Contextual Meanings of the Equals Sign As Conceptual Blends George Boggs, Ian Whitacre, Jennifer Schellinger, Zachary Champagne, Robert Schoen

Total Page:16

File Type:pdf, Size:1020Kb

Contextual Meanings of the Equals Sign As Conceptual Blends George Boggs, Ian Whitacre, Jennifer Schellinger, Zachary Champagne, Robert Schoen FLM 38(2) - July 2018 - text_FLM 2018-06-13 5:52 PM Page 34 CONTEXTUAL MEANINGS OF THE EQUALS SIGN AS CONCEPTUAL BLENDS GEORGE BOGGS, IAN WHITACRE, JENNIFER SCHELLINGER, ZACHARY CHAMPAGNE, ROBERT SCHOEN Students today may more readily recognize the symbol # as problem from the standpoint of algebra learning. Framing the hashtag used on Twitter and other social-media plat- the problem in terms of future roadblocks to high-school forms than as a symbol for weight, musical notation for a mathematics achievement, equals sign interventions have sharp note, the pound key on a telephone, or as shorthand for introduced typologies and made instructional recommenda- number. Digital media add to the many streams of symbol- tions focussed on reasoning relationally. Some seek to shape rich information children experience, so recognizing can be the discursive landscape in which children encounter the seen as an important and active interpretive process affected equals sign, for instance, by adopting the language of same- by experience, awareness, and sense of ownership. In social ness (e.g., reading the equals sign as ‘is the same as’) media, mathematical language and symbols are being appro- (Saenz-Ludlow & Walgamuth, 1998), using true-false ques- priated in ways that stretch their meaning and appear to tions (Molina & Ambrose, 2006), or introducing the create new combinations. This process, which children metaphor of the balance scale or seesaw (Mann, 2004). experience simultaneously with formal instruction, presents Efforts to steer children’s understanding of the equals sign mathematics educators and researchers with both challenges through the use of particular semiotic tools depend on recog- and opportunities. nition that differing views of the sign may coexist in the Signs and texts are subject to reinterpretation and contex- mind of the child. In other words, children’s understandings tualized translation into new contexts. Mathematics of the equals sign are negotiated, not simply sequenced education research faces the challenge of embracing multi- developmentally. Light (1980) identified six meanings of the literate mathematical thinking to support students’ adaptive equals sign within mathematics; Baroody and Ginsburg production and consumption of mathematical texts. We (1983) raised the possibility that multiple views coexist; and argue that the blending of mathematical symbols, expres- Jones and Pratt (2012) found that some students used two sions, and thinking from formal to informal uses and from distinct meanings of the equals sign, a relational meaning school to non-school contexts represents a normal multiliter- and a substituting meaning, to create arithmetic puzzles. ate feature of 21st century life, a process that children can Documented cases of children flexibly recruiting different become aware of and use as they expand their communica- meanings to successfully complete tasks point to the impor- tive repertoires both in and out of school. We are interested tance of the child as a negotiator of meaning in relation to in how a ubiquitous symbol—the equals sign—is appropri- signs and context. ated and used contextually in advertising and social media. Our analysis explores how people use and see the equals In cross-cultural contexts, ‘distance’ between disciplinary sign in contexts outside of mathematics, especially social norms for mathematical communication can clash with local media and advertising. We consider the variety of meanings linguistic and cultural histories (Berry, 1985, p. 19). And that these ways of using the equals sign evoke as evidence of ambiguity between everyday and specialized meanings of the multiliterate environments that people navigate on a mathematical words and symbols can be a source of mathe- daily basis. We propose that these media-saturated environ- matical ‘misinformation’ (Durkin & Shire, 1991, p. 73). ments call for pedagogical approaches to children’s Diverse appropriations of signs within mathematics dis- mathematical understanding that take into account the lin- courses point to deep polysemy, so strong ‘awareness’ of guistic and cultural contexts in which equals signs are used. context may be seen as an antidote to misinformation This perspective has implications for efforts to assess human (Zazkis, 1998, p. 30). These issues can be viewed as central understanding of words and symbols, because understanding to young learners’ experience, as ‘new’ contexts suggest and language use occur in a variety of contexts. meanings that contrast with ‘familiar’ ones (Mamolo, 2010). Conceptual blending Views of the equals sign We frame our analysis of contextual meanings of the equals Progression from simpler to more complex mathematical sign in terms of linguistic pragmatics, specifically how con- thinking is a vital concern for educators and researchers. ceptual blending (Fauconnier & Turner, 2002) supports sign Developing awareness in research of the need among teach- users’ interpretation of abstract symbolic meaning (Peirce, ers and students to manage ambiguity contrasts to some 1903). Conceptual blending is a process by which elements degree with research and teaching goals having to do with from different source domains, or input spaces, are comin- the equals sign. gled to create a unique, blended space, resulting in both An operational view of the equals sign among school chil- gains and losses in terms of what people appear to under- dren (e.g., Knuth, Stephens, McNeil & Alibali, 2006) is a stand (Zandieh, Roh & Knapp, 2014). A blend involves