United States Patent (19) 11 Patent Number: 5,205,245 Flack Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (19) 11 Patent Number: 5,205,245 Flack Et Al USOO5205245A United States Patent (19) 11 Patent Number: 5,205,245 Flack et al. (45) Date of Patent: Apr. 27, 1993 (54) TWO STROKE ENGINES 4,736,716 4/1988 Ohyama ............................ 123/65 A 75 Inventors: Robert Flack, Ballyclare; David 5,072,699 12/1991 Pien ................................... 123/65 P Thornhill, Belfast, both of Northern FOREIGN PATENT DOCUMENTS Ireland 932639 9/1955 Fed. Rep. of Germany . 73 Assignee: Jaguar Cars Limited, United 2467288 SM1981 France ............. ... 123A190.2 Kingdom 9102144 2/1991 PCT Int'l Appl. a so 123/190.2 21) Appl. No.: 707,642 Primary Examiner-David A. Okonsky 22 Filed: May 30, 1991 Attorney, Agent, or Firm-Davis, Bujold & Streck 30 Foreign Application Priority Data 57 ABSTRACT Jun. 2, 1990 (GB) United Kingdom ................. 9012349 A two stroke internal combustion engine includes a cylinder with a piston slidably sealed in the cylinder, a 51) Int. Cli.............................................. FO2B33/04 plurality of transfer ports open into the cylinder and at 52 U.S. C. ............................. 123/65 P; 123/59 AL; least one exhaust port leads from the cylinder, the trans 123/190.1 fer ports are connected to a common inlet manifold and 58 Field of Search ................ 123/65 A, 65 P, 190.1, a common valve member is provided to regulate the 123/1902, 81 B, 81 C, 59 AL, 73 PP, 65 V flow of air from the inlet manifold to the transfer ports 56 References Cited and to vary the flow of air through one transfer port U.S. PATENT DOCUMENTS relative to the flow of air through at least one other transfer port. 1,632,988 6/1927 Adams . 2,110,754 3/1938 Alston ............................... 123/65 A 2,145,415 1/1939 Bokemuller . 9 Claims, 3 Drawing Sheets U.S. Patent Apr. 27, 1993 Sheet 1 of 3 5,205,245 U.S. Patent Apr. 27, 1993 Sheet 2 of 3 5,205.245 Y RNNNNNN a 3N ZZZas at S,Zara fezzee a/20 U.S. Patent Apr. 27, 1993 Sheet 3 of 3 5,205.245 5,205,245 1. 2 FIGS. 3 to 6 illustrate various porting configurations TWO STROKE ENGINES of the internal combustion engine illustrated in FIG. 1. BACKGROUND TO THE INVENTION DESCRIPTION OF A PREFERRED 5 EMBODIMENT The present invention relates to two stroke internal As illustrated in FIG. 1, an internal combustion en combustion engines. gine includes a cylinder 10 having a piston (not shown) In conventional two stroke internal combustion en slidably sealed therein. A pair of exhaust ports 11 are gines, the or each cylinder is provided with a series of disposed side by side and a series of transfer ports 12 to transfer ports, typically from three to six, through O 15 are spaced angularly of one another and of the ex which air or air/fuel mixture may be pumped to sweep haust ports 11 around the circumference of the cylinder the combustion products from the combustion chamber. 10. The exhaust ports 11 and transfer ports 12 to 15 open In engines produced hitherto, the transfer ports are into the cylinder 10 at a position spaced axially from the arranged such as to maximise the proportion of combus top 16 of the cylinder 10, at a level which will be uncov tion products swept from the combustion chamber thus 15 ered by the piston as it approaches the bottom of its producing maximum power. However; particularly at stroke. The transfer ports 12 to 15 are orientated rela part load, the flow of scavenging air may be short cir tive to the cylinder 10 to direct flow of air in different cuited, so that not all the combustion products will be directions, transfer ports 12 and 13 directing the flow of swept from the combustion chamber, with consequent air generally radially but upwardly into the cylinder 10, reduction in fuel efficiency and engine smoothness. while transfer ports 14 and 15 direct the flow of air Other adverse effects would include increased emission generally in the transverse plane of the cylinder 10, but of noxious substances or excessive cooling of exhaust away from the exhaust ports 11. In this manner, if air is gases. m injected through all the transfer ports 12 to 15 the The present invention provides valve means by whole volume of the cylinder 10 will be swept. which various combinations of the transfer ports may 25 The transfer ports 12 to 15 are connected to a con be closed or partially closed to modify the flow of scav mon cylindrical manifold 20 by ducts 21 to 24. A cylin enging air under particular operating conditions, drical sleeve 25 is rotatably mounted in bearings in the thereby reducing short circuiting of the air flow and cylindrical manifold 20, the outer diameter of sleeve 25 improving sweeping of the combustion products from