Proteins, Interfaces, and Cryo-Em Grids

Total Page:16

File Type:pdf, Size:1020Kb

Proteins, Interfaces, and Cryo-Em Grids Lawrence Berkeley National Laboratory Recent Work Title PROTEINS, INTERFACES, AND CRYO-EM GRIDS. Permalink https://escholarship.org/uc/item/4b23r25h Author Glaeser, Robert M Publication Date 2018-03-01 DOI 10.1016/j.cocis.2017.12.009 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Available online at www.sciencedirect.com ScienceDirect Proteins, interfaces, and cryo-EM grids Robert M. Glaeser⁎ It has become clear that the standard cartoon, in which macromolecular particles prepared for electron cryo-microscopy are shown to be https://doi.org/10.1016/j.cocis.2017.12.009 surrounded completely by vitreous ice, often is not accurate. In 1359-0294/© 2017 Elsevier Ltd. All rights reserved. particular, the standard picture does notincludethefactthatdiffusion to the air-water interface, followed by adsorption and possibly denaturation, can occur on the time scale that normally is required to make thin specimens. The extensive literature on interaction of proteins 1. Introduction with the air-water interface suggests that many proteins can bind to the interface, either directly or indirectly via a sacrificial layer of already- The requirements are quite demanding for preparing thin denatured protein. In the process, the particles of interest can, in some specimens of randomly disbursed biological macromole- cases, become preferentially oriented, and in other cases they can be cules that can be used for high-resolution electron damaged and/or aggregated at the surface. Thus, although a number of microscopy [1•,2•]. Ideally, these vitrified, aqueous methods and recipes have evolved for dealing with protein complexes specimens should be no N100 nm in thickness, and possibly thatprovetobedifficult,makinggood cryo-grids can still be a major as thin as 20 nm or 30 nm. Such thin specimens are challenge for each new type of specimen. Recognition that the air-water required because, among other reasons, the mean free interface is a very dangerous place to be has inspired work on some novel path for inelastic scattering [3] is estimated to be about approaches for preparing cryo-grids. At the moment, two of the most promising ones appear to be: (1) thin and vitrify the specimen much 350 nm or less for high-energy (300 keV) electrons. In faster than is done currently or (2) immobilize the particles onto a addition, the macromolecular particles must remain fully structure-friendly support film so that they cannot diffuse to the air- hydrated after being inserted into the vacuum of the water interface. electron microscope. The most practical way to maintain a well-hydrated state has proven to be to put a few μLof Address sample onto a thin, holey film, supported on a fine-mesh, Lawrence Berkeley National Laboratory, University of California, 3 mm diameter metal grid, and then blot off excess sample Berkeley, CA 94705, United States with filter paper. This is usually done in an environment of controlled temperature and humidity, in order to mini- 363B Donner Laboratory, Lawrence Berkeley National Laboratory, mize evaporation of the remaining water. The resulting, University of California, Berkeley, CA 94705, United States. thin sample then is rapidly quenched to low temperature; • ([email protected]) for further detail see [4 ] and for historical background see [5•]. Keywords: A very simple picture has been used for decades to Interfacial adsorption explain why blotting and subsequent quenching results in Preferential orientation nearly ideal specimens, at least some of the time. As is Protein denaturation illustrated in Fig. 1, macromolecular particles are imagined Affinity support films to be embedded within a vitrified layer of buffer. According to this picture, the spatial distribution, orientation and – Current Opinion in Colloid & Interface Science (2018) 34,1 11 structure of the macromolecules are expected to be For a complete overview see the Issue and the Editorial identical to what they previously were in bulk solution, Article History: unperturbed by the process of making and freezing the thin Received 20 October 2017 film. If every grid were as shown in this picture, regardless of Received in revised form 14 December 2017 what protein complex was used, then all of them would give Accepted 14 December 2017 superb images. Many samples do, in fact, give superb results Available online 22 December 2017 in electron microscopy, thus leading to the widely-held Current Opinion in Colloid & Interface Science (2018) 34,1–11 www.sciencedirect.com RM Glaeser 2 2. Many proteins are known to adsorb to air- water interfaces 2.1. Adsorption progresses in stages Adsorption of proteins to the air-water interface has historically been pictured to progress through at least three distinct steps. Fig. 1 Cartoon showing the standard picture that is A review published in 1950, for example, spoke of an initial “ ” envisioned in order to explain why embedding macromolecular adsorption of proteins