Nutrient Deficiencies and Application Injuries in Field Crops
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Nutrient Management and Imbalances David H
98 Nutrient Management and Imbalances David H. Gent, J Robert Sirrine, and Heather M. Darby Hop plants produce abundant biomass in the form of bines, leaves, and cones. High- yielding plants such as hop require adequate nutrition. Many of the various nutrients required by hop may be deficient or in excess of the crop’s needs. It can be difficult to pinpoint the cause of abnormal plant symptoms, especially if multiple production factors lead to the same symptom. General symptoms associated with nutrient imbalances are described in this section, as well as known nutrient interactions with diseases and arthropod pests. Fertilization recommendations are beyond the scope of this pest management guide and are not provided. Recommendations vary widely in published literature, differing among production regions, varieties, irrigation methods, soil types, and production goals. Readers should seek input from local experts for guidance appropriate to their region and situation. Boron Iron Boron deficiency can result in delayed Iron deficiency is first observed on emergence of shoots; stunting, distortion, young leaves as yellowing between veins, and crinkling of young leaves (Fig. 257); while veins remain green (Fig. 260, right- and yellowing and death of shoot tips (Fig. hand image, and Fig. 261). Iron deficiency 258). Leaves of affected plants may be small is most common in alkaline soils, although and brittle, and may develop a fluffy-tipped it can be induced in highly acidic soils appearance due to impaired development (approximately pH 5.7 or less) because of lobes (Fig. 259). Deficiencies are most of enhanced solubility and uptake of common in acid and/or sandy textured soils. -
Phosphorus Biofertilizers from Ash and Bones—Agronomic Evaluation of Functional Properties
Journal of Agricultural Science; Vol. 8, No. 6; 2016 ISSN 1916-9752 E-ISSN 1916-9760 Published by Canadian Center of Science and Education Phosphorus Biofertilizers from Ash and Bones—Agronomic Evaluation of Functional Properties Magdalena Jastrzębska1, Marta K. Kostrzewska1, Kinga Treder1, Wiesław P. Jastrzębski2 & Przemysław Makowski1 1 Department of Agroecosystems, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland 2 Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland Correspondence: Magdalena Jastrzębska, Department of Agroecosystems, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, Olsztyn 10-718, Poland. Tel: 48-89-523-4829. E-mail: [email protected] Received: March 16, 2016 Accepted: April 25, 2016 Online Published: May 15, 2016 doi:10.5539/jas.v8n6p58 URL: http://dx.doi.org/10.5539/jas.v8n6p58 Abstract Renewable raw materials could be a valuable source of phosphorus for plants. The bioavailability of this element can be enhanced by phosphorus-solubilizing bacteria. Suspension biofertilizers have been produced from sewage sludge ash and animal bones and enriched with the bacteria Bacillus megaterium. The functional properties of these preparations were compared in field experiments (northeast Poland, 2014, four replications) on spring wheat (Triticum aestivum ssp. vulgare Mac Key) to conventional fertilizers (superphosphate, phosphorite), ash-water solution (without microorganisms) and a control treatment without P fertilization. The soil type and cultivation regime were adjusted to the requirements of spring wheat in line with good agricultural practice. The effects of biofertilizers on the following were investigated: wheat yield, ear density, number of grains in the ear, the weight of 1000 grains, harvest index, weed infestation, the weight and structure of crop residues, and the pH of soil. -
Choosing a Soil Amendment Fact Sheet No