sealingly engaging the inner diameter of cylindrical the combustion chamber. manifold 20. The sleeve 25 has a series of circumferen SUMMARY OF THE INVENTION tial ports 26 to 29, each corresponding axially to one of the ducts 21 to 24. The orientation and extent of the According to one aspect of the present invention a ports 26 to 29 vary, so that by rotating the cylindrical two stroke internal combustion engine comprises a cyl sleeve 25 various combinations of the ducts 21 to 24 inder with a piston slidably sealed in the cylinder, the 35 may be opened, closed or partially interrupted, so that cylinder including a plurality of transfer ports and at the flow of scavenging air into the cylinder 10 may be least one exhaust port, each transfer port being con modified. The central bore 31 of the sleeve 25 is con nected to a common inlet manifold, a common valve nected to a pressurised air supply, for example an engine means being provided to selectively regulate flow of air driven pump, by for example an axial port 30. from the inlet manifold to each transfer port and to vary Means (not shown), for example a stepping motor the rate of flow of air through one transfer port relative controlled by an electronic engine management system, to the flow of air through at least one other transfer is provided to rotate the sleeve 25 in accordance with port. engine speed, engine load and/or some other character The valve means of the present invention may be istic of the engine, to control flow through the various used to adjust the scavenging flow characteristics with 45 ducts 21 to 24 and hence the transfer ports 12 to 15, to changing load and speed requirements, to ensure that optimise scavenging of the cylinder 10 for various oper air utilisation is maintained and consequently emissions, ating conditions. Rather than using a stepping motor fuel consumption and the misfire are minimised. which may provide continuous variation of the valve According to a preferred embodiment of the present mechanism, the sleeve 25 may be arranged to function invention, the valve mechanism comprises a cylindrical in two or more discreet positions and may be moved sleeve which is located in a manifold, the cylindrical from one position to the other by, for example, a sole sleeve has ports machined at appropriate positions cor noid actuator. Alternatively, movement of the sleeve 25 responding to ducts which separately connect each of may be controlled by a cam operated mechanism or the transfer ports to the manifold. The cylindrical servomotor. Other means of controlling the valve in sleeve may be rotated and/or moved axially in the man 55 clude mechanical devices, power racks, compressed air, ifold, to align the ports with different ducts, thereby vacuum or thermal devices or any other engine man opening or closing the transfer ports as required. agement system. In an alternative embodiment, the sleeve 25 may be BRIEF DESCRIPTION OF THE DRAWINGS arranged so that it is adapted to move axially of the An embodiment of the invention is now described, by manifold 20, the ports 26 to 29 being arranged to control way of example only, with reference to the accompany flow through the ducts 21 to 24 by axial or axial and ing drawings, in which: s rotational movement of the sleeve 25. FIG. 1 is an isometric view of a cylinder of an inter At full engine loads, the sleeve 25 may be arranged nal combustion engine formed in accordance with the such that ports 26 to 29 are each aligned with their present invention; 65 associated duct 21 to 24 so that all the transfer ports 12 FIG. 2 is a part sectional view of the valve mecha to 15 are open, as illustrated in FIG. 3. When the piston nism used in the internal combustion engine shown in opens the transfer ports 12 to 15, air will be injected FIG. 1; and through all the transfer ports 12 to 15, giving a conven 5,205,245 3 4. tional "loop' scavenge, which will sweep the majority 1. A two stroke internal combustion engine compris of combustion products from the cylinder 10, out ing a cylinder with a piston slidably sealed in the cylin through exhaust ports 11. der, the cylinder including a plurality of transfer ports At part loads, the sleeve 25 may be arranged to close and at least one exhaust port, each of said transfer ports ports 14 and 15 as illustrated in FIG. 4. This will pro being connected to a common inlet manifold, a common vide maximum separation between the operational valve means being provided to selectively regulate flow transfer ports 12 and 13 and exhaust ports 11 and will of air from the inlet manifold to each of said transfer reduce short circuiting of the scavenging flow, so that ports and to vary the rate of flow of air through one of scavenging of the cylinder 10 will be improved.