at the interface in the globular form , “ ” complexes within a thin film of vitrified buffer should preserve followed by unrolling of the peptide chains at the interface , “ the structure in a near-native state. Macromolecular particles and subsequent aggregation of the unrolled chains into a ” •• arerandomlydistributedinthesamplewhenonaholeysupport coagulum [8 ]. Later, it seemed perhaps self-evident to film, just as they were in the test tube. When everything above include a step in which additional proteins bind to the layer of denatured-protein at the air-water interface, after which the dotted line is blotted away, a thin film remains in the hole. •• This thin film is then vitrified by plunging into cryogen, leaving further denaturation and aggregation might follow [9 ].A the particles embedded in amorphous ice. contrary view has long been presented in the literature, however, at least for some proteins [10•]. For example, [11] concluded that preferential orientation and some structural deformation of bovine serum albumin may occur, but never- belief that the standard picture shown in Fig. 1 is, indeed, theless there is no denaturation. correct. In either event, the first step involves structurally intact Many macromolecules, however, prove to be difficult to particles colliding with and sticking to the interface. Initial prepare in the form of single-particle cryo-EM specimens adhesion to a clean air-water interface presumably involves (referred to here as cryo-grids), leading one to doubt dewetting of individual hydrophobic side chains or even whether the standard picture is always correct. As a result, small hydrophobic patches, both of which normally exist on an effort has begun to develop more sophisticated models, the surfaces of native proteins. This initial-adsorption step whichtakeintoaccountthefactthattherequiredthin, can be diffusion limited, i.e. the activation energy for aqueous films have a very high surface-to-volume ratio in binding to the (hydrophobic) interface may be very small, the brief moment before vitrification. Such models take and thus the sticking coefficient (the number of times that into account the fact that macromolecular particles can – particles stick, relative to the number of times that they indeed must – diffuse and collide with the air-water impinge upon an interface) can be close to 1.0. If that is the interface, where they may adsorb and even possibly case, the initial rate of adsorption is expected to be denature before vitrification occurs. Other consequences proportional to the bulk concentration of the particles. include preferential orientation of particles, or – in some The second step, at least when it does occur, involves cases – the number of particles seen does not correspond partial or complete unfolding of the native-protein structure to their concentration in bulk. Although numerous cau- at the interface. In some cases the thickness of the resulting tionary remarks about these hazards were, in fact, made in protein monolayer is estimated to be b2nm [12,13•]. Section 6.6 of the review by Dubochet et al. [6••],and Unfolding of the native structure at an air-water interface more recently in a retrospective by Taylor and Glaeser [7•], is imagined to involve a rapid, step-by-step movement of little has yet been done to address the issue in a systematic hydrophobic residues from the interior of a protein to air, way. while still leaving the hydrophilic residues on the aqueous The primary goal in this Opinion is to critically examine, side of the interface. As is discussed in Section 3, the energy on the basis of the known behavior of proteins at air-water landscape of protein unfolding at interfaces is thus expected interfaces, what might be wrong with what has been the to trend monotonically downhill, interrupted only by small standard picture of single-particle cryo-EM specimens, which activation barriers as the reaction progresses, which is very is shown in Fig. 1. The heart of this critique is presented in different from what it is in bulk. Section 4, preceded first by a limited review (Section 2)of The third step envisioned in this review, as mentioned some of the literature showing that many proteins do adsorb above, involves the adsorption of additional, structurally to air-water interfaces, followed by a similarly short review intact proteins, possibly via a mixture of hydrophilic and (Section 3) of work showing that many proteins do, in fact, hydrophobic interactions with the pre-existing layer of denature shortly after they have first been adsorbed. denatured proteins. Since the binding of proteins to Finally, the critique of what is wrong with the standard hydrophilic surfaces is often much weaker than it is to picture is followed, in Section 5, by a discussion of hydrophobic surfaces [14–16], the sticking coefficient may alternative approaches that are being taken for preparing be much lower for a denatured-protein monolayer than it is cryo-EM specimens, all of which can be seen as ways to for a pristine air-water interface.