Choosing a Soil Amendment Fact Sheet No. 7.235 Gardening Series|Basics by J.G. Davis and D. Whiting* A soil amendment is any material added not be used as a soil amendment. Don’t add Quick Facts to a soil to improve its physical properties, sand to clay soil — this creates a soil structure such as water retention, permeability, water similar to concrete. • On clayey soils, soil infiltration, drainage, aeration and structure. Organic amendments increase soil amendments improve the The goal is to provide a better environment organic matter content and offer many soil aggregation, increase for roots. benefits. Over time, organic matter improves porosity and permeability, and To do its work, an amendment must be soil aeration, water infiltration, and both improve aeration, drainage, thoroughly mixed into the soil. If it is merely water- and nutrient-holding capacity. Many and rooting depth. buried, its effectiveness is reduced, and it will organic amendments contain plant nutrients interfere with water and air movement and and act as organic fertilizers. Organic matter • On sandy soils, soil root growth. also is an important energy source for amendments increase the Amending a soil is not the same thing bacteria, fungi and earthworms that live in water and nutrient holding as mulching, although many mulches also the soil. capacity. are used as amendments. A mulch is left on the soil surface. Its purpose is to reduce Application Rates • A variety of products are available bagged or bulk for evaporation and runoff, inhibit weed growth, Ideally, the landscape and garden soils and create an attractive appearance. -
Fixed Nitrogen in Agriculture and Its Role in Agrocenoses
Agronomy Research 19(2), 601–611, 2021 https://doi.org/10.15159/AR.21.086 Fixed nitrogen in agriculture and its role in agrocenoses S. Tanchyk1, D. Litvinov1, A. Butenko2,*, O. Litvinova3, O. Pavlov1, A. Babenko1, N. Shpyrka1, V.Onychko4, I. Masyk5 and T. Onychko4 1National University of Life and Environmental Sciences of Ukraine, Agrobiological faculty, Department of Agriculture and herbology, Heroyiv Oborony 12, UA03041 Кyiv, Ukraine 2Sumy National Agrarian University, Faculty of agricultural technologies and environmental, Plant growing Department, H. Kondratieva 160, UA40021 Sumy, Ukraine 3National University of Life and Environmental Sciences of Ukraine, Agrobiological faculty, Department of Agricultural chemistry and quality of plant products, Heroyiv Oborony 12, UA03041 Кyiv, Ukraine 4Sumy National Agrarian University, Faculty of agricultural technologies and environmental, Department of Selection and seeds named after M.D. Honcharov, H. Kondratieva 160, UA40021 Sumy, Ukraine 5Sumy National Agrarian University, Faculty of agricultural technologies and environmental, Department of Agriculture, soil and agrochemistry, H. Kondratieva 160, UA40021 Sumy, Ukraine *Correspondence: [email protected] Received: February 23rd, 2021; Accepted: May 12th, 2021; Published: May 19th, 2021 Abstract. On typical low-humus black soils in short crop rotations with legumes (25–33%) and without them, it was found that depending on the set of crops in crop rotation and application of fertilizer rates, nitrogen yield per crop is from 355 kg ha-1 to 682 kg ha-1. The recommended fertilization system provided nitrogen compensation for crop yields by only 31–76%. Hence, in the plant-fertilizer system nitrogen deficiency varies from 161 to 370 kg ha-1. The greatest nitrogen deficiency in the soil is observed in crop rotation without the use of fertilizers with the following crop rotation: peas-winter wheat-grain maize-spring barley. -
Improving Soil Nitrogen Availability and Rice Growth Performance on a Tropical Acid Soil Via Mixture of Rice Husk and Rice Straw Biochars
applied sciences Article Improving Soil Nitrogen Availability and Rice Growth Performance on a Tropical Acid Soil via Mixture of Rice Husk and Rice Straw Biochars Gunavathy Selvarajh , Huck Ywih Ch’ng * , Norhafizah Md Zain, Palsan Sannasi and Siti Nuurul Huda Mohammad Azmin Faculty of Agro-Based Industry, Campus Jeli, University Malaysia Kelantan, Kelantan 17600, Malaysia; [email protected] (G.S.); norhafi[email protected] (N.M.Z.); [email protected] (P.S.); [email protected] (S.N.H.M.A.) * Correspondence: [email protected]; Tel.: +60-17-853-7510 Featured Application: This research focuses on using an environmentally friendly technology (mixture of rice straw and rice husk biochars) to sustainably minimize ammonia volatilization, increase soil nutrient retention, and improve rice plant nutrient uptake and use efficiency. The mixture of rice straw and rice husk biochars has a larger surface area and numerous pores to chelate ammonium and nitrate ions. This process will fundamentally reduce the loss of ammo- nia via volatilization from urea fertilizer being applied, thus reducing the excessive use of urea fertilizer in agricultural sector. The biochar at 5 and 10 t ha−1 significantly minimized ammo- nia volatilization by 33.5–40.7%. It resulted in an increase of nutrient uptake, use efficiency, and dry matter production of rice plant. This work may not only contribute to the reduction of urea fertilizer import bill of Malaysia, but also pave the way for better means of adding value to the agricultural waste to avoid environmental pollution. It also contributes to increasing rice produc- tion by solving the problem of ammonia loss from urea fertilizer in tropical acid soil. -