Recommended publications
  • Sbd Fuel Injection Assembly and Set up Instructions 2.0L Vauxhall High Specification Taper Throttle Kit
    SBDMotorsport April 2013 SBD FUEL INJECTION ASSEMBLY AND SET UP INSTRUCTIONS 2.0L VAUXHALL HIGH SPECIFICATION TAPER THROTTLE KIT SBD would like to thank you for choosing the taper throttle injection kit. The tapered throttle body system which Richard Jenvey and Steve Broughton of SBD Motorsport have developed back in 1995 for the 2.0L XE originally at that time for a touring car project which has been so successful, even spawning many copies. We decided that the fact that the 2.0L XE was still very popular, that is was time to look at the design again which everything that we had learnt in developing the Hayabusa and Duratec high specification throttle bodies. We contacted Jenvey Dynamics again, who have helped us to develop all our own special throttle body projects over the years and started designing a new intake system to suit the 2.0L XE as well as it’s larger capacity versions, 2.2L, 2.3L, 2.4L & 2.5L which are now being built. The tapered throttle body has a 54mm entry tapering down to 52mm butterfly. The taper then continues on through the throttle body then into the manifold and down to the cylinder head. The port shape we have developed to match up with our high specification CNC ported cylinder head, this means the inlet manifold should not require any porting when mated to one of these cylinder heads. The injectors are now mounted underneath the throttle body pointing at an upwards direction at the correct angle so that upon butterfly opening high gas speed is achieved allowing very fast throttle response.
    [Show full text]
  • Diesel Strategy Overview
    Diesel Strategy Overview Diesel Strategy Overview Status: Confidential Issue Date: 1st Sept 2014 Email: [email protected] Telephone: Tel: +1 (734) 656 0140 Address: Pi Innovo LLC 47023 W. Five Mile Road, Plymouth, MI 48170-3765, USA Incorporated in Delaware 20-5693756 Revision History see version control tool Abstract This document describes the functionality contained in the diesel common rail engine control strategies, discusses where the strategies have been used, and answers common questions customers have about them. Confidential Page 2 of 13 Contents 1. Introduction and Scope 5 2. Software Environment 5 3. Diesel Engine Components 5 4. Control Architecture 6 5. Functional Behavior 7 5.1 Torque Domain 7 5.1.1 Driver Request 7 5.1.2 Idle Speed Control 7 5.1.3 Engine Speed Limiter 7 5.1.4 The Engine Speed Limiter provides rev-limit functionality by reducing torque to provide a smooth limit rather than the sharp limit achieved by cutting cylinders.CAN Torque Requests 7 5.1.5 Engine Loads Model 8 5.1.6 Torque Governor 8 5.2 Air Charge Estimate 8 5.3 Air Controls 8 5.3.1 EGR Demand 8 5.3.2 Boost Pressure Control 9 5.4 Fuel Controls 9 5.4.1 Fuel Rail Pressure Control 9 5.4.2 Injection Quantities to Durations 9 5.4.3 Cylinder Balancing 9 5.4.4 Deceleration Fuel Shut Off 10 5.4.5 Injector Compensation 10 5.5 Miscellaneous Controls 10 5.5.1 Engine Running Mode 10 5.5.2 Glow Plug Controls 10 5.5.3 Cooling Fan Control 10 5.5.4 Manual Calibration Override 10 5.5.5 CAN Communications 11 5.5.6 Diagnostics 11 5.5.6.1 Out of Range 11 Confidential Page 3 of 13 5.5.6.2 Rationality 11 5.5.6.3 Misfire detection 11 6.