a 34 For the Learning of Mathematics 38, 2 (July, 2018) FLM Publishing Association, Fredericton, New Brunswick, Canada FLM 38(2) - July 2018 - text_FLM 2018-06-13 5:52 PM Page 35 combination of elements from each source domain or hybrid Ways of using the equals sign in advertising elements influenced by both source domains. Conceptual and social media blends are ubiquitous and may be found in everyday lan- Below, we consider ways in which the equals sign is being guage, politics, literature, technology, mathematics, and used in advertising and social media, sorted into categories advertising. In mathematics education research, conceptual based on the sorts of conceptual blends we created as we blending has been used to investigate students’ mathematical read the expressions. We analyze several examples by fram- reasoning (Zandieh et al., 2014), as well as preservice teach- ing them as conceptual blends that bring together distinct ers’ feelings about mathematics (Zazkis, 2015). Here, we use domains. The categories presented in this article exhibit the it to illustrate the existence of divergent meaning-making diversity of conceptual blends, not a comprehensive or pathways. authoritative sorting of possible blends. Nor do we attempt We diagram a variety of conceptual blends we created as to quantify the relative frequencies of these ways of using we recognized the equals sign in social media and advertise- the equals sign in the world. Our purpose is to demonstrate ments. Figure 1 shows how we illustrate potential source the context-dependent variability of the equals sign’s mean- domains, corresponding elements, and a blended space [1]. ing and to consider the implications of conceptual blending Within the circle representing Source Domain 1, we present for contemporary mathematics education. We describe the phenomena belonging to that source domain relevant to the complex thinking involved in these blends as manifestations blend. We then specifically identify the elements that are of often invisible sense-making processes children and involved in our blend. We do likewise for our Source adults readily perform. This inter-psychological work neces- Domain 2, and we use dotted line segments to illustrate the sitates adaptive understanding of formal mathematical fusion of elements into the blended space. To further clarify language appropriated in unpredictable but intelligible ways. our conceptualization of a given blend, we also describe the categorical nature of each element in the source domains and Plus Result then the categorical nature of the elements in the blended Figure 2 is an advertisement warning against drunk driving, space. The latter may derive from one or the other of the especially the driving of motorcycles. The statement in this source domains or involve a fusion of meanings deriving case is ‘DRINK + RIDE = LOSE’ with the further dramatic from the two domains. specification that ‘FREEDOM!’ is what will be lost [2]. Of special importance to our inquiry is the pragmatic lin- Plus Result statements specify two or more inputs or condi- guistic principle that symbols acquire their potential to mean tions that together yield some result or consequence. through a variety of cultural processes, with the result that Another example is ‘Sweat + Sacrifice = Success’. In such symbols can have competing meanings by virtue of their dif- statements, we infer the meaning for the equals sign as fering histories (Peirce, 1903). The construction of relations ‘yields’ or ‘results in’ or ‘causes’. Plus Result statements are between symbolic signs and their objects, in this case a con- one-directional and meant to be read from left to right. Play- cept or perhaps multiple concepts, sets them apart from other ful manipulations (based on the rules of arithmetic) yield signs, resulting in layers of potential meaning for symbols as entertaining but nonsensical statements, such as ‘LOSE – they are imported into new contexts. DRINK = RIDE’. Plus Result
Recommended publications
  • THE MEANING of “EQUALS” Charles Darr Take a Look at the Following Mathematics Problem
    PROFESSIONAL DEVELOPMENT THE MEANING OF “EQUALS” Charles Darr Take a look at the following mathematics problem. has been explored by mathematics education researchers internationally (Falkner, Levi and Carpenter, 1999; Kieran, 1981, 1992; MacGregor Write the number in the square below that you think and Stacey, 1997; Saenz-Ludlow and Walgamuth, 1998; Stacey and best completes the equation. MacGregor, 1999; Wright, 1999). However, the fact that so many students appear to have this 4 + 5 = + 3 misconception highlights some important considerations that we, as mathematics educators, can learn from and begin to address. How difficult do you consider this equation to be? At what age do you In what follows I look at two of these considerations. I then go on to think a student should be able to complete it correctly? discuss some strategies we can employ in the classroom to help our I recently presented this problem to over 300 Year 7 and 8 students at students gain a richer sense of what the equals sign represents. a large intermediate school. More than half answered it incorrectly.1 Moreover, the vast majority of the students who wrote something other The meaning of “equals” than 6 were inclined to write the missing number as “9”. Firstly, it is worth considering what the equals sign means in a This result is not just an intermediate school phenomenon, however. mathematical sense, and why so many children seem to struggle to Smaller numbers of students in other Years were also tested. In Years 4, develop this understanding. 5 and 6, even larger percentages wrote incorrect responses, while at Years From a mathematical point of view, the equals sign is not a command 9 and 10, more than 20 percent of the students were still not writing a to do something.