Characterization of Nutrient Disorders and Impacts on Chlorophyll and Anthocyanin Concentration of Brassica Rapa Var
agriculture Article Characterization of Nutrient Disorders and Impacts on Chlorophyll and Anthocyanin Concentration of Brassica rapa var. Chinensis 1 1 1, 2 Patrick Veazie , Paul Cockson , Josh Henry y, Penelope Perkins-Veazie and Brian Whipker 1,* 1 Department of Horticultural Sciences, North Carolina State University, Raleigh, NC 27695, USA; [email protected] (P.V.); [email protected] (P.C.); [email protected] (J.H.) 2 Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA; [email protected] * Correspondence: [email protected] Current address is: The Scotts Miracle-Gro Company, Marysville, OH 43040, USA. y Received: 3 September 2020; Accepted: 5 October 2020; Published: 8 October 2020 Abstract: Essential plant nutrients are needed at crop-specific concentrations to obtain optimal growth and yield. Foliar tissue analysis is the standard method for assessing nutrient levels in plants. Symptoms of nutrient deficiency or toxicity occur when the foliar tissue values become too low or high. Diagnostic nutrient deficiency criteria for Brassica rapa var. Chinensis (bok choy) is lacking in the current literature. In this study, green (‘Black Summer’) and purple (‘Red Pac’) bok choy plants were grown in silica sand culture, with control plants receiving a complete modified Hoagland’s all-nitrate solution, and nutrient-deficient plants induced by using a complete nutrient formula withholding a single nutrient. Tissue samples were collected at the first sign of visual disorder symptoms and analyzed for dry weight and nutrient concentrations of all plant essential elements. Six weeks into the experiment, the newest matured leaves were sampled for chlorophyll a, b, and total carotenoids concentrations for both cultivars, and total anthocyanin concentration in ‘Red Pac’. -
Nutrient Deficiency Symptoms in Plants (DPI Vic)
April, 1995 Nutrient deficiency symptoms of AG0257 plants ISSN 1329-8062 David Beardsell, Knoxfield Plants must absorb certain elements to live and grow. Carbon (C), hydrogen (H), and oxygen (O) are the elements supplied from air and water. The growing media generally supplies the remaining nutrients required for plant growth. The major elements or macronutrients required by the plant are nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and sulphur (S). The minor elements, trace elements or micronutrients necessary for healthy plant production are molybdenum (Mo), copper (Cu), zinc (Zn), manganese (Mn), boron (B), iron (Fe), and chlorine (Cl). Deficiencies or imbalances in supply of these essential elements can cause growth reductions, and in more severe cases visual symptoms are expressed in leaves and flowers. Nitrogen deficiency (N) Nitrogen is required by plants in higher concentrations than any of the other elements, except potassium in certain instances. Plants grown without nitrogen grow very slowly. Plants are stunted and show a general yellowing of the foliage. The symptoms of nitrogen deficiency will first occur in the older leaves. The leaves turn from a pale green Figure 1. Symptoms of nitrogen deficiency include stunted plant colour to a yellow and eventually leaf drop occurs. The growth. The Eucalyptus gunni plant on the right hand side younger leaves remain green for longer periods of time but exhibits this symptom. The plant on the left hand side has an eventually the whole plant exhibits a pale green to yellow adequate supply of nitrogen. colour. Potassium deficiency (K) Phosphorus deficiency (P) Deficiency symptoms of potassium are also exhibited in Deficiency symptoms of this element, like nitrogen, are the older leaves of the plant first. -