    [Show full text]
  • How a Fuel Injection System Works | How a Car Works 10/5/20, 1128 AM How a Fuel Injection System Works
    How a fuel injection system works | How a Car Works 10/5/20, 1128 AM How a fuel injection system works For the engine to run smoothly and efficiently it needs to be provided with the right quantity of fuel /air mixture according to its wide range of demands. A fuel injection system Petrol-engined cars use indirect fuel injection. A fuel pump sends the petrol to the engine bay, and it is then injected into the inlet manifold by an injector. There is either a separate injector for each cylinder or one or two injectors into the inlet manifold. Traditionally, the fuel/air mixture is controlled by the carburettor , an instrument that is by no means perfect. Its major disadvantage is that a single carburettor supplying a four- cylinder https://www.howacarworks.com/basics/how-a-fuel-injection-system-works Page 1 of 7 How a fuel injection system works | How a Car Works 10/5/20, 1128 AM engine cannot give each cylinder precisely the same fuel/air mixture because some of the cylinders are further away from the carburettor than others. One solution is to fit twin-carburettors, but these are difficult to tune correctly. Instead, many cars are now being fitted with fuel-injected engines where the fuel is delivered in precise bursts. Engines so equipped are usually more efficient and more powerful than carburetted ones, and they can also be more economical, as well as having less poisonous emissions . Diesel fuel injection The fuel injection system in petrolengined cars is always indirect, petrol being injected into the inlet manifold or inlet port rather than directly into the combustion chambers .
    [Show full text]
  • Combined Effect of Inlet Manifold Swirl and Piston Head Configuration in a Constant Speed Four Stoke Diesel Engine V
    International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-8 Issue-11, September 2019 Combined Effect Of Inlet Manifold Swirl And Piston Head Configuration In A Constant Speed Four Stoke Diesel Engine V. V.NagaDeepthi , K.GovindaRajulu Abstract: The internal combustion engine manifold has a subsystem that supplies the fresh A/F mixture to the engine cylinders where the fuel is combusted. For efficient combustion of charge, the walls of the intake manifold must be smooth / polished to minimize any side resistance. To redesign the inlet port of a small internal combustion engine, to increase the production of turbulence by a swirl. A good swirl promotes more rapid combustion and improves efficiency. The CI engine has a piston shaped flat on the crown and a concave combustion chamber, with this geometry we are driving the engine. But here the A/F ratio mixture cannot mix properly. To avoid this we make piston geometry changes. The main objective of this project is that three new technologies have been adopted here. The first stage is varying the diameter of the convergence - the divergent nozzle. The second stage is the change on the piston head and the Figure 1: Valve Parts of the Inlet and Exhaust last stage is replacing the inlet and exhaust valve with pitch 0.5. Mm to 2 mm and the cut thread depth is 4 mm and three threads The reduced dilution reduces the amount of un burnt per inch. All of these techniques aim to investigate performance mixture/charge inside the chamber which reduces the techniques to increase air flow to achieve improved engine hydrocarbon emissions coming out of the engine.
    [Show full text]
  • 1,120,118, Patented Dec. 8,1914
    E. H. & H. H. ASHLOOK. AUXILIARY AIR INLET DEVICE FOR INTERNAL ‘COMBUSTION ENGINES. APPLICATION FILED NOW 19, 1913. 1,120,118, Patented Dec. 8,1914 Attorneys WTTED STATES PATENT OFFTCE. ERNEST H. ASHLOGK AND HENRY H. ASHLOGK, OF SAN DIEGO, CALIFORNIA. AUXILIARY AIR-INLET DEVICE FOR INTERNAL-COMBUSTION ENGINES. 1,120,118. Speci?cation of Letters Patent. Patented Dec. 8, 1914. Application ?led November 19, 1913. Serial No. 801,910. To all whom it may concern .' through and with which opening my i1n~ Be it known that we, ERNnsT H. AsnLocK, proved device communicates. and HENRY H. AsHLooK, citizens of the An elbow 7 is externally threaded at one United States, residing, at San Diego, in the end as at 8 and to which is secured the yoke 5 county of San Diego and State of Cali 9. The yoke 9 embraces the fuel inlet mani 60 fornia, have invented a new and useful fold 4 therebetwecn and is held rigidly Auxiliary Air-Inlet Device for Internal~ thereto by the curved bolt 10. The extreme . Combustion Engines, of which the follow end of the elbow 7 is beveled as at 11 and ing is a speci?cation. effects an air-tight joint with the side walls of the opening (3 of the fuel inlet manifold. 65 10 This invention relates to an attachment for internal combustion engines and more The remote end of the elbow 7 is also ex particularly to a device for supplying either ternally threaded as at 12 and to which is cold or heated air to the inlet manifold be secured the valve chamber or casing 13.
