In contrast, mesophotic reefs in the Coral Sea Great Barrier Reef (GBR) constitutes the western margin currently receive little protection. of the Coral Sea and supports extensive submerged reef systems in mesophotic depths. The majority of research on Keywords the GBR has focused on Scleractinian corals, although Mesophotic coral ecosystems · Coral · Reef other taxa (e.g., fishes) are receiving increasing attention. · Queensland · Australia To date, 192 coral species (44% of the GBR total) are recorded from mesophotic depths, most of which occur shallower than 60 m. East of the Australian continental 20.1 Introduction margin, the Queensland Plateau contains many large, oce- anic reefs. Due to their isolated location, Australia’s Coral The Coral Sea lies in the southwestern Pacific Ocean, cover- Sea reefs remain poorly studied; however, preliminary ing an area of approximately 4.8 million square kilometers investigations have confirmed the presence of mesophotic between latitudes 8° and 30° S (Fig. 20.1a). The Coral Sea is coral ecosystems, and the clear, oligotrophic waters of the bordered by the Australian continent on the west, Papua New Coral Sea likely support extensive mesophotic reefs.
    [Show full text]
  • Monana the OFFICIAL PUBLICATION of the AUSTRALIAN METEOROLOGICAL ASSOCIATION INC June 2017 “Forecasting the November 2015 Pinery Fires”
    Monana THE OFFICIAL PUBLICATION OF THE AUSTRALIAN METEOROLOGICAL ASSOCIATION INC June 2017 “Forecasting the November 2015 Pinery Fires”. Matt Collopy, Supervising Meteorologist, SA Forecasting Centre, BOM. At the AMETA April 2017 meeting, Supervising Meteorologist of the Bureau of Meteorology South Australian Forecasting Centre, gave a fascinating talk on forecasting the conditions of the November 2015 Pinery fires, which burnt 85,000ha 80 km north of Adelaide. The fire started during the morning of Wednesday 25th November 2015 ahead of a cold frontal system. Winds from the north reached 45-65km/h and temperatures reached the high 30’s, ahead of the change, with the west to southwest wind change reaching the area at around 2:30pm. Matt’s talk highlighted the power of radar imagery in improving the understanding of the behaviour of the fire. The 10 minute radar scans were able to show ash, and ember particles being lofted into the atmosphere, and help identify where the fire would be spreading. The radar also gave insight into the timing of the wind change- vital information as the wind change greatly extends the fire front. Buckland Park radar image from 2:30pm (0400 UTC) on 25/11/2015 showing fine scale features of the Pi- nery fire, and lofted ember particles. 1 Prediction of fire behaviour has vastly improved, with Matt showing real-time predictions of fire behaviour overlain with resulting fire behaviour on the day. This uses a model called Phoenix, into which weather model predicted conditions, and vegetation information are fed to provide a model of expected fire behaviour.
    [Show full text]
  • USGS Analysis of the Australian UNCLOS Submission
    USGS Analysis of the Australian UNCLOS Submission By Deborah R. Hutchinson and Robert W. Rowland Open-File Report 2006-1073 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey P. Patrick Leahy, Acting Director U.S. Geological Survey, Reston, Virginia For Additional Information: See the United Nations web page on the United Nations Convention on the Law of the Sea at http://www.un.org/Depts/los/index.htm, and the Executive Summary of the Australian UNCLOS submission at http://www.un.org/Depts/los/clcs_new?submission_files/submission_aus.htm. Contact Deborah R. Hutchinson U.S. Geological Survey 384 Woods Hole Road Woods Hole, MA, 02543 [email protected] 508-457-2263 Robert W. Rowland U.S. Geological Survey, Retired 55825 River Shore Lane Elkhart, IN 46516 [email protected] For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation Hutchinson, D.R., and Rowland, R.W., 2006, USGS Analysis of the Australian UNCLOS Submission: U.S. Geological Survey Open-File Report 2006-1073, 19 p., http://pubs.usgs.gov/of/2006/1073. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government, nor does the interpretation presented here reflect official U.S.
    [Show full text]
  • Research and Monitoring in Australia's Coral Sea: a Review
    Review of Research in Australia’s Coral Sea D. Ceccarelli DSEWPaC Final Report – 21 Jan 2011 _______________________________________________________________________ Research and Monitoring in Australia’s Coral Sea: A Review Report to the Department of Sustainability, Environment, Water, Population and Communities By Daniela Ceccarelli, Oceania Maritime Consultants January 21st, 2011 1 Review of Research in Australia’s Coral Sea D. Ceccarelli DSEWPaC Final Report – 21 Jan 2011 _______________________________________________________________________ Research and Monitoring in Australia’s Coral Sea: A Review By: Oceania Maritime Consultants Pty Ltd Author: Dr. Daniela M. Ceccarelli Internal Review: Libby Evans-Illidge Cover Photo: Image of the author installing a temperature logger in the Coringa-Herald National Nature Reserve, by Zoe Richards. Preferred Citation: Ceccarelli, D. M. (2010) Research and Monitoring in Australia’s Coral Sea: A Review. Report for DSEWPaC by Oceania Maritime Consultants Pty Ltd, Magnetic Island. Oceania Maritime Consultants Pty Ltd 3 Warboys Street, Nelly Bay, 4819 Magnetic Island, Queensland, Australia. Ph: 0407930412 [email protected] ABN 25 123 674 733 2 Review of Research in Australia’s Coral Sea D. Ceccarelli DSEWPaC Final Report – 21 Jan 2011 _______________________________________________________________________ EXECUTIVE SUMMARY The Coral Sea is an international body of water that lies between the east coast of Australia, the south coasts of Papua New Guinea and the Solomon Islands, extends to Vanuatu, New Caledonia and Norfolk Island to the east and is bounded by the Tasman Front to the south. The portion of the Coral Sea within Australian waters is the area of ocean between the seaward edge of the Great Barrier Reef Marine Park (GBRMP), the limit of Australia’s Exclusive Economic Zone (EEZ) to the east, the eastern boundary of the Torres Strait and the line between the Solitary Islands and Elizabeth and Middleton Reefs to the south.