Recommended publications
  • Steric Blockage of Lysenin Toxin by Crowding
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.02.073940; this version posted May 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Steric blockage of lysenin toxin by crowding Ignacio L.B. Munguira1 & Alfonso Barbas2 1 U1006 INSERM, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, 163 avenue de Luminy, 13009 Marseille, France 2Instituto de Fusión Nuclear, José Gutiérrez Abascal 2, 28006 Madrid, Spain Abstract Increasing evidence signals the importance of macromolecular crowding on the regulation of the membrane protein activity. Lysenin is a pore forming toxin that forms crowded assemblies in membrane containing sphingomyelin microdomains. We studied the role of crowding on the activity of Lysenin thanks to High Speed Atomic Force Microscopy. In this study we show that pore formation requires available space around to take place, being sterically block in crowded environments, and verified it with non- Supported Lipid Bilayers mimicking the mechanical conditions of cell membranes. A continuous pH decrease and a single molecule compression experimentsdetails show that pore formation liberates membrane space leading to prepore-forto -pore transitions. The study of the effects of prepore insertion comparing pore formation induced by sudden pH decrease in lysenin assemblies with thousand DOIsimulations show that liberation of space unblocks pore formation and could contribute to elude the cellular non-immune defences. Based on our findings we propose a refinement of current prepore structure and insertion models.
    [Show full text]
  • Understanding the Invisible Hands of Sample Preparation for Cryo-EM
    FOCUS | REVIEW ARTICLE FOCUS | REVIEWhttps://doi.org/10.1038/s41592-021-01130-6 ARTICLE Understanding the invisible hands of sample preparation for cryo-EM Giulia Weissenberger1,2,3, Rene J. M. Henderikx1,2,3 and Peter J. Peters 2 ✉ Cryo-electron microscopy (cryo-EM) is rapidly becoming an attractive method in the field of structural biology. With the exploding popularity of cryo-EM, sample preparation must evolve to prevent congestion in the workflow. The dire need for improved microscopy samples has led to a diversification of methods. This Review aims to categorize and explain the principles behind various techniques in the preparation of vitrified samples for the electron microscope. Various aspects and challenges in the workflow are discussed, from sample optimization and carriers to deposition and vitrification. Reliable and versatile specimen preparation remains a challenge, and we hope to give guidelines and posit future directions for improvement. ryo-EM is providing macromolecular structures with the optimum biochemical state of the sample. Grid preparation up to atomic resolution at an unprecedented rate. In this describes the steps needed to make a sample suitable for analysis Ctechnique, electron microscopy images of biomolecules in the microscope. These steps involve chemical or plasma treat- embedded in vitreous, glass-like ice are combined to generate ment of the grid, sample deposition and vitrification. The first three-dimensional (3D) reconstructions. The detailed structural breakthroughs came about from a manual blot-and-plunge method models obtained from these reconstructions grant insight into the developed in the 1980s15 that is still being applied to achieve formi- function of macromole cules and their role in biological processes.
    [Show full text]
  • IDENTIFICATION of LYSENIN PROTEIN FUNCTION in COELOMIC FLUID of EUDRILUS EUGENIAE S.Murugan, Reg No
    European Journal of Molecular & Clinical Medicine ISSN 2515-8260 Volume 08, Issue 03, 2021 IDENTIFICATION OF LYSENIN PROTEIN FUNCTION IN COELOMIC FLUID OF EUDRILUS EUGENIAE S.Murugan, Reg No. 11654 Research Scholar (Full Time) Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli – 627012, Tamil Nadu, India. Dr.S.Umamaheswari, M. Sc., PhD, Professor Department of Biotechnology Manonmaniam Sundaranar University Tirunelveli – 627012, Tamil Nadu, India. Email: [email protected] Abstract The coelomic fluid (CF) is the body fluid present in the space between the body wall and gut in the earthworms. The earthworm’s coelomic fluid contains various molecules and exhibits important biological properties such as antimicrobial substances, hemagglutination and anticoagulant agents. The coelomic fluid of earthworm possesses primary function that has the ability to destroy the membranes of foreign cells. It is a mechanism that leads to cell death by the release of cytosol and attributes coelomocytes which secretes humoral effectors into the coelomic fluid. In this work, bacterial cultures namely Pseudomonas aeruginosa and Bacillus subtilis were injected into the earthworm body cavity. Then the coelomic fluid extract from the bacteria injected earthworms were collected out. The extracted coelomic fluids were partially purified and precipitated using ammonium sulphate and analyzed to biological activities such as antibacterial activity, proteases activity and heamolytic activity. Then the active compounds present in the coelomic fluids were analysed to FTIR, HPLC and LCMS. This concludes that the microbes introduced into the earthworm body containing coelomic fluids have lysenin protein that inhibits antibacterial, protease and haemolytic activity. Hence the induction of bacterial cultures Pseudomonas aeruginosa and Bacillus subtilis into the earthworm’s body cavity leads to the secretion of lysenin protein in the coelomic fluid of earthworms.
