Econometrics and Statistics (Ecosta 2017)

Total Page:16

File Type:pdf, Size:1020Kb

Econometrics and Statistics (Ecosta 2017) EcoSta2017 PROGRAMME AND ABSTRACTS 1st International Conference on Econometrics and Statistics (EcoSta 2017) http://cmstatistics.org/EcoSta2017 Hong Kong University of Science and Technology 15 – 17 June 2017 c ECOSTA Econometrics and Statistics. All rights reserved. I EcoSta2017 ISBN: 978-9963-2227-2-8 c 2017 - ECOSTA Econometrics and Statistics Technical Editors: Gil Gonzalez-Rodriguez and Marc Hofmann. All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any other form or by any means without the prior permission from the publisher. II c ECOSTA Econometrics and Statistics. All rights reserved. EcoSta2017 Co-chairs: Ana Colubi, Erricos J. Kontoghiorghes, Tsung-I Lin, Yasuhiro Omori, Byeong Park and Mike K.P. So. Scientific Programme Committee: Alessandra Amendola, Eric Beutner, Monica Billio, Cathy W.S. Chen, Ray-bin Chen, Ming-Yen Cheng, Jeng-Min Chiou, Sung Nok Chiu, Taeryon Choi, Bertrand Clarke, Aurore Delaigle, Jean-Marie Dufour, Yang Feng, Alain Hecq, Inchi Hu, Salvatore Ingrassia, Yongdai Kim, Robert Kohn, Carlos Lamarche, Degui Li, WK Li, Yi Li, Zudi Lu, Geoff McLachlan, Samuel Mueller, Marc Paolella, Tommaso Proietti, Artem Prokhorov, Igor Pruenster, Jeroen Rombouts, Huiyan Sang, Tak Kuen Siu, Xinyuan Song, Mark Steel, Jianguo Sun, Nobuhiko Terui, Alan Wan, Lan Wang, Toshiaki Watanabe, Yoon-Jae Whang, Heung Wong, Valentin Zelenyuk, Helen Zhang, Ping-Shou Zhong and Hongtu Zhu. Local Organizing Committee: Yingying Li, Xinghua Zheng, Lilun Du, Catherine Chunling Liu, Alan Wan, Geoffrey Tso and Min Xie. c ECOSTA Econometrics and Statistics. All rights reserved. III EcoSta2017 Dear Colleagues, It is a great pleasure to welcome you to the 1st International Conference on Econometrics and Statistics (EcoSta 2017). The Conference is co-organized by the Working Group on Computational and Methodological Statistics (CMStatistics), the Network of Computational and Financial Econometrics (CFENetwork), and the Hong Kong University of Science and Technology (HKUST) Business School. The aim is for the conference to become a leading meeting in econometrics, statistics and their applications. The EcoSta 2017 consists of almost 150 sessions, four keynote talks, four invited sessions, and about 600 presen- tations. There are over 650 participants. This is quite impressive for a first edition of a conference. It is indeed promising that the EcoSta conference will become a successful medium for the dissemination of high quality re- search in Econometrics and Statistics, and facilitate networking. The Co-chairs observed that the collective effort of the scientific program committee, session organizers, and local organizing committee has produced a programme that spans all the areas of econometrics and statistics. The HKUST provides excellent facilities and a fantastic environment with an astonishing scenery on the outskirts of Hong Kong. The local host, volunteers, and sponsoring universities have substantially contributed through their effort to the successful organization of the conference. We thank them all for their support. Particularly we express our sincere appreciation to the host and main sponsor, the HKUST Business School. It is hoped that the quality of both the scientific programme and the HKUST will provide the participants with a productive, stimulating conference, and an enjoyable stay in Honk Kong. The Elsevier journals of Econometrics and Statistics (EcoSta) and Computational Statistics & Data Analysis (CSDA) are associated with CFEnetwork, CMStatistics, and the EcoSta 2017 conference. The participants are encouraged to submit their papers to special or regular peer-reviewed issues of EcoSta and CSDA, and to join the networks. Finally, we are happy to announce that the 2nd International Conference on Econometrics and Statistics (EcoSta 2018) will take place at the City University of Hong Kong from Tuesday 19 to Thursday 21 of June 2018. You are invited to participate actively in these events. Ana Colubi, Erricos J. Kontoghiorghes