    [Show full text]
  • It's the Symbol You Put Before the Answer
    It’s the symbol you put before the answer Laura Swithinbank discovers that pupils often ‘see’ things differently “It’s the symbol you put before the answer.” 3. A focus on both representing and solving a problem rather than on merely solving it; ave you ever heard a pupil say this in response to being asked what the equals sign is? Having 4. A focus on both numbers and letters, rather than H heard this on more than one occasion in my on numbers alone (…) school, I carried out a brief investigation with 161 pupils, 5. A refocusing of the meaning of the equals sign. Year 3 to Year 6, in order to find out more about the way (Kieran, 2004:140-141) pupils interpret the equals sign. The response above was common however, what really interested me was the Whilst reflecting on the Kieran summary, some elements variety of other answers I received. Essentially, it was immediately struck a chord with me with regard to my own clear that pupils did not have a consistent understanding school context, particularly the concept of ‘refocusing the of the equals sign across the school. This finding spurred meaning of the equals sign’. The investigation I carried me on to consider how I presented the equals sign to my out clearly echoed points raised by Kieran. For example, pupils, and to deliberate on the following questions: when asked to explain the meaning of the ‘=’ sign, pupils at my school offered a wide range of answers including: • How can we define the equals sign? ‘the symbol you put before the answer’; ‘the total of the • What are the key issues and misconceptions with number’; ‘the amount’; ‘altogether’; ‘makes’; and ‘you regard to the equals sign in primary mathematics? reveal the answer after you’ve done the maths question’.
    [Show full text]
  • Perl II Operators, Truth, Control Structures, Functions, and Processing the Command Line
    Perl II Operators, truth, control structures, functions, and processing the command line Dave Messina v3 2012 1 Math 1 + 2 = 3 # kindergarten x = 1 + 2 # algebra my $x = 1 + 2; # Perl What are the differences between the algebra version and the Perl version? 2 Math my $x = 5; my $y = 2; my $z = $x + $y; 3 Math my $sum = $x + $y; my $difference = $x - $y; my $product = $x * $y; my $quotient = $x / $y; my $remainder = $x % $y; 4 Math my $x = 5; my $y = 2; my $sum = $x + $y; my $product = $x - $y; Variable names are arbitrary. Pick good ones! 5 What are these called? my $sum = $x + $y; my $difference = $x - $y; my $product = $x * $y; my $quotient = $x / $y; my $remainder = $x % $y; 6 Numeric operators Operator Meaning + add 2 numbers - subtract left number from right number * multiply 2 numbers / divide left number from right number % divide left from right and take remainder take left number to the power ** of the right number 7 Numeric comparison operators Operator Meaning < Is left number smaller than right number? > Is left number bigger than right number? <= Is left number smaller or equal to right? >= Is left number bigger or equal to right? == Is left number equal to right number? != Is left number not equal to right number? Why == ? 8 Comparison operators are yes or no questions or, put another way, true or false questions True or false: > Is left number larger than right number? 2 > 1 # true 1 > 3 # false 9 Comparison operators are true or false questions 5 > 3 -1 <= 4 5 == 5 7 != 4 10 What is truth? 0 the number 0 is false "0"
    [Show full text]
  • Unicode Compression: Does Size Really Matter? TR CS-2002-11
    Unicode Compression: Does Size Really Matter? TR CS-2002-11 Steve Atkin IBM Globalization Center of Competency International Business Machines Austin, Texas USA 78758 [email protected] Ryan Stansifer Department of Computer Sciences Florida Institute of Technology Melbourne, Florida USA 32901 [email protected] July 2003 Abstract The Unicode standard provides several algorithms, techniques, and strategies for assigning, transmitting, and compressing Unicode characters. These techniques allow Unicode data to be represented in a concise format in several contexts. In this paper we examine several techniques and strategies for compressing Unicode data using the programs gzip and bzip. Unicode compression algorithms known as SCSU and BOCU are also examined. As far as size is concerned, algorithms designed specifically for Unicode may not be necessary. 1 Introduction Characters these days are more than one 8-bit byte. Hence, many are concerned about the space text files use, even in an age of cheap storage. Will storing and transmitting Unicode [18] take a lot more space? In this paper we ask how compression affects Unicode and how Unicode affects compression. 1 Unicode is used to encode natural-language text as opposed to programs or binary data. Just what is natural-language text? The question seems simple, yet there are complications. In the information age we are accustomed to discretization of all kinds: music with, for instance, MP3; and pictures with, for instance, JPG. Also, a vast amount of text is stored and transmitted digitally. Yet discretizing text is not generally considered much of a problem. This may be because the En- glish language, western society, and computer technology all evolved relatively smoothly together.