Improving Garden Soils with Organic Matter, EC 1561
EC 1561 • May 2003 $2.50 Improving Garden Soils with Organic Matter N. Bell, D.M. Sullivan, L.J. Brewer, and J. Hart This publication will help you understand the • Tomatoes and peppers get blossom-end rot, importance of soil organic matter levels to good even if fertilized with calcium. plant performance. It also contains suggestions • Water tends to pool on the soil surface and to for suitable soil amendments. Any soil, no drain slowly, or it runs off the surface. matter how compacted, can be improved by the addition of organic matter. The result will be a nnnn better environment for almost any kind of plant. What makes a productive soil? nnnn A productive soil provides physical support, water, air, and nutrients to plants and soil- What gardening problems are dwelling organisms (see “What is soil?” caused by poor soil quality? page 2). Like humans, roots and soil organisms Many problems with home vegetable gar- breathe and require sufficient air and water to dens, fruit trees, shrubs, and flower gardens are live. As a result, a good soil is not “solid”; caused not by pests, diseases, or a lack of rather, between 40 and 60 percent of the soil nutrients, but by poor soil physical conditions. volume is pores. The pores may be filled with Symptoms of poor soil quality include the water or air, making both available to plants following. (see illustration on page 3). • The soil is dried and cracked in summer. The largest pores control aeration and move- • Digging holes in the soil is difficult, whether ment of water through the soil and are largely it is wet or dry. -
Iron (Fe) Nutrition of Plants1 George Hochmuth2
SL353 Iron (Fe) Nutrition of Plants1 George Hochmuth2 Introduction are on the order of 10-15 molar (very low concentration). As pH increases by one unit, activity of Fe+++ decreases by Iron is one of 16 essential elements for plant growth and 1000-fold due to the formation of insoluble Fe +++hydroxide. reproduction (some scientists also consider nickel to be Under reducing conditions—addition of H+ or other essential, making 17 in total). Iron (Fe) is one of the most reductants—Fe solubility increases. Under such situations, abundant elements on the planet. In 1844, Eusebe Gris Fe can be adsorbed on soil as an exchangeable ion. showed that certain chlorosis in plants could be reversed by treating roots and leaves with iron solutions. Iron is a In certain soil situations, carbonate or sulfide compounds micronutrient and is required by plants in small amounts. may form with Fe. Commonly in waterlogged situations, Most annual plants have a requirement for Fe on the order ferric iron is reduced to the ferrous state. If sulfates also of 1 to 1.5 lb Fe per acre, compared with nitrogen (N) at 80 are abundant in the soil, these become oxygen sources for to 200 lb per acre. This publication provides information bacteria and black-colored ferrous sulfide is formed on plant nutrition and soil fertility for agricultural and urban plant production and management practitioners. The Where organic matter is present in soils, Fe may be present information should provide a detailed basic understanding in its reduced state as Fe++ in the soil solution or adsorbed of soil science and plant physiology for diagnosing and onto soil particle surfaces. -
Citrus Fertilizer Management on Calcareous Soils Page 3 Sufficiency Level for Use with Citrus Grown on Florida Susceptibility To
Citrus Fertilizer Management on Calcareous Soils Page 3 sufficiency level for use with citrus grown on Florida Susceptibility to Fe chlorosis depends on a plant's calcareous soils, response to Fe deficiency stress, which is controlled genetically. Citrus rootstocks vary widely in their THE EFFECT OF CaCO, ON ZINC AND ability to overcome low Fe stress (see Table 2). The MANGANESE easiest way to avoid lime-induced Fe chlorosis in citrus trees to be planted on calcareous soils is to use Soil pH is the most important factor regulating tolerant rootstocks. Existing Fe chlorosis can be Zn and Mn supply in alkaline soils. At alkaline (high) corrected by using organic chelates, a method pH values, Zn and Mn form precipitous compounds discussed in detail in a later section. with low water solubility, markedly decreasing their availability to plants. A soil