and Mike K.P. So on behalf of the Co-Chairs IV c ECOSTA Econometrics and Statistics. All rights reserved. EcoSta2017 CMStatistics: ERCIM Working Group on COMPUTATIONAL AND METHODOLOGICAL STATISTICS http://www.cmstatistics.org The working group (WG) CMStatistics comprises a number of specialized teams in various research areas of computational and methodological statistics. The teams act autonomously within the framework of the WG in order to promote their own research agenda. Their activities are endorsed by the WG. They submit research proposals, organize sessions, tracks and tutorials during the annual WG meetings and edit journal special issues. The Econometrics and Statistics (EcoSta) and Computational Statistics & Data Analysis (CSDA) are the official journals of the CMStatistics. Specialized teams Currently the ERCIM WG has over 1650 members and the following specialized teams BM: Bayesian Methodology MM: Mixture Models CODA: Complex data structures and Object Data Analysis MSW: Multi-Set and multi-Way models CPEP: Component-based methods for Predictive and Ex- NPS: Non-Parametric Statistics ploratory Path modeling OHEM: Optimization Heuristics in Estimation and Modelling DMC: Dependence Models and Copulas RACDS: Robust Analysis of Complex Data Sets DOE: Design Of Experiments SAE: Small Area Estimation EF: Econometrics and Finance SAET: Statistical Analysis of Event Times GCS: General Computational Statistics WG CMStatistics SAS: GMS: General Methodological Statistics WG CMStatistics Statistical Algorithms and Software GOF: Goodness-of-Fit and Change-Point Problems SEA: Statistics of Extremes and Applications HDS: High-Dimensional Statistics SFD: Statistics for Functional Data ISDA: Imprecision in Statistical Data Analysis SL: Statistical Learning LVSEM: Latent Variable and Structural Equation Models SSEF: Statistical Signal Extraction and Filtering MCS: Matrix Computations and Statistics TSMC: Times Series Modelling and Computation You are encouraged to become a member of the WG. For further information please contact the Chairs of the specialized groups (see the WG’s website), or by email at [email protected]. CFEnetwork COMPUTATIONAL AND FINANCIAL ECONOMETRICS http://www.CFEnetwork.org The Computational and Financial Econometrics (CFEnetwork) comprises a number of specialized teams in various research areas of theoretical and applied econometrics, financial econometrics and computation, and empirical finance. The teams contribute to the activities of the network by organizing sessions, tracks and tutorials during the annual CFEnetwork meetings, and by submitting research proposals. Furthermore the teams edit special issues currently published under the Annals of CFE. The Econometrics and Statistics (EcoSta) is the official journal of the CFEnetwork. Specialized teams Currently the CFEnetwork has over 1000 members and the following specialized teams AE: Applied Econometrics ET: Econometric Theory BE: Bayesian Econometrics FA: Financial Applications BM: Bootstrap Methods FE: Financial Econometrics CE: Computational Econometrics TSE: Time Series Econometrics You are encouraged to become a member of the CFEnetwork. For further information please see the website or contact by email at [email protected]. c ECOSTA Econometrics and Statistics. All rights reserved. V EcoSta2017 SCHEDULE 2017-06-14 2017-06-15 2017-06-16 2017-06-17 Opening, 08:45 - 09:00 F K A - Keynote EcoSta2017 EcoSta2017 EcoSta2017 08:30 - 09:50 08:30 - 09:50 09:00 - 09:50 Coffee Break Coffee Break Coffee Break, 09:50 - 10:15 09:50 - 10:25 09:50 - 10:25 L EcoSta2017 B G 10:15 - 11:30 EcoSta2017 EcoSta2017 10:25 - 12:30 10:20 - 12:25 M - Keynote EcoSta2017 11:40 - 12:30 Lunch Break Lunch Break Lunch Break 12:30 - 14:00 12:30 - 14:00 12:30 - 14:00 H - Keynote EcoSta2017 C 14:00 - 14:50 N EcoSta2017 EcoSta2017 14:00 - 15:40 14:00 - 15:40 I Coffee Break EcoSta2017 Coffee Break 15:40 - 16:10 15:00 - 16:40 15:40 - 16:10 D EcoSta2017 Coffee Break O 16:10 - 17:25 16:40 - 17:10 EcoSta2017 16:10 - 17:50 E - Keynote J EcoSta2017 Registration & Ice Breaker EcoSta2017 Closing, 17:55 - 18:10 