    [Show full text]
  • Programming Basics
    Readings and References • Reading » Fluency with Information Technology Programming Basics • Chapter 18, Fundamental Concepts Expressed in JavaScript • Other References INFO/CSE 100, Autumn 2004 » Games and Puzzles Fluency in Information Technology • Thomas Jefferson National Accelerator Facility, Office of Science Education http://www.cs.washington.edu/100 • http://education.jlab.org/indexpages/elementgames.html 25-Oct-2004 cse100-11-programming © 2004 University of Washington 1 25-Oct-2004 cse100-11-programming © 2004 University of Washington 2 The Plan Begin with HTML • We will learn JavaScript over the next few Basic HTML is static lectures the contents of the file are displayed as given • JavaScript is used with HTML in Web pages <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" • JavaScript is a contemporary programming language -- "http://www.w3.org/TR/html4/loose.dtd"> we will learn only its basics <html> <head> • You will program in a text editor and run your program <title>Simple A</title> </head> with your browser <body> What is 2.0 + 2.0? </body> </html> JavaScript is a way to make HTML “dynamic” 25-Oct-2004 cse100-11-programming © 2004 University of Washington 3 25-Oct-2004 cse100-11-programming © 2004 University of Washington 4 Add some “dynamic” content JavaScript in an HTML page Scripting languages let us create active pages » implement actions to be taken at run-time when the page is <script> block loaded or in response to user event in <head> <head> <title>Simple B</title> Language we are javascript <head>
    [Show full text]
  • UEB Guidelines for Technical Material
    Guidelines for Technical Material Unified English Braille Guidelines for Technical Material This version updated October 2008 ii Last updated October 2008 iii About this Document This document has been produced by the Maths Focus Group, a subgroup of the UEB Rules Committee within the International Council on English Braille (ICEB). At the ICEB General Assembly in April 2008 it was agreed that the document should be released for use internationally, and that feedback should be gathered with a view to a producing a new edition prior to the 2012 General Assembly. The purpose of this document is to give transcribers enough information and examples to produce Maths, Science and Computer notation in Unified English Braille. This document is available in the following file formats: pdf, doc or brf. These files can be sourced through the ICEB representatives on your local Braille Authorities. Please send feedback on this document to ICEB, again through the Braille Authority in your own country. Last updated October 2008 iv Guidelines for Technical Material 1 General Principles..............................................................................................1 1.1 Spacing .......................................................................................................1 1.2 Underlying rules for numbers and letters.....................................................2 1.3 Print Symbols ..............................................................................................3 1.4 Format.........................................................................................................3
    [Show full text]
  • Using Regex to Parse Attribute-Value Pairs in a Macro Variable Rowland Hale, Syneos Health
    PharmaSUG 2021 - Paper QT-134 Using Regex to Parse Attribute-Value Pairs in a Macro Variable Rowland Hale, Syneos Health ABSTRACT In some circumstances it may be deemed preferable to pass multiple values to a macro not via multiple parameters but via a list of attribute-value pairs in a single parameter. Parsing more complex parameter values such as these may seem daunting at first, but regular expressions help us make light of the task! This paper explains how to use the PRXPARSE, PRXMATCH and the lesser known PRXPOSN regular expression functions in SAS® to extract in robust fashion the values we need from such a list. The paper is aimed at those who wish to expand on a basic knowledge of regular expressions, and although the functions are applied and explained within a specific practical context, the knowledge gained will have much potential for wider use in your daily programming work. INTRODUCTION The author occasionally comes across seasoned and capable SAS programmers who haven’t taken the plunge into the powerful world of regular expressions. Not so surprising, given that regular expressions look, well, downright scary, don’t they? For sure, regex patterns can appear complex, but, on the other hand, when you see a series of three (or more!) “normal” (i.e. non regex) string handling functions, all mind-bogglingly nested on a single line of code (and, if in a macro context, each further buried inside a %SYSFUNC macro function) and realise that this can all be replaced with a relatively simple regular expression, you may start to wonder which is the easier to deal with.
