Six Mile Creek: Flood Mitigation Needs Assessment

Total Page:16

File Type:pdf, Size:1020Kb

Six Mile Creek: Flood Mitigation Needs Assessment Flood Mitigation Needs Assessment Six Mile Creek Tompkins County, New York October 2003 MMI #2343-01 Prepared for: Tompkins County Planning Department 121 East Court Street Ithaca, NY 14850 Edward Marx, Commissioner of Planning Kate Hackett, Water Resources Planner Katie Borgella, Land Programs Manager Prepared by: Milone & MacBroom, Inc. 716 South Main Street Cheshire, CT 06410 TABLE OF CONTENTS Executive Summary 1.0 Introduction 1.1 Background and Purpose ................................................................................................. 1-1 1.2 Six Mile Creek Pilot Watershed ...................................................................................... 1-5 1.3 Project Stakeholders......................................................................................................... 1-8 1.4 Principles of Watershed Management ........................................................................... 1-10 1.5 Watershed Delineation and Nomenclature .................................................................... 1-12 2.0 Inventory of Existing Conditions 2.1 Geologic and Geomorphic Background........................................................................... 2-1 2.2 Terrain.............................................................................................................................. 2-6 2.3 Existing Land Uses within the Six Mile Creek Watershed.............................................. 2-6 2.4 Water Quality................................................................................................................... 2-9 2.5 A Review of Past Studies on Six Mile Creek ................................................................ 2-10 2.6 Hydrology and Flooding History of Six Mile Creek ..................................................... 2-13 3.0 Watershed and Stream Needs Assessment 3.1 Overview of Field Investigations..................................................................................... 3-1 3.2 Stream Profile and Control Points ................................................................................... 3-1 3.3 Needs Assessment by Stream Segment ........................................................................... 3-2 3.3.1 Segment #1 – Cayuga Inlet to Van Natta's Dam ............................................................. 3-2 3.3.2 Segment #2 – Van Natta's Dam to Burns Road............................................................... 3-3 3.3.3 Segment #3 – Burns Road to Banks Road....................................................................... 3-4 3.3.4 Segment #4 – Banks Road to Middaugh Road ................................................................ 3-7 3.3.5 Segment #5 – Middaugh Road to Valley Road near Route 330 in Brooktondale ........... 3-7 3.3.6 Segment #6 – Valley Road near Route 330 in Brooktondale to Boiceville Road ........... 3-8 3.3.7 Segment #7 – Boiceville Road to Creamery Road .......................................................... 3-8 3.3.8 Segment #8 – Creamery Road to Six Hundred Road (Slaterville Springs) ..................... 3-9 3.3.9 Segment #9 – Six Hundred Road to Headwaters in Dryden.......................................... 3-11 3.4 Surveyed Cross Section Geometry ................................................................................ 3-11 3.5 Channel Incision ............................................................................................................ 3-19 3.6 Complex Response......................................................................................................... 3-21 3.7 Slope and Sinuosity........................................................................................................ 3-22 Flood Mitigation Needs Assessment Tompkins County October 2003 i 4.0 Priority Issues and Recommendations 4.1 Priority Issue # 1 – Streambank Erosion.......................................................................... 4-1 4.1.1 Stream Dynamics............................................................................................................. 4-1 4.1.2 Sediment Budget and Transport Mechanisms ................................................................. 4-3 4.1.3 Types of Erosion.............................................................................................................. 4-4 4.1.4 Bank Stabilization............................................................................................................ 4-7 4.1.5 Streambank Erosion Recommendations .......................................................................... 4-8 4.2 Priority Issue #2 – Water Quality .................................................................................. 4-11 4.3 Priority Issue #3 – Need for Coordinated Planning Efforts........................................... 4-12 4.4 Management Practices ................................................................................................... 4-16 5.0 Implementation Strategy 5.1 Management Practices, Program Operation and Coordination........................................ 5-1 5.2 Funding Considerations ................................................................................................... 5-2 5.3 Implementation and Future Needs................................................................................... 5-3 LIST OF TABLES Table 1-1 Partial List of Project Stakeholders...................................................................... 1-8 Table 1-2 Summary of Subwatershed Areas...................................................................... 