17:40 - 18:30 17:10 - 18:50 17:30 - 19:00 Closing Drink, 18:15 - 18:40 Welcome Reception 18:45 - 20:15 Conference Dinner 19:45 - 22:15 VI c ECOSTA Econometrics and Statistics. All rights reserved. EcoSta2017 MEETINGS AND SOCIAL EVENTS SPECIAL MEETINGS by invitation to group members • The Econometrics and Statistics (EcoSta) Editorial Board meeting will take place on Saturday 17th of June 2017, 09:50-10:50, Room LSK1032. The meeting is by invitation only. • The Econometrics and Statistics (EcoSta) Editorial Board dinner will take place on Saturday 17th of June 2017, 20:00-22:30. A minibus will depart from the conference venue at 19:20. The dinner is by invitation only. SOCIAL EVENTS • Registration & Ice breaker, Wednesday 14th of June 2017, from 17:30 - 19:00. The Ice breaker is open to all registrants and accompanying persons. It will take place at the Hall of the ground floor (see map at page IX). • The coffee breaks will take place at the Conference Lodge (see map at page VIII). You must have your conference badge in order to attend the coffee breaks. • Welcome Reception, Thursday 15th of June 2017, from 18:45 - 20:15. The Welcome Reception is open to all registrants and accompanying persons who have purchased a reception ticket. It will take place at the Lo Ka Chung University Center (see maps at page VIII). Conference registrants must bring their conference badge and ticket and any accompanying persons shall bring their reception tickets in order to attend the reception. Preregistration is required due to health and safety reasons, and limited capacity of the venue. Entrance to the reception venue will be strictly allowed only to those who have a ticket. The Welcome Reception is fully sponsored by the HKUST Business School. • Conference Dinner, Friday 16th of June, from 19:45 to 22:15. The conference dinner is optional and registration is required. It will take place at the Conference Lodge (see map at page VIII). Conference registrants and accompanying persons shall bring their conference dinner tickets in order to attend the conference dinner. • Conference Buffet Lunches.
Recommended publications
  • Applied Probability
    ISSN 1050-5164 (print) ISSN 2168-8737 (online) THE ANNALS of APPLIED PROBABILITY AN OFFICIAL JOURNAL OF THE INSTITUTE OF MATHEMATICAL STATISTICS Articles Optimal control of branching diffusion processes: A finite horizon problem JULIEN CLAISSE 1 Change point detection in network models: Preferential attachment and long range dependence . SHANKAR BHAMIDI,JIMMY JIN AND ANDREW NOBEL 35 Ergodic theory for controlled Markov chains with stationary inputs YUE CHEN,ANA BUŠIC´ AND SEAN MEYN 79 Nash equilibria of threshold type for two-player nonzero-sum games of stopping TIZIANO DE ANGELIS,GIORGIO FERRARI AND JOHN MORIARTY 112 Local inhomogeneous circular law JOHANNES ALT,LÁSZLÓ ERDOS˝ AND TORBEN KRÜGER 148 Diffusion approximations for controlled weakly interacting large finite state systems withsimultaneousjumps.........AMARJIT BUDHIRAJA AND ERIC FRIEDLANDER 204 Duality and fixation in -Wright–Fisher processes with frequency-dependent selection ADRIÁN GONZÁLEZ CASANOVA AND DARIO SPANÒ 250 CombinatorialLévyprocesses.......................................HARRY CRANE 285 Eigenvalue versus perimeter in a shape theorem for self-interacting random walks MAREK BISKUP AND EVIATAR B. PROCACCIA 340 Volatility and arbitrage E. ROBERT FERNHOLZ,IOANNIS KARATZAS AND JOHANNES RUF 378 A Skorokhod map on measure-valued paths with applications to priority queues RAMI ATAR,ANUP BISWAS,HAYA KASPI AND KAV I TA RAMANAN 418 BSDEs with mean reflection . PHILIPPE BRIAND,ROMUALD ELIE AND YING HU 482 Limit theorems for integrated local empirical characteristic exponents from noisy high-frequency data with application to volatility and jump activity estimation JEAN JACOD AND VIKTOR TODOROV 511 Disorder and wetting transition: The pinned harmonic crystal indimensionthreeorlarger.....GIAMBATTISTA GIACOMIN AND HUBERT LACOIN 577 Law of large numbers for the largest component in a hyperbolic model ofcomplexnetworks..........NIKOLAOS FOUNTOULAKIS AND TOBIAS MÜLLER 607 Vol.