pH value of less than 7 FERTILIZER MANAGEMENT ON is preferred to ensure that Zn and Mn are available CALCAREOUS SOILS to plants in sufficient amounts. The soil around a plant root (the rhizosphere) tends to be acidic due to Nitrogen. Regardless of the initial form applied, root exudation of H' ions. Therefore, soils that are essentially all N fertilizer ultimately exists as N03- slightly alkaline may not necessarily be deficient in Zn because nitrification proceeds uninhibited in or Mn. In addition, Zn and Mn can be chelated by calcareous soils. Rather than attempt to slow this natural organic compounds in the soil, a process that process, citrus grove management practices should aids the movement of these nutrients to the plant emphasize irrigation and fertilizer application root. -
Visual Symptoms: a Handy Tool in Identifying Nutrient Deficiency in Corn, Cotton and Soybean
W 976 Visual Symptoms: A Handy Tool in Identifying Nutrient Deficiency in Corn, Cotton and Soybean Nutifafa Adotey, Assistant Professor and Tyson Raper, Associate Professor and Soil and Nutrient Management Specialist Cotton and Small Grain Specialist Angela McClure, Professor and Corn and Robert Florence, Director, UT Soil, Plant Soybean Specialist and Pest Center Generally, a nutrient deficiency occurs as a result of low necrosis, which occurs when the plant tissue dies. Necrosis soil nutrient levels. However, prevailing environmental is commonly associated with N, phosphorus (P), and conditions, soil properties, growth conditions and root potassium (K) deficiencies. Abnormal growth occurs when diseases may restrict nutrient uptake and induce deficiencies inadequate amounts of a nutrient in the plant restrict cell in crops even if soil nutrient levels are estimated sufficient elongation and replication resulting in stunted growth, for optimum yield. For example, low or high soil pH, soil deformation or crinkled leaves. compaction and excessively wet or dry soil may prevent Where the symptomology occurs on the plant depends nutrient uptake. A handy diagnostic tool to identify nutrient on the mobility of the nutrient within the plant (Figure 1). deficiency in crops is via visual observation of symptoms. Plant nutrients can be classified as mobile or immobile However, this tool may not always provide a definite within the plant. Mobile nutrients such as N, P, K and Mg diagnosis of the nutrient status of the plant. Keep in mind can be translocated from the older leaves to the developing other conditions are capable of inducing symptoms that plant parts. Hence, deficiency symptoms tend to show on closely resemble those of nutrient deficiencies. -
FOLIAR APPLICATION of IRON CHELATED FERTILIZER and SURFACTANTS for MANAGEMENT of IRON DEFICIENCY CHLOROSIS in SOYBEANS a Thesis
FOLIAR APPLICATION OF IRON CHELATED FERTILIZER AND SURFACTANTS FOR MANAGEMENT OF IRON DEFICIENCY CHLOROSIS IN SOYBEANS A Thesis Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By Heidi Renae Rasmussen In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Major Department: Soil Science December 2015 Fargo, North Dakota North Dakota State University Graduate School Title FOLIAR APPLICATION OF IRON CHELATED FERTILIZER AND SURFACTANTS FOR MANAGEMENT OF IRON DEFICIENCY CHLOROSIS IN SOYBEANS By Heidi Renae Rasmussen The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of MASTER OF SCIENCE SUPERVISORY COMMITTEE: Dr. Amitava Chatterjee Co-Chair Dr. R. Jay Goos Co-Chair Dr. Tom Peters Approved: 3-7-2016 Dr. Frank Casey Date Department Chair ABSTRACT Iron deficiency chlorosis (IDC) is a production challenge for farmers growing soybeans [Glycine max (L.) Merr.], especially in the Red River Valley. It is critical to correct this deficiency as soon as symptoms arise before growth, and ultimately yield, is negatively impacted. Field experiments of foliar applied iron fertilizers (o-o-EDDHA, o-o-EDDHSA, HEDTA, and an amino acid) and suitable adjuvants (HSOC [high surfactant oil concentrate], non-ionic surfactant, acidifier, and organosilicone surfactant), to control IDC were conducted during the 2013 and 2014 growing seasons, respectively. There was high variability among the results for both the SPAD meter readings and soil iron concentration. The yield values were greater in the treated plots than with control plots, but not significantly so.