    [Show full text]
  • E Series Valves and Manifolds Introduction
    Instrumentation Products E Series Valves and Manifolds Introduction Introduction The AS-Schneider Group with its headquarters in Germany is one of the World‘s Leading Manufacturers of Instrumentation Valves and Manifolds. AS-Schneider offers a large variety of E Series Valves and Manifolds as well as numerous accessories needed for the instrumentation installations globally. Selection can be made from a comprehensive range of bodies with a variety of connections and material options, optimising installation and access opportunities. Many of the valves shown in this catalogue are available from stock or within a short period of time. The dimensions shown in this catalogue apply to standard types – very often 1/2 NPT treaded. If you need the dimensions for your individual type please contact the factory. Note: Not every configuration which can be created in the ordering information is feasible / available. Continuous product development may from time to time necessitate changes in the details contained in this catalogue. AS-Schneider reserves the right to make such changes at their discretion and without prior notice. All dimensions shown in this catalogue are approximate and subject to change. 2 Introduction Service Portal // Digital Product Pass AS-Schneider Contents Introduction | page 2 Contents | page 3 General Features | page 4 Valve Head Unit Options | page 5-11 Connections | page 12-13 Hand Valves | page 14-15 Gauge Valves | page 16-17 Multiport Gauge Valves | page 18-19 Block & Bleed and Double Block & Bleed Manifolds | page 20-21
    [Show full text]
  • Determination of Optimal Valve Timing for Internal Combustion Engines Using Parameter Estimation Method
    130 Determination of optimal valve timing for internal combustion engines using parameter estimation method A. H. Kakaee 1,* and M. Pishgooie 2 1 Assistant Professor, 2 MSc student, Department of Automotive Engineering, Iran University of Science and Technology, Tehran, Iran * [email protected] Abstract In this article determination of appropriate valve timing using sensitivity analysis problem is investigated for a gasoline four stroke engine. In the first part of this study a 4­storke Spark Ignition engine (XU7JP4/L3) including its different systems such as inlet and exhaust manifold, exhaust pipe and engine geometry are modeled using GT­Power software and the model is coupled with MATLAB/Simulink to be able to control input and output parameters. Then in order to find the best model that fits experimental data, sensitivity analysis is performed and the best unknown parameters that can best model the engine are obtained. The input parameters are considered to be the inlet port temperature and pressure, and manifold friction coefficient. The target was achieving the least square error in engine power, torque and fuel consumption. In the second part of the study the optimized model is used for the sensitivity analysis and minimizing the engine specific fuel consumption up to 10 percent reduction in specific fuel consumption as a target. Sensitivity analysis is used for finding the best valve timing in different engine speeds to achieve the target. Keywords: Variable Valve Timing system, GT­Power, MATLAB Simulink, Valve Timing, sensitivity analysis 1. INTRODUCTION mid rpm (1200–3200 rpm) range, and the peak torque improved by an average of 3%.