    [Show full text]
  • Superprocesses and Mckean-Vlasov Equations with Creation of Mass
    Sup erpro cesses and McKean-Vlasov equations with creation of mass L. Overb eck Department of Statistics, University of California, Berkeley, 367, Evans Hall Berkeley, CA 94720, y U.S.A. Abstract Weak solutions of McKean-Vlasov equations with creation of mass are given in terms of sup erpro cesses. The solutions can b e approxi- mated by a sequence of non-interacting sup erpro cesses or by the mean- eld of multityp e sup erpro cesses with mean- eld interaction. The lat- ter approximation is asso ciated with a propagation of chaos statement for weakly interacting multityp e sup erpro cesses. Running title: Sup erpro cesses and McKean-Vlasov equations . 1 Intro duction Sup erpro cesses are useful in solving nonlinear partial di erential equation of 1+ the typ e f = f , 2 0; 1], cf. [Dy]. Wenowchange the p oint of view and showhowtheyprovide sto chastic solutions of nonlinear partial di erential Supp orted byanFellowship of the Deutsche Forschungsgemeinschaft. y On leave from the Universitat Bonn, Institut fur Angewandte Mathematik, Wegelerstr. 6, 53115 Bonn, Germany. 1 equation of McKean-Vlasovtyp e, i.e. wewant to nd weak solutions of d d 2 X X @ @ @ + d x; + bx; : 1.1 = a x; t i t t t t t ij t @t @x @x @x i j i i=1 i;j =1 d Aweak solution = 2 C [0;T];MIR satis es s Z 2 t X X @ @ a f = f + f + d f + b f ds: s ij s t 0 i s s @x @x @x 0 i j i Equation 1.1 generalizes McKean-Vlasov equations of twodi erenttyp es.
    [Show full text]
  • IMS Grace Wahba Award and Lecture
    Volume 50 • Issue 4 IMS Bulletin June/July 2021 IMS Grace Wahba Award and Lecture The IMS is pleased to announce the creation of a new award and lecture, to honor CONTENTS Grace Wahba’s monumental contributions to statistics and science. These include her 1 New IMS Grace Wahba Award pioneering and influential work in mathematical statistics, machine learning and opti- and Lecture mization; broad and career-long interdisciplinary collaborations that have had a sig- 2 Members’ news : Kenneth nificant impact in epidemiology, bioinformatics and climate sciences; and outstanding Lange, Kerrie Mengersen, Nan mentoring during her 51-year career as an educator. The inaugural Wahba award and Laird, Daniel Remenik, Richard lecture is planned for the 2022 IMS annual meeting in London, then annually at JSM. Samworth Grace Wahba is one of the outstanding statisticians of our age. She has transformed 4 Grace Wahba: profile the fields of mathematical statistics and applied statistics. Wahba’s RKHS theory plays a central role in nonparametric smoothing and splines, and its importance is widely 7 Caucus for Women in recognized. In addition, Wahba’s contributions Statistics 50th anniversary straddle the boundary between statistics and 8 IMS Travel Award winners optimization, and have led to fundamental break- 9 Radu’s Rides: Notes to my Past throughs in machine learning for solving problems Self arising in prediction, classification and cross-vali- dation. She has paved a foundation for connecting 10 Previews: Nancy Zhang, Ilmun Kim theory and practice of function estimation, and has developed, along with her students, unified 11 Nominate IMS Lecturers estimation methods, scalable algorithms and 12 IMS Fellows 2021 standard software toolboxes that have made regu- 16 Recent papers: AIHP and larization approaches widely applicable to solving Observational Studies complex problems in modern science discovery Grace Wahba and technology innovation.
    [Show full text]
  • Coauthorship and Citation Networks for Statisticians
    Submitted to the Annals of Applied Statistics arXiv: arXiv:0000.0000 COAUTHORSHIP AND CITATION NETWORKS FOR STATISTICIANS By Pengsheng Jiy and Jiashun Jinz University of Georgiay and Carnegie Mellon Universityz We have collected and cleaned two network data sets: Coauthor- ship and Citation networks for statisticians. The data sets are based on all research papers published in four of the top journals in statis- tics from 2003 to the first half of 2012. We analyze the data sets from many different perspectives, focusing on (a) centrality, (b) commu- nity structures, and (c) productivity, patterns and trends. For (a), we have identified the most prolific/collaborative/highly cited authors. We have also identified a handful of \hot" papers, suggesting \Variable Selection" as one of the \hot" areas. For (b), we have identified about 15 meaningful communities or research groups, including large-size ones such as \Spatial Statis- tics", \Large-Scale Multiple Testing", \Variable Selection" as well as small-size ones such as \Dimensional Reduction", \Objective Bayes", \Quantile Regression", and \Theoretical Machine Learning". For (c), we find that over the 10-year period, both the average number of papers per author and the fraction of self citations have been decreasing, but the proportion of distant citations has been increasing. These suggest that the statistics community has become increasingly more collaborative, competitive, and globalized. Our findings shed light on research habits, trends, and topological patterns of statisticians. The data sets provide a fertile ground for future researches on or related to social networks of statisticians. 1. Introduction. It is frequently of interest to identify \hot" areas and key authors in a scientific community, and to understand the research habits, trends, and topological patterns of the researchers.