    [Show full text]
  • The Pore-Forming Toxin Lysenin
    1 Article 2 Insights into the Voltage Regulation Mechanism of 3 the Pore-Forming Toxin Lysenin 4 Sheenah Lynn Bryant1,2, Tyler Clark1, Christopher Alex Thomas1, Kaitlyn Summer Ware1, 5 Andrew Bogard1,2, Colleen Calzacorta1, Daniel Prather1, Daniel Fologea1,2,* 6 1 Department of Physics, Boise State University, Boise, ID 83725, USA 7 2 Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA 8 * Correspondence: [email protected]; Tel.: +1-208-426-2664 9 Received: date; Accepted: date; Published: date 10 Abstract: Lysenin, a pore forming toxin (PFT) extracted from Eisenia fetida, inserts 11 voltage-regulated channels into artificial lipid membranes containing sphingomyelin. The 12 voltage-induced gating leads to a strong static hysteresis in conductance, which endows lysenin 13 with molecular memory capabilities. To explain this history-dependent behavior we hypothesized 14 a gating mechanism that implies the movement of a voltage domain sensor from an aqueous 15 environment into the hydrophobic core of the membrane under the influence of an external electric 16 field. In this work, we employed electrophysiology approaches to investigate the effects of ionic 17 screening elicited by metal cations on the voltage-induced gating and hysteresis in conductance of 18 lysenin channels exposed to oscillatory voltage stimuli. Our experimental data show that screening 19 of the voltage sensor domain strongly affects the voltage regulation only during inactivation 20 (channel closing). In contrast, channel reactivation (reopening) presents a more stable, almost 21 invariant voltage dependency. Additionally, in the presence of anionic Adenosine 5′-triphosphate 22 (ATP), which binds at a different site in the channel’s structure and occludes the conducting 23 pathway, both inactivation and reactivation pathways are significantly affected.
    [Show full text]
  • Advances in Cryoem and Its Impact on B-Pore Forming Proteins
    Available online at www.sciencedirect.com ScienceDirect Advances in cryoEM and its impact on b-pore forming proteins Courtney M Boyd and Doryen Bubeck Deployed by both hosts and pathogens, b-pore-forming on recent b-PFP structures, focusing on the seminal work b proteins ( -PFPs) rupture membranes and lyse target cells. on the anthrax toxin protective antigen (PA) pore and Soluble protein monomers oligomerize on the lipid bilayer later structures from the aerolysin and membrane attack where they undergo dramatic structural rearrangements, complex perforin/cholesterol dependent cytolysin b resulting in a transmembrane -barrel pore. Advances in (MACPF/CDC) super-families. electron cryo-microscopy (cryoEM) sample preparation, image detection, and computational algorithms have led to a number b-PFPs have been visualised by negative stain and cryo- of recent structures that reveal a molecular mechanism of pore microscopy for nearly forty years. However, difficulties in formation in atomic detail. stabilizing membrane proteins outside the lipid bilayer, together with heterogeneity of oligomeric assemblies, has Address made it challenging to characterise these complexes at a Department of Life Sciences, Imperial College London, South resolution necessary to detail a molecular mechanism of Kensington Campus, London SW7 2AZ, UK pore formation. Nonetheless, the excitement around the possibilities enabled by the ‘resolution revolution’ in Corresponding author: Bubeck, Doryen ([email protected]) cryoEM have made it an opportune time to re-visit these questions. Current Opinion in Structural Biology 2018, 52:41–49 This review comes from a themed issue on Cryo electron microscopy Fundamental advances in both hardware and software developments underpin all the recent sub-nanometer Edited by John Briggs and Werner Kuhlbrandt pore structures.