1-15 Table 1-3 Summary of Stream Segment Designations ...................................................... 1-16 Table 1-4 Correlations of Subwatersheds to Stream Segments ......................................... 1-16 Table 2-1 Summary of USGS Stream Gauge Data at Bethel Grove.................................. 2-14 Table 3-1 Hydraulic Geometry of Selected Stream Segments........................................... 3-12 Table 3-2 Adverse Impacts Due to Channel Incision......................................................... 3-21 Table 3-3 Segment Data..................................................................................................... 3-22 Table 4-1 Types of Mass Soil Failures................................................................................. 4-7 Table 4-2 Segment Restoration Priority............................................................................. 4-10 Table 4-3 Relationship of Imperviousness to Water Quality............................................. 4-14 Table 4-4 Primary Watershed Management Functional Groups........................................ 4-16 Flood Mitigation Needs Assessment Tompkins County October 2003 ii LIST OF FIGURES Figure 1-1 Location Plan – Tompkins County ...................................................................... 1-2 Figure 1-2 Watersheds within Tompkins County.................................................................. 1-4 Figure 1-3 Six Mile Creek Location Map.............................................................................. 1-6 Figure 1-4 Watershed Delineation....................................................................................... 1-14 Figure 1-5 Sub-Watershed Structure ................................................................................... 1-17 Figure 2-1 Summary of Regional Channel Evolution ........................................................... 2-2 Figure 2-2 Land Use within the Six Mile Creek Watershed ................................................. 2-8 Figure 3-1 Six Mile Creek at German Cross Road – Depth of Channel Below Bridge Deck ......................................................................................................... 3-5 Figure 3-2 Cross Section @ Karig Property u/s German Cross Road................................. 3-13 Figure 3-3 Bend Cross Section – Karig Property ................................................................ 3-14 Figure 3-4 Gully Cross Sections – Karig Property.............................................................. 3-15 Figure 3-5 Cross Section 165 Feet d/s Banks Road ............................................................ 3-16 Figure 3-6 Cross Section @ Barille Site.............................................................................. 3-17 Figure 3-7 Sinuosity vs Slope in Six Mile Creek ................................................................ 3-23 Figure 4-1 Relationship of Imperviousness to Water Quality............................................. 4-15 LIST OF APPENDED FIGURES Figure I Watershed Delineation and Nomenclature Figure II Stream Profile Flood Mitigation Needs Assessment Tompkins County October 2003 iii Executive Summary Study Purpose and Need The Tompkins County Planning Department has retained Milone & MacBroom, Inc. (MMI) to conduct a Flood Mitigation Needs Assessment for numerous watersheds in the County as part of an ongoing planning and mitigation effort. The intent is to restructure the Flood Hazard Mitigation Program to address a more holistic watershed approach. This will enable individual projects to be assessed and evaluated based on their merit and function within the framework of the overall watershed needs. The following objectives have been identified for the subject planning initiative: ¾ to evaluate effective flood mitigation in Tompkins County; ¾ to re-emphasize watershed approaches through the development of a strategy to address watershed needs; ¾ to consider cumulative
Recommended publications
  • Reevaluating Evidence for the Pre-Lllinoian Entrenchment of Northeastern Iowa River Valleys
    Journal of the Iowa Academy of Science: JIAS Volume 95 Number Article 3 1988 Reevaluating Evidence for the Pre-lllinoian Entrenchment of Northeastern Iowa River Valleys Curtis M. Hudak University of Iowa Let us know how access to this document benefits ouy Copyright © Copyright 1989 by the Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/jias Part of the Anthropology Commons, Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Science and Mathematics Education Commons Recommended Citation Hudak, Curtis M. (1988) "Reevaluating Evidence for the Pre-lllinoian Entrenchment of Northeastern Iowa River Valleys," Journal of the Iowa Academy of Science: JIAS, 95(4), 109-113. Available at: https://scholarworks.uni.edu/jias/vol95/iss4/3 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Journal of the Iowa Academy of Science: JIAS by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. ]our. Iowa Acad. Sci. 95(4): 109-113, 1988 Reevaluating Evidence for the Pre-lllinoian Entrenchment of Northeastern Iowa River Valleys 1 CURTIS M. HUDAK2 Department of Geology, University of Iowa, Iowa City, Iowa 52242 Previous workers have proposed a pre-Illinoian age for the deepest bedrock entrenchment of northeastern Iowa valleys. Lines of evidence used ro support a pre-Illinoian age of entrenchment are: ( 1) deep bedrock-entrenchment interpreted ro take "long" periods of time, (2) "valleys" filled with "red-weathered drift", which was interpreted as "old", (3) differences in cross-valley profiles supposedly related to glacial advances, (4) thick beds of gravel could only be deposited by outwash streams, and (5) glacially buried (drift-filled) bedrock valleys exist outside of the Paleozoic Plateau ro the west and south.