    [Show full text]
  • Perl Notes
    Perl notes Curro Pérez Bernal <[email protected]> $Id: perl_notes.sgml,v 1.3 2011/12/12 15:41:58 curro Exp curro $ Abstract Short notes for an introduction to Perl based on R.L. Schwartz et al. Learning Perl (See refer- ences). Copyright Notice Copyright © 2011 by Curro Perez-Bernal <[email protected]> This document may used under the terms of the GNU General Public License version 3 or higher. (http://www.gnu.org/copyleft/gpl.html) i Contents 1 Scalar Data 1 1.1 Numbers..........................................1 1.1.1 Numeric Operators................................2 1.2 Strings...........................................2 1.2.1 String Operators.................................3 1.3 Scalar Variables......................................3 1.4 Basic Output with print ................................4 1.5 Operator Associativity and Precedence........................5 1.6 The if Control Structure.................................6 1.6.1 Comparison Operators..............................6 1.6.2 Using the if Control Structure.........................6 1.7 Getting User Input....................................7 1.8 The while Control Structure..............................8 1.9 The undef Value.....................................8 2 Lists and Arrays9 2.1 Defining and Accessing an Array............................9 2.1.1 List Literals.................................... 10 2.2 List Assignment...................................... 11 2.3 Interpolating Arrays................................... 11 2.4 Array Operators.....................................
    [Show full text]
  • From an Operational to a Relational Conception of the Equal Sign. Thirds Graders’ Developing Algebraic Thinking
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Funes Molina, M. & Ambrose, R. (2008). From an operational to a relational conception of the equal sign. Thirds graders’ developing algebraic thinking. Focus on Learning Problems in Mathematics, 30(1), 61-80. From an Operational to a Relational Conception of the Equal Sign. Third Graders’ Developing Algebraic Thinking Molina, M. & Ambrose, R. Abstract We describe a teaching experiment about third grade students´ understanding of the equal sign and their initial forays into analyzing expressions. We used true/false and open number sentences in forms unfamiliar to the students to cause students to reconsider their conceptions of the equal sign. Our results suggest a sequence of three stages in the evolution of students’ understanding of the equal sign with students progressing from a procedural/computational perspective to an analytic perspective. Our data show that as students deepened their conceptions about the equal sign they began to analyze expressions in ways that promoted algebraic thinking. We describe the essential elements of instruction that advanced this learning. KEYWORDS: Algebraic thinking, Analyzing expressions, Arithmetic equations, Early- Algebra, Equal sign, Number sentences, Relational thinking. As algebra has taken a more prominent role in mathematics education, many are advocating introducing children to it in primary school (e.g., Carraher, Schliemann, Brizuela, & Earnest, 2006; Kaput, 2000; National Council of Teacher of Mathematics, 2000), and open number sentences can be a good context to address this goal. Students are frequently introduced to equations by considering number sentences with an unknown where a figure or a line is used instead of a variable, as in _+ 4 = 5 +7 (Radford, 2000).