    [Show full text]
  • Small Pore-Forming Toxins Different Membrane Area Binding and Ca2+ Permeability of Pores Determine Cellular Resistance of Monocytic Cells †
    toxins Article Small Pore-Forming Toxins Different Membrane Area Binding and Ca2+ Permeability of Pores Determine Cellular Resistance of Monocytic Cells † Yu Larpin, Hervé Besançon, Victoriia S. Babiychuk, Eduard B. Babiychuk and René Köffel * Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; [email protected] (Y.L.); [email protected] (H.B.); [email protected] (V.S.B.); [email protected] (E.B.B.) * Correspondence: [email protected] † This work is dedicated to the memory of Professor Annette Draeger. Abstract: Pore-forming toxins (PFTs) form multimeric trans-membrane pores in cell membranes that differ in pore channel diameter (PCD). Cellular resistance to large PFTs (>20 nm PCD) was shown to rely on Ca2+ influx activated membrane repair mechanisms. Small PFTs (<2 nm PCD) were shown to exhibit a high cytotoxic activity, but host cell response and membrane repair mechanisms are less well studied. We used monocytic immune cell lines to investigate the cellular resistance and host mem- brane repair mechanisms to small PFTs lysenin (Eisenia fetida) and aerolysin (Aeromonas hydrophila). Lysenin, but not aerolysin, is shown to induce Ca2+ influx from the extracellular space and to activate Ca2+ dependent membrane repair mechanisms. Moreover, lysenin binds to U937 cells with higher efficiency as compared to THP-1 cells, which is in line with a high sensitivity of U937 cells to lysenin. In contrast, aerolysin equally binds to U937 or THP-1 cells, but in different plasma membrane areas. Citation: Larpin, Y.; Besançon, H.; Increased aerolysin induced cell death of U937 cells, as compared to THP-1 cells, is suggested to be a Babiychuk, V.S.; Babiychuk, E.B.; consequence of cap-like aerolysin binding.
    [Show full text]
  • Function of Platelet Glycosphingolipid Microdomains/Lipid Rafts
    International Journal of Molecular Sciences Review Function of Platelet Glycosphingolipid Microdomains/Lipid Rafts Keisuke Komatsuya , Kei Kaneko and Kohji Kasahara * Laboratory of Biomembrane, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; [email protected] (K.K.); [email protected] (K.K.) * Correspondence: [email protected] Received: 29 June 2020; Accepted: 30 July 2020; Published: 2 August 2020 Abstract: Lipid rafts are dynamic assemblies of glycosphingolipids, sphingomyelin, cholesterol, and specific proteins which are stabilized into platforms involved in the regulation of vital cellular processes. The rafts at the cell surface play important functions in signal transduction. Recent reports have demonstrated that lipid rafts are spatially and compositionally heterogeneous in the single-cell membrane. In this review, we summarize our recent data on living platelets using two specific probes of raft components: lysenin as a probe of sphingomyelin-rich rafts and BCθ as a probe of cholesterol-rich rafts. Sphingomyelin-rich rafts that are spatially and functionally distinct from the cholesterol-rich rafts were found at spreading platelets. Fibrin is translocated to sphingomyelin-rich rafts and platelet sphingomyelin-rich rafts act as platforms where extracellular fibrin and intracellular actomyosin join to promote clot retraction. On the other hand, the collagen receptor glycoprotein VI is known to be translocated to cholesterol-rich rafts during platelet adhesion to collagen. Furthermore, the functional roles of platelet glycosphingolipids and platelet raft-binding proteins including G protein-coupled receptors, stomatin, prohibitin, flotillin, and HflK/C-domain protein family, tetraspanin family, and calcium channels are discussed. Keywords: lipid rafts; detergent-resistant membrane; heterogeneity; platelets; lysenin 1.