    [Show full text]
  • Status and Ecology of Mexican Spotted Owls in the Upper Gila Mountains Recovery Unit, Arizona and New Mexico
    Status and Ecology of Mexican Spotted Owls in the Upper Gila Mountains Recovery Unit, Arizona and New Mexico Joseph L. Ganey James P. Ward, Jr. David W. Willey United States Forest Rocky Mountain General Technical Report Department Service Research Station RMRS-GTR-256WWW of Agriculture May 2011 Ganey, Joseph L.; Ward, James P. Jr.; Willey, David W. 2011. Status and ecology of Mexican spotted owls in the Upper Gila Mountains recovery unit, Arizona and New Mexico. Gen. Tech. Rep. RMRS-GTR-256WWW. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 94 p. Abstract This report summarizes current knowledge on the status and ecology of the Mexican spot- ted owl within the Upper Gila Mountains Recovery Unit (UGM RU). It was written at the request of U.S. Forest Service personnel involved in the Four Forests Restoration Initia- tive (4FRI), a collaborative, landscape-scale restoration effort covering approximately 2.4 million ac (1 million ha) across all or part of four National Forests (Apache-Sitgreaves, Coconino, Kaibab, and Tonto National Forests) located within the UGM RU. The UGM RU supports >50% of the known population of Mexican spotted owls, and the central location of the UGM RU within the overall range of the owl appears to facilitate gene flow throughout that range. Consequently, the UGM population is viewed as important to stability within the overall range of the owl, and management that impacts owls within the UGM RU could affect owl populations beyond that RU. Keywords: abundance, demography, habitat selection, diet composition, movements Authors Joseph L.
    [Show full text]
  • Historical Geomorphology of the Verde River
    Historical Geomorphology of the Verde River by Philip A. Pearthree Arizona Geological Survey Open-File Report 96-13 June, 1996 Arizona Geological Survey 416 W. Congress, Suite #100, Tucson, Arizona 85701 Research conducted in cooperation with CH2MHILL as part of the basic data collection for assessment of river navigability in Arizona at the time of Statehood (1912 J. Funding was provided by the Arizona State Land Department This report is preliminary and has not been edited or reviewed for conformity with Arizona Geological Survey standards Introduction The Verde River drainage is a major river system that heads in Big Chino Valley in north­ central Arizona, flows generally southeast through the rugged terrain of central Arizona, and empties into the Salt River east of the Phoenix metropolitan area. It is unusual in Arizona because much the main channel of the Verde River is perennial for much its length. Data summarized in this report were gathered to aid in the assessment of the navigability of the Verde River in February, 1912, when Arizona became a State. These investigations were conducted in cooperation with CH2MHill and were funded by the Arizona State Land Department. The purposes of this report are to (1) outline the geologic and geomorphic framework of the Verde River, (2) to describe the physical character of the channel of the Verde River, and (3) to evaluate how channel morphology and position have changed in the past century. Physiography, Geology, and General Geomorphology of the River The Verde River heads in and flows through the rugged highlands and valleys of central Arizona (Figure 1).
    [Show full text]
  • Analyzing Rivers with Google Earth
    Name____________________________________Per.______ Analyzing Rivers with Google Earth River systems exist all over the planet. You are going to examine several rivers and landforms created by rivers during this activity using Google Earth. While your iPad can view each location, you will need a laptop to use the ruler function. A B Figure 1: Meandering river terms. Image from: http://www.sierrapotomac.org/W_Needham/MeanderingRivers.htm Part I: Meandering Rivers: Figure 1 shows several terms used to describe meandering rivers. We are going to focus on wavelength, amplitude, and sinuosity. Sinuosity is the ratio of river length (distance traveled if you floated down the river) divided by straight length line (bird’s flight distance, i.e. from point A to B). The greater the number, the more tortuous (strongly meandering) the path the river takes. 1. Fly to Yakeshi, China. Just north of the city is a beautiful series of scroll bars (former point bars that have been abandoned) formed by the meandering river moving across the landscape. 1a. Describe the features you see. What “age” river is this (young, mature, old)? How are the meanders moving over time? Is the river becoming straighter or more curved? 1b. Find an area where the current river channel and clear meanders are easy to see (i.e. 49o18’30”N, 120o35’45”E). Measure the wavelength, amplitude and sinuosity of the river in this area. To measure straight line paths for wavelength, amplitude, and bird’s flight distance, go to Tools Ruler Line. Use kilometers. Click and drag your cursor across the area of interest.