    [Show full text]
  • The C Programming Language
    The C programming Language By Brian W. Kernighan and Dennis M. Ritchie. Published by Prentice-Hall in 1988 ISBN 0-13-110362-8 (paperback) ISBN 0-13-110370-9 Contents Preface Preface to the first edition Introduction 1. Chapter 1: A Tutorial Introduction 1. Getting Started 2. Variables and Arithmetic Expressions 3. The for statement 4. Symbolic Constants 5. Character Input and Output 1. File Copying 2. Character Counting 3. Line Counting 4. Word Counting 6. Arrays 7. Functions 8. Arguments - Call by Value 9. Character Arrays 10. External Variables and Scope 2. Chapter 2: Types, Operators and Expressions 1. Variable Names 2. Data Types and Sizes 3. Constants 4. Declarations 5. Arithmetic Operators 6. Relational and Logical Operators 7. Type Conversions 8. Increment and Decrement Operators 9. Bitwise Operators 10. Assignment Operators and Expressions 11. Conditional Expressions 12. Precedence and Order of Evaluation 3. Chapter 3: Control Flow 1. Statements and Blocks 2. If-Else 3. Else-If 4. Switch 5. Loops - While and For 6. Loops - Do-While 7. Break and Continue 8. Goto and labels 4. Chapter 4: Functions and Program Structure 1. Basics of Functions 2. Functions Returning Non-integers 3. External Variables 4. Scope Rules 5. Header Files 6. Static Variables 7. Register Variables 8. Block Structure 9. Initialization 10. Recursion 11. The C Preprocessor 1. File Inclusion 2. Macro Substitution 3. Conditional Inclusion 5. Chapter 5: Pointers and Arrays 1. Pointers and Addresses 2. Pointers and Function Arguments 3. Pointers and Arrays 4. Address Arithmetic 5. Character Pointers and Functions 6. Pointer Arrays; Pointers to Pointers 7.
    [Show full text]
  • CSCE 120: Learning to Code Manipulating Data I
    CSCE 120: Learning To Code Manipulating Data I Introduction This module is designed to get you started working with data by understanding and using variables and data types in JavaScript. It will also introduce you to basic operators and familiarize you with basic syntax and coding style. Variables Previously, we worked with data represented using JSON. JSON is actually a subset of the programming language JavaScript. In the full JavaScript, data is not merely static, it is dynamic. That is, data can be accessed, changed, moved around etc. The first mechanism for working with data is a variable. A variable in a programming language is much like a variable in algebra: it has a name (formally called an identifier) and can be assigned a value. This is very similar to how we worked with JSON data using key-value pairs. With variables, the variable name acts as a key while it can be assigned a value. Variable Declaration, Naming In JavaScript, you can create a variable using the keyword var and then providing a name for the variable. There are a few simple rules that must be followed when you name a variable. 1. Variable names can include letters (upper or lowercase), digits, and underscores (no spaces are allowed) 2. Variable names must begin with a letter (upper or lower case)1 1Variable names can also begin with $ or _ but this is discouraged as we'll see later. 1 3. Variable names are case sensitive so total , Total and TOTAL are three different variables 4. The JavaScript language has several reserved words that are used by the language itself and cannot be used for variable names 5.
    [Show full text]
  • Students' Early Grade Understanding of the Equal Sign and Non
    www.ijres.net Students’ Early Grade Understanding of the Equal Sign and Non-standard Equations in Jordan and India Melinda S. Eichhorn1, Lindsey E. Perry2, Aarnout Brombacher3 1Gordon College 2Southern Methodist University 3Brombacher and Associates ISSN: 2148-9955 To cite this article: Eichhorn, M.S., Perry, L.E., & Brombacher, A. (2018). Students’ early grade understanding of the equal sign and non-standard equations in Jordan and India. International Journal of Research in Education and Science (IJRES), 4(2), 655-669. DOI:10.21890/ijres.432520 This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Authors alone are responsible for the contents of their articles. The journal owns the copyright of the articles. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of the research material. International Journal of Research in Education and Science Volume 4, Issue 2, Summer 2018 DOI:10.21890/ijres.432520 Students’ Early Grade Understanding of the Equal Sign and Non-standard Equations in Jordan and India Melinda S. Eichhorn, Lindsey E. Perry, Aarnout Brombacher Article Info Abstract Article History Many students around the world are exposed to a rote teaching style in mathematics that emphasizes memorization of procedures. Students are Received: frequently presented with standard types of equations in their textbooks, in which 15 January 2018 the equal sign is immediately preceding the answer (a + b = c).
    [Show full text]