    [Show full text]
  • Audi RS3 and TTRS High Flow Dump Valve and Inlet Pipe Installation
    Audi RS3 and TTRS High Flow Dump Valve and Inlet Pipe Installation Tools Required: Flat headed screw driver T25 Torx driver T30 Torx driver T30 socket, matching ratchet and long extension 7mm hose clamp driver 5mm Allen key 3mm Allen key 1. Remove the small plastic covers around the oil filler and cold air feed on the intake. Remove the two clips holding the hose between the air box and turbo inlet, and the one clip on the standard dump valve. Undo the T25 torx on the cold air feed and undo the 10mm bolt on the filter box. Pull air filter box upwards to release from the rubber grommets. Air box – turbo pipe 10mm bolt Cover Dump valve clip T25 T25 Cover 2. Unplug the MAP sensor, TPS sensor and stock dump valve, undo the jubilee clip and the four T30 torx bolts holding the inlet pipe and throttle body to the inlet manifold. Remove the inlet pipe taking care not to drop the metal gasket between the throttle body and inlet. Metal gasket Dump valve TPS MAP 3. Attach the throttle body with the new o ring supplied in the kit. Also attach the MAP sensor with the existing bolts. New O ring inside here 4. Refit the high flow inlet pipe with dump valve in reverse order of step 2. Take care when refitting the metal gasket and bolt on the solenoid as shown in view A. View A View A 5. This photo shows the how to connect the vacuum pipe assembly. Dump valve wire extension Solenoid & solenoid bracket T-piece to vacuum pump 6.
    [Show full text]
  • Piston Pump Service Manual
    PISTON PUMP SERVICE MANUAL 3 FRAME: 280, 281, 290, 291 10 FRAME: 621, 623, 820, 821, 825,1010,1011,1015 4 FRAME: 331, 333, 335, 430, 431, 435 25 FRAME: 1520,1521,1525, 2520, 2521, 2525, 2520C 5 FRAME: 323, 390 60 FRAME: 6020, 6021, 6024, 6040, 6041, 6044 INSTALLATION AND START-UP INFORMATION Optimum performance of the pump is dependent upon the entire liquid system and will be obtained only with the proper selection, installation of plumbing, and operation of the pump and accessories. SPECIFICATIONS: Maximum specifications refer to individual attributes. It is not Install a Pulsation Dampening device onto the discharge head or in the discharge implied that all maximums can be performed simultaneously. If more than one line. Be certain the pulsation dampener (Prrrrr-o-lator) is properly precharged for the maximum is considered, check with your CAT PUMPS supplier to confirm the proper system pressure (refer to individual Data Sheet). performance and pump selection. Refer to individual pump Data Sheet for complete A reliable Pressure Gauge should be installed near the discharge outlet of specifications, parts list and exploded view. the high pressure manifold. This is extremely important for adjusting pressure LUBRICATION: Fill crankcase with special CAT PUMP oil per pump specifications regulating devices and also for proper sizing of the nozzle or restricting [3FR-10 oz., 4FR-21 oz., 5FR-21 oz.,10FR-40 oz., 25FR-84 oz., 60FR-10 Qts.]. DO orifice. The pump is rated for a maximum pressure; this is the pressure which would NOT RUN PUMP WITHOUT OIL IN CRANKCASE. Change initial fill after 50 hours be read at the discharge manifold of the pump, NOT AT THE GUN OR NOZZLE.
    [Show full text]
  • A Design Strategy for Volumetric Efficiency Improvement in a Multi-Cylinder Stationary Diesel Engine and Its Validity Under Transient Engine Operation
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Directory of Open Access Journals SCI-PUBLICATIONS American Journal of Applied Sciences 5 (3): 189-196, 2008 ISSN 1546-9239 © 2008 Science Publications A Design Strategy for Volumetric Efficiency Improvement in a Multi-cylinder Stationary Diesel Engine and its Validity under Transient Engine Operation 1P. Seenikannan, 2V.M.Periasamy and 3P.Nagaraj 1 Author Manuscrip Deptartment of Mech., Sethu Institute of Tech., Kariapatti, T.N, India, 626106 2 Crescent Engineering College, Chennai, T.N, India 3Deptartmentof Mech, Mepco Schlenk Engg College, T.N., India Abstract: This paper proposes an approach to improve engine performance of volumetric efficiency of a multi cylinder diesel engine. A computer simulation model is used to compare volumetric efficiency with instantaneous values. A baseline engine model is first correlated with measured volumetric efficiency data to establish confidence in the engine model’s predictions. A derivative of the baseline model with exhaust manifold, is then subjected to a transient expedition simulating typical, in-service, t maximum rates of engine speed change. Instantaneous volumetric efficiency, calculated over discrete engine cycles forming the sequence, is then compared with its steady speed equivalent at the corresponding speed. It is shown that the engine volumetric efficiency responds almost quasi-steadily under transient operation thus justifying the assumption of correlation between steady speed and transient data. The computer model is used to demonstrate the basic gas dynamic phenomena graphically. The paper provides a good example of the application of computer simulation techniques in providing answers to real engineering questions.