    [Show full text]
  • Sixmile Creek: a Status Report
    SIXMILE CREEK: A Status Report A document prepared under the auspices of the Sixmile Creek Partners in preparation for a channel and watershed management plan. MAY, 2007 Contents Introduction ....................................................................................................................................................1 Late Quaternary History of Sixmile Creek Valley.........................................................................................2 General Behavior of Sixmile Creek Valley....................................................................................................5 Nature and Quantity of Sediment Load..........................................................................................................9 Sources of Sediment.....................................................................................................................................12 Suspended Sediment.....................................................................................................................................13 Bedload......................................................................................................................................................18 Aquatic Health of Sixmile Creek .................................................................................................................20 Benthic Macroinvertebrates (BMI’s) ........................................................................................................20 Biodiversity (Fish).....................................................................................................................................21
    [Show full text]
  • Abstract Cenozoic Tectonism Can Be Seen in a Variety of Different Ways In
    Abstract Cenozoic tectonism can be seen in a variety of different ways in the Coastal Plain of North Carolina. Using high resolution Light Detecting and Ranging digital elevation models (LiDAR), the geology of the coast can be analyzed to look for evidence supporting recent tectonism and disequilibrium. The rivers in the Coastal Plain, as well as other features, provide much evidence to support this theory. Looking at the complicated geomorphology of the rivers, particularly the Cape Fear River, gives insight to potential fault locations along the rivers. Most of the streams exhibit stream capture, another sign of disequilibrium, and the amount of stream capture was quantified on the Cape Fear River. There is a southwest migration trend in the major rivers of the Coastal Plain. While the Cape Fear Arch can explain this trend in the Cape Fear River, it does not explain the southwest migration in other rivers in the north as well. Knickpoints were found in all of the rivers in the Coastal Plain. While most of them can be associated with sea level fall or changes in underlying lithologies, there are many that are caused by tectonics. Wave-cut escarpments were once deposited horizontally in various places due to rises and falls in sea level. Elevation profiles along these scarps show a higher elevation in the north than in the south, which could be explained by uplift. This uplift would also account for the southwest migration trend in the rivers. Introduction As every geologist knows, everything on Earth is constantly changing. Mountains are being formed as well as destroyed, plates are moving, new crust is being formed as old crust is subducted and recycled, and rivers are moving.
    [Show full text]
  • A Freshwater Classification of the Mackenzie River Basin
    A Freshwater Classification of the Mackenzie River Basin Mike Palmer, Jonathan Higgins and Evelyn Gah Abstract The NWT Protected Areas Strategy (NWT-PAS) aims to protect special natural and cultural areas and core representative areas within each ecoregion of the NWT to help protect the NWT’s biodiversity and cultural landscapes. To date the NWT-PAS has focused its efforts primarily on terrestrial biodiversity, and has identified areas, which capture only limited aspects of freshwater biodiversity and the ecological processes necessary to sustain it. However, freshwater is a critical ecological component and physical force in the NWT. To evaluate to what extent freshwater biodiversity is represented within protected areas, the NWT-PAS Science Team completed a spatially comprehensive freshwater classification to represent broad ecological and environmental patterns. In conservation science, the underlying idea of using ecosystems, often referred to as the coarse-filter, is that by protecting the environmental features and patterns that are representative of a region, most species and natural communities, and the ecological processes that support them, will also be protected. In areas such as the NWT where species data are sparse, the coarse-filter approach is the primary tool for representing biodiversity in regional conservation planning. The classification includes the Mackenzie River Basin and several watersheds in the adjacent Queen Elizabeth drainage basin so as to cover the ecoregions identified in the NWT-PAS Mackenzie Valley Five-Year Action Plan (NWT PAS Secretariat 2003). The approach taken is a simplified version of the hierarchical classification methods outlined by Higgins and others (2005) by using abiotic attributes to characterize the dominant regional environmental patterns that influence freshwater ecosystem characteristics, and their ecological patterns and processes.