    [Show full text]
  • Temporary Membrane Permeabilization Via the Pore-Forming Toxin Lysenin
    Boise State University ScholarWorks Physics Faculty Publications and Presentations Department of Physics 5-2020 Temporary Membrane Permeabilization via the Pore-Forming Toxin Lysenin Nisha Shrestha Boise State University Christopher A. Thomas Boise State University Devon Richtsmeier Boise State University Andrew Bogard Boise State University Rebecca Hermann Boise State University See next page for additional authors Authors Nisha Shrestha, Christopher A. Thomas, Devon Richtsmeier, Andrew Bogard, Rebecca Hermann, Malyk Walker, Gamid Abatchev, Raquel J. Brown, and Daniel Fologea This article is available at ScholarWorks: https://scholarworks.boisestate.edu/physics_facpubs/229 toxins Article Temporary Membrane Permeabilization via the Pore-Forming Toxin Lysenin Nisha Shrestha 1,2, Christopher A. Thomas 1 , Devon Richtsmeier 1, Andrew Bogard 1,2, Rebecca Hermann 3 , Malyk Walker 1, Gamid Abatchev 1,2, Raquel J. Brown 4 and Daniel Fologea 1,2,* 1 Department of Physics, Boise State University, Boise, ID 83725, USA; [email protected] (N.S.); [email protected] (C.A.T.); [email protected] (D.R.); [email protected] (A.B.); [email protected] (M.W.); [email protected] (G.A.) 2 Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA 3 Department of Biology, Boise State University, Boise, ID 83725, USA; [email protected] 4 Center of Biomedical Excellence in Matrix Biology, Biomolecular Research Center, Boise State University, Boise, ID 83725, USA; [email protected] * Correspondence: [email protected] Received: 29 April 2020; Accepted: 20 May 2020; Published: 22 May 2020 Abstract: Pore-forming toxins are alluring tools for delivering biologically-active, impermeable cargoes to intracellular environments by introducing large conductance pathways into cell membranes.
    [Show full text]
  • From Biophysics to Biology
    Springer Series in Biophysics 19 Richard M. Epand Jean-Marie Ruysschaert Editors The Biophysics of Cell Membranes Biological Consequences Springer Series in Biophysics Volume 19 Series editor Boris Martinac [email protected] More information about this series at http://www.springer.com/series/835 [email protected] Richard M. Epand • Jean-Marie Ruysschaert Editors The Biophysics of Cell Membranes Biological Consequences 123 [email protected] Editors Richard M. Epand Jean-Marie Ruysschaert Biochemistry and Biomedical Sciences Sciences Faculty McMaster University Université Libre de Bruxelles Hamilton, ON, Canada Bruxelles, Belgium ISSN 0932-2353 ISSN 1868-2561 (electronic) Springer Series in Biophysics ISBN 978-981-10-6243-8 ISBN 978-981-10-6244-5 (eBook) DOI 10.1007/978-981-10-6244-5 Library of Congress Control Number: 2017952612 © Springer Nature Singapore Pte Ltd. 2017 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication.
    [Show full text]
  • Lysenin Ignacio L.B
    WikiJournal of Science, 2019, 2(1):6 doi: 10.15347/wjs/2009.006 Encyclopedic Review Article Lysenin Ignacio L.B. Munguira¹* et al. Abstract Lysenin is a pore-forming toxin present in the coelomic fluid of the earthworm Eisenia fetida. Pore-forming toxins (PFTs) are proteinaceous virulence factors produced by many pathogenic bacteria. Following the general mecha- nism of action of PFTs, lysenin is secreted as a soluble monomer that binds specifically to the membrane receptor sphingomyelin. After attachment, lysenin forms a 9-copy oligomer (nonamer) prepore on the lipid bilayer before membrane insertion. The biological role of lysenin is still unclear, however the most plausible theory is that it is part of an immune-avoiding mechanism. There are many proposed technological applications proposed for ly- senin, and understanding its molecular role in bacterial infection could help in developing different antibiotic strat- egies to solve the problem of multiple drug resistance in bacteria. Monomer usually found associated with cholesterol in lipid rafts.[6] Cholesterol, which enhances oligomerization, provides Lysenin is a protein produced in the coelomocyte- a stable platform with high lateral mobility where mon- leucocytes of the earthworm Eisenia fetida.[1] This pro- omer-monomer encounters are more probable.[5] PFTs tein was first isolated from the coelomic fluid in 1996 have shown to be able to remodel the membrane struc- and named lysenin (from lysis and Eisenia).[2] Lysenin is ture,[7] sometimes even mixing lipid phases.[8] a relatively small water-soluble molecule with a molec- The region of the lysenin pore β-barrel expected to be ular weight of 33 kDa (Figure 1).