    [Show full text]
  • Jaguar E-Type 3.8 & 4.2 Classic Manifold Kits for Weber
    JAGUAR E-TYPE 3.8 & 4.2 CLASSIC MANIFOLD KITS FOR WEBER CARBURETTORS, www.mangoletsimanifolds.com UNIQUE MANIFOLD AND THROTTLE CONTROL SYSTEM –Patent Pending 0922289.4 Classic Polished Flat Topped Water Gallery with polished thermostat housing From a new throttle pedal and ready-assembled linkages - through to perfectly matched head ports with innovative template method Over a two year period we have developed our new range, and up-dated our classic manifolds, in conjunction with 6 leading E-Type specialists in UK and USA. We thank them for their combined input in respect of design, fitting, engine performance and driveability, now incorporated in the final manifolds and linkages. The template matching system has been well received. Manifolds – Quality castings are essential for water jacketed manifolds. Mangoletsi manifolds are specially tooled to be cast by a highly mechanised specialist foundry, who produce original equipment cylinder heads, blocks and manifolds for engine manufacturers, to BS9001 quality standards. Manifolds are cast in heat treated LM25, double impregnated and pressure tested. See website – www.mangoletsimanifolds.com/technical. One servo offtake to all six cylinders via unique Mangoletsi cast-in air gallery Removes servo related flat spots under braking. The servo drillings are angled to enter the side of the ports. If drilled directly underneath the port, fuel may enter the servo system. (Further manifold information – see page 2) “Out of the Box” Fit – Much of the extensive development time was spent on refining all the components to suit the various different models and then producing dedicated parts, castings, hoses, hosetails, etc. (see page 3) All new fully adjustable throttle pedal assembly - unique “sliding set-up” carburettor linkage system( Page 4) “I had the pleasure of driving Harry's (E Type UK) EFI demonstrator a few weeks back and was mightily impressed with the smooth throttle response.
    [Show full text]
  • Lenntech.Com Lenntech Tel
    SF PLUNGER PUMP SERVICE MANUAL ® 2SF, 2SFX, CEE, SEEL MODELS: 4SF MODELS: 2SF10, 2SF20, 2SF22, 4SF32ELS, 4SF40ELS, 4SF45ELS, 4SF50ELS, 2SF25, 2SF29, 2SF30, 2SF35 4SF30GS1, 4SF35GS1, 4SF40GS1, 4SF45GS1, 2SF05, 10, 15, 25, 29, 35SEEL 4SF45GS118, 4SF50GS1 INSTALLATION AND START-UP INFORMATION Optimum performance of the pump is dependent upon the entire liquid system and will be obtained only with the proper selection, installation of plumbing, and operation of the pump and accessories. SPECIFICATIONS: Maximum specifications refer to individual attributes. It is not A reliable Pressure Gauge should be installed near the discharge outlet of the high implied that all maximums can be performed simultaneously. If more than one pressure manifold. This is extremely important for adjusting pressure regulating maximum is considered, check with your CAT PUMPS supplier to confirm the proper devices and also for proper sizing of the nozzle or restricting orifice. The pump is performance and pump selection. Refer to individual pump Data Sheet for complete rated for a maximum pressure; this is the pressure which would be read at the specifications, parts list and exploded view. discharge manifold of the pump, NOT AT THE GUN OR NOZZLE. LUBRICATION: Fill crankcase with special CAT PUMP oil per pump specifications Use PTFE thread tape or pipe thread sealant (sparingly) to connect accessories or [2SF, 2SFX: prior 3/03-11.83 oz., after 3/03-10.15 oz., 4SF: 23.66 oz.]. DO NOT plumbing. Exercise caution not to wrap tape beyond the last thread to avoid tape from RUN PUMP WITHOUT OIL IN CRANKCASE. Change initial fill after 50 hours run- becoming lodged in the pump or accessories.
    [Show full text]