    [Show full text]
  • Download Tota Brochure
    National Park Service Park National Utah Utah Utah Colorado Colorado Monument National Jim McCarthy Jim Monument Valley window window Valley Monument Owachamo Bridge at Natural Bridges Bridges Natural at Bridge Owachamo Robert Riberia Robert Monument Valley Monument (Utah) Front cover: cover: Front Bill Proud Bill Balloon Festival Balloon Annual International Bluff International Annual Right: Right: (wheelchair accessible in some areas) some in accessible (wheelchair Edge of the Cedars State Park State Cedars the of Edge be solar powered. powered. solar be Open year-round. Open State Park State Gouldings Lodge Gouldings Edge of the Cedars the of Edge Sky Park, as well as the first NPS park to park NPS first the as well as Park, Sky Monument Valley Navajo Tribal Park Tribal Navajo Valley Monument Below: Left & Right Mitten buttes in buttes Mitten Right & Left Below: Recently designated the first National Dark National first the designated Recently are scattered throughout the canyon. the throughout scattered are comprehensive trail traverses the canyon bottom. Small archaeological sites archaeological Small bottom. canyon the traverses trail comprehensive rails lead to each bridge and a a and bridge each to lead rails T before. years many for area this used accessible in some areas) some in accessible Although it was discovered by Anglo explorers in 1883, native peoples peoples native 1883, in explorers Anglo by discovered was it Although Open year-round. (wheelchair (wheelchair year-round. Open M N B N ONUMENT ATIONAL RIDGES ATURAL 16 Park or at Gouldings Lodge. Lodge. Gouldings at or Park E ribal T Navajo alley V Monument archaeological sites or a walking tour of the historic town.
    [Show full text]
  • Basin Descriptions and Flow Characteristics of Ohio Streams
    Ohio Department of Natural Resources Division of Water BASIN DESCRIPTIONS AND FLOW CHARACTERISTICS OF OHIO STREAMS By Michael C. Schiefer, Ohio Department of Natural Resources, Division of Water Bulletin 47 Columbus, Ohio 2002 Robert Taft, Governor Samuel Speck, Director CONTENTS Abstract………………………………………………………………………………… 1 Introduction……………………………………………………………………………. 2 Purpose and Scope ……………………………………………………………. 2 Previous Studies……………………………………………………………….. 2 Acknowledgements …………………………………………………………… 3 Factors Determining Regimen of Flow………………………………………………... 4 Weather and Climate…………………………………………………………… 4 Basin Characteristics...………………………………………………………… 6 Physiology…….………………………………………………………… 6 Geology………………………………………………………………... 12 Soils and Natural Vegetation ..………………………………………… 15 Land Use...……………………………………………………………. 23 Water Development……………………………………………………. 26 Estimates and Comparisons of Flow Characteristics………………………………….. 28 Mean Annual Runoff…………………………………………………………... 28 Base Flow……………………………………………………………………… 29 Flow Duration…………………………………………………………………. 30 Frequency of Flow Events…………………………………………………….. 31 Descriptions of Basins and Characteristics of Flow…………………………………… 34 Lake Erie Basin………………………………………………………………………… 35 Maumee River Basin…………………………………………………………… 36 Portage River and Sandusky River Basins…………………………………….. 49 Lake Erie Tributaries between Sandusky River and Cuyahoga River…………. 58 Cuyahoga River Basin………………………………………………………….. 68 Lake Erie Tributaries East of the Cuyahoga River…………………………….. 77 Ohio River Basin………………………………………………………………………. 84
    [Show full text]
  • Geoarchaeological Simulation of Meandering River Deposits and Settlement Distributions: a Three-Dimensional Approach
    Geoarchaeological Simulation of Meandering River Deposits and Settlement Distributions: A Three-Dimensional Approach Quintijn Clevis,1,* Gregory E. Tucker,1 Gary Lock,2 Stephen T. Lancaster,3 Nicole Gasparini,4 Arnaud Desitter,5 and Rafael L. Bras6 1Cooperative Institute for Research in Environmental Sciences (CIRES) and Department of Geological Sciences, University of Colorado, Boulder, CO 80309-0216 2Institute of Archaeology, Oxford University, Oxford, OX1 2PG, United Kingdom 3Department of Geosciences, Oregon State University, Corvallis, OR 97331-5506 4Department of Geology and Geophysics, Yale University, New Haven, CT 06520-8109 5School of Geography and the Environment, Oxford University, Oxford, OX1 3QY, United Kingdom 6Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 Fluvial processes have the potential to obscure, expose, or even destroy portions of the archaeological record. Floodplain aggradation can bury and hide archaeological features, whereas actively migrating channels can erode them. The archaeological record preserved in the subsurface of a fluvial system is potentially fragmented and is three-dimensionally complex, especially when the system has been subjected to successive phases of alluvia- tion and entrenchment. A simulation model is presented to gain insight into the three- dimensional subsurface distribution, visibility, and preservation potential of the archaeo- logical record in a meander-floodplain system as a function of geomorphic history. Simulation results indicate that fluvial cut-fill cycles can strongly influence the density of archaeologi- cal material in the subsurface. Thus, interpretation of floodplain habitation based solely upon features visible in the shallow subsurface (through traditional techniques such as aer- ial photography and geophysical prospection) can be misleading.