    [Show full text]
  • Special Climate Statement 43
    SPECIAL CLIMATE STATEMENT 43 Extreme January heat Last update 7 January, 2013 Climate Information Services Bureau of Meteorology Note: This statement is based on data available as of 7 January 2013 which may be subject to change as a result of standard quality control procedures. Introduction Large parts of central and southern Australia are currently under the influence of a persistent and widespread heatwave event. This event is ongoing with further significant records likely to be set. Further updates of this statement and associated significant observations will be made as they occur, and a full and comprehensive report on this significant climatic event will be made when the current event ends. The last four months of 2012 were abnormally hot across Australia, and particularly so for maximum (day-time) temperatures. For September to December (i.e. the last four months of 2012) the average Australian maximum temperature was the highest on record with a national anomaly of +1.61 °C, slightly ahead of the previous record of 1.60 °C set in 2002 (national records go back to 1910). In this context the current heatwave event extends a four month spell of record hot conditions affecting Australia. These hot conditions have been exacerbated by very dry conditions affecting much of Australia since mid 2012 and a delayed start to a weak Australian monsoon. The start of the current heatwave event traces back to late December 2012, and all states and territories have seen unusually hot temperatures with many site records approached or exceeded across southern and central Australia. A full list of records broken at stations with long records (>30 years) is given below.
    [Show full text]
  • Eco Feb 06.Indd
    f o r u m NEW AIR CONDITIONING DESIGN TEMPERATURES FOR QUEENSLAND, AUSTRALIA Eric Peterson¹, Nev Williams¹, Dale Gilbert¹, Klaus Bremhorst² ABSTRACT This paper presents results of a detailed analysis of meteorological data to determine air conditioning design temperatures dry bulb and wet bulb for hundreds of locations throughout Queensland, using the tenth-highest daily maximum observed per year. This is a modification of the AIRAH 1997 method that uses only 3:00pm records of temperature. In this paper we ask the reader to consider Australian Bureau of Meteorology official “climate summaries” as a benchmark upon which to compare various previously published comfort design temperatures, as well as the new design temperatures proposed in the present paper. We see some possible signals from climate change, but firstly we should apply all available historical data to establish outdoor design temperatures that will ensure that cooling plant are correctly sized in the near future. In a case-studies of Brisbane, we find that inner city temperatures are rising, that airport temperatures are not, and that suburban variability is substantially important. Keywords: air conditioning design, Queensland, climate data Background is in their personal control (Khedari and Yamtraipat 2000 Results of the present paper are abridged in Table 1, in and Nicol, et al. 1999). Floating indoor temperatures during comparison with design temperatures for eight key sites hot weather is not a new operational policy in Queensland, previously published by AIRAH, and five
    [Show full text]
  • Global Evaluation of Biofuel Potential from Microalgae
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2014 Global Evaluation of Biofuel Potential from Microalgae Jeffrey W. Moody Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Mechanical Engineering Commons Recommended Citation Moody, Jeffrey W., "Global Evaluation of Biofuel Potential from Microalgae" (2014). All Graduate Theses and Dissertations. 2070. https://digitalcommons.usu.edu/etd/2070 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. GLOBAL EVALUATION OF BIOFUEL POTENTIAL FROM MICROALGAE by Jeffrey W. Moody A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Mechanical Engineering Approved: Dr. Jason Quinn Dr. Byard Wood Major Professor Committee Member Dr. Rees Fullmer Dr. Mark McLellan Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2014 ii Copyright © Jeffrey Moody 2014 All Rights Reserved iii ABSTRACT Global Evaluation of Biofuel Potential from Microalgae by Jeffrey W. Moody, Master of Science Utah State University, 2014 Major Professor: Dr. Jason C. Quinn Department: Mechanical and Aerospace Engineering Traditional terrestrial crops are currently being utilized as a feedstock for biofuels but resource requirements and low yields limit the sustainability and scalability. Comparatively, next generation feedstocks, such as microalgae, have inherent advantages such as higher solar energy efficiencies, larger lipid fractions, utilization of waste carbon dioxide, and cultivation on poor quality land.
    [Show full text]