    [Show full text]
  • Real-Time Visualization of Assembling of a Sphingomyelin-Specific Toxin on Planar Lipid Membranes
    Biophysical Journal Volume 105 September 2013 1397–1405 1397 Real-Time Visualization of Assembling of a Sphingomyelin-Specific Toxin on Planar Lipid Membranes Neval Yilmaz,† Taro Yamada,† Peter Greimel,† Takayuki Uchihashi,‡§ Toshio Ando,‡§ and Toshihide Kobayashi†{* †Lipid Biology Laboratory, RIKEN, Wako, Saitama, Japan; ‡Department of Physics and §Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan; and {Institut National de la Sante´ et de la Recherche Me´dicale U1060-Universite´ Lyon 1, Villeurbanne, France ABSTRACT Pore-forming toxins (PFTs) are soluble proteins that can oligomerize on the cell membrane and induce cell death by membrane insertion. PFT oligomers sometimes form hexagonal close-packed (hcp) structures on the membrane. Here, we show the assembling of the sphingomyelin (SM)-binding PFT, lysenin, into an hcp structure after oligomerization on SM/ cholesterol membrane. This process was monitored by high-speed atomic force microscopy. Hcp assembly was driven by reorganization of lysenin oligomers such as association/dissociation and rapid diffusion along the membrane. Besides rapid association/dissociation of oligomers, the height change for some oligomers, possibly resulting from conformational changes in lysenin, could also be visualized. After the entire membrane surface was covered with a well-ordered oligomer lattice, the lysenin molecules were firmly bound on the membrane and the oligomers neither dissociated nor diffused. Our results reveal the dynamic nature of the oligomers of a lipid-binding toxin during the formation of an hcp structure. Visualization of this dynamic process is essential for the elucidation of the assembling mechanism of some PFTs that can form ordered structures on the membrane. INTRODUCTION Pore-forming toxins (PFTs) are soluble proteins found in a Here, we report the spatiotemporal dynamics of lysenin wide spectrum of organisms, including bacteria, fungi, and oligomers during their assembling on the SM/chol bilayer.
    [Show full text]
  • Cryo-Electron Microscopy Structure of the Lipid Droplet-Formation Protein Seipin
    bioRxiv preprint doi: https://doi.org/10.1101/418236; this version posted September 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Cryo-electron microscopy structure of the lipid droplet-formation protein seipin Xuewu Sui1,2, Henning Arlt1,2, Kelly P. Brook3, Zon Weng Lai1,2, Frank DiMaio4, DeBora S. Marks3, Maofu Liao1, †*, RoBert V. Farese Jr.1,2,5, †*, ToBias C. Walther1,2,5,6†,*% 1DePartment of Cell Biology, Harvard Medical School, Boston, MA 02115 USA. 2DePartment of Genetics and ComPlex Diseases, Harvard T.H. Chan School of PuBlic Health, Boston, MA 02115, USA. 3DePartment of Systems Biology, Harvard Medical School, Boston, MA 02115 USA. 4DePartment of Biochemistry and Institute of Protein Design, University of Washington, Seattle, WA 98195 USA. 5Broad Institute of MIT and Harvard, CamBridge, MA 02142 USA. 6Howard Hughes Medical Institute, Boston, MA 02115 USA. †These authors contriButed equally. % Lead contact *Address correspondence to: Maofu Liao ([email protected]), RoBert V. Farese Jr. ([email protected].), and ToBias C. Walther ([email protected]) bioRxiv preprint doi: https://doi.org/10.1101/418236; this version posted September 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Summary: Sui et al. rePort the cryo-EM structure of the conserved luminal domain of the lipid droPlet (LD)-formation Protein seiPin. The structure reveals key features of this domain and suggest a new model for seiPin’s role in LD formation.
    [Show full text]