    [Show full text]
  • River Region Analysis
    ATTACHMENT H STREAM CLASSIFICATION REPORT, TITTABAWASSEE RIVER Stream Classification Report, Tittabawassee River, Midland, MI 1. INTRODUCTION TO STREAM CLASSIFICATION For more than a century, the Tittibawassee River has undergone numerous changes in its floodplain and channel as a result of anthropogenic influence. Floodplain impacts have included removal of vegetation, changes in vegetation density and type, alterations in landforms and construction of encroachments that block the flow-path of flood flows, including roadway embankments and pipeline crossings. The channel itself has been impacted by changes in its boundary conditions, including removal of vegetation and artificial hardening with levees and sheet-pile walls. The construction of several dams upstream of the Midland Plant has likely created conditions of “clear water discharge”, changing the rivers sediment supply downstream. All of these anthropogenic influences have likely, in some way, affected river stability and sediment supply, thereby creating the potential for negative impacts in the form of excess erosion and deposition. The extent, magnitude, frequency and duration of the responses of the Tittibawassee River to these influences is a question which must be answered through a systematic, quantitative assessment of historic land use changes, channel processes, sediment supply and future evolution of the river. Essential to this assessment is the ability to separate natural and anthropogenic influences, and to predict how the river will reach an equilibrium state through a balance of energy and sediment supply (Rosgen, 2006). While this assessment necessarily involves numerous levels of data collection, analysis and prediction, it should begin with a broad-level classification of the river. Such a classification helps provide an overview of the general state of the river, allows separation of the river into areas of distinct morphology, and elucidates future data collection and analysis needs.
    [Show full text]
  • Final Report Field Surveys for Mexican Spotted Owls
    FINAL REPORT FIELD SURVEYS FOR MEXICAN SPOTTED OWLS (Strix occidentalis lucida) AND NORTHERN GOSHAWKS (Accipiter gentiles) IN GRAND CANYON NATIONAL PARK Prepared by: DAVID WILLEY, Assistant Professor, Montana State University Department of Ecology, 310 Lewis Hall Bozeman, MT 59717 Submitted To: Grand Canyon National Park Grand Canyon, AZ 86023 Cooperative Agreement CA-1200-99-007 Task Agreement Number J8227044011 MARCH 2005 1 SURVEYS FOR MEXICAN SPOTTED OWLS AND NORTHERN GOSHAWKS IN GRAND CANYON NATIONAL PARK INTRODUCTION The purpose of this research and the field surveys was to determine, to best of our ability (USDI 1992), the occupancy and breeding status of Mexican spotted owls (Strix occidentalis lucida) and Northern Goshawks (Accipiter gentiles) in selected project areas in Grand Canyon National Park (NPS Task Agreement No. J8227044011). Spotted owls and Northern goshawks are of special concern to federal agencies due, in part, to their specialized habitat requirements (Willey 1995, Gutiérrez et. al. 1995) and because evidence exists for population declines in the southwest U.S. (Seamans et al. 1999, Reynolds et al. 2003). Furthermore, the Mexican spotted owl was listed as a threatened species in 1993 in response to threats from timber management and the potential for catastrophic wildfire (Cully and Austin 1993, USDI 1995). Northern During the 1990s, Northern goshawks were identified by numerous agencies as "a species of special concern" in response to various threats, including historic timber management, from planned forest restoration efforts, and from threats to its habitat by wildfire (USDI 1995, Reynolds et al. 1996, Wolf and Mast 1998). As top-level predators, the owl and goshawk play fundamental roles in proper functioning ecosystems, and via monitoring programs, research may help us assess environmental changes (Forsman et al.
    [Show full text]