    [Show full text]
  • Semimartingale Properties of a Generalized Fractional Brownian Motion and Its Mixtures with Applications in finance
    Semimartingale properties of a generalized fractional Brownian motion and its mixtures with applications in finance TOMOYUKI ICHIBA, GUODONG PANG, AND MURAD S. TAQQU ABSTRACT. We study the semimartingale properties for the generalized fractional Brownian motion (GFBM) introduced by Pang and Taqqu (2019) and discuss the applications of the GFBM and its mixtures to financial models, including stock price and rough volatility. The GFBM is self-similar and has non-stationary increments, whose Hurst index H 2 (0; 1) is determined by two parameters. We identify the region of these two parameter values where the GFBM is a semimartingale. Specifically, in one region resulting in H 2 (1=2; 1), it is in fact a process of finite variation and differentiable, and in another region also resulting in H 2 (1=2; 1) it is not a semimartingale. For regions resulting in H 2 (0; 1=2] except the Brownian motion case, the GFBM is also not a semimartingale. We also establish p-variation results of the GFBM, which are used to provide an alternative proof of the non-semimartingale property when H < 1=2. We then study the semimartingale properties of the mixed process made up of an independent Brownian motion and a GFBM with a Hurst parameter H 2 (1=2; 1), and derive the associated equivalent Brownian measure. We use the GFBM and its mixture with a BM to study financial asset models. The first application involves stock price models with long range dependence that generalize those using shot noise processes and FBMs. When the GFBM is a process of finite variation (resulting in H 2 (1=2; 1)), the mixed GFBM process as a stock price model is a Brownian motion with a random drift of finite variation.
    [Show full text]
  • Strength in Numbers: the Rising of Academic Statistics Departments In
    Agresti · Meng Agresti Eds. Alan Agresti · Xiao-Li Meng Editors Strength in Numbers: The Rising of Academic Statistics DepartmentsStatistics in the U.S. Rising of Academic The in Numbers: Strength Statistics Departments in the U.S. Strength in Numbers: The Rising of Academic Statistics Departments in the U.S. Alan Agresti • Xiao-Li Meng Editors Strength in Numbers: The Rising of Academic Statistics Departments in the U.S. 123 Editors Alan Agresti Xiao-Li Meng Department of Statistics Department of Statistics University of Florida Harvard University Gainesville, FL Cambridge, MA USA USA ISBN 978-1-4614-3648-5 ISBN 978-1-4614-3649-2 (eBook) DOI 10.1007/978-1-4614-3649-2 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 2012942702 Ó Springer Science+Business Media New York 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
    [Show full text]
  • Lecture 19 Semimartingales
    Lecture 19:Semimartingales 1 of 10 Course: Theory of Probability II Term: Spring 2015 Instructor: Gordan Zitkovic Lecture 19 Semimartingales Continuous local martingales While tailor-made for the L2-theory of stochastic integration, martin- 2,c gales in M0 do not constitute a large enough class to be ultimately useful in stochastic analysis. It turns out that even the class of all mar- tingales is too small. When we restrict ourselves to processes with continuous paths, a naturally stable family turns out to be the class of so-called local martingales. Definition 19.1 (Continuous local martingales). A continuous adapted stochastic process fMtgt2[0,¥) is called a continuous local martingale if there exists a sequence ftngn2N of stopping times such that 1. t1 ≤ t2 ≤ . and tn ! ¥, a.s., and tn 2. fMt gt2[0,¥) is a uniformly integrable martingale for each n 2 N. In that case, the sequence ftngn2N is called the localizing sequence for (or is said to reduce) fMtgt2[0,¥). The set of all continuous local loc,c martingales M with M0 = 0 is denoted by M0 . Remark 19.2. 1. There is a nice theory of local martingales which are not neces- sarily continuous (RCLL), but, in these notes, we will focus solely on the continuous case. In particular, a “martingale” or a “local martingale” will always be assumed to be continuous. 2. While we will only consider local martingales with M0 = 0 in these notes, this is assumption is not standard, so we don’t put it into the definition of a local martingale. tn 3.
    [Show full text]
  • Fclts for the Quadratic Variation of a CTRW and for Certain Stochastic Integrals
    FCLTs for the Quadratic Variation of a CTRW and for certain stochastic integrals No`eliaViles Cuadros (joint work with Enrico Scalas) Universitat de Barcelona Sevilla, 17 de Septiembre 2013 Damped harmonic oscillator subject to a random force The equation of motion is informally given by x¨(t) + γx_(t) + kx(t) = ξ(t); (1) where x(t) is the position of the oscillating particle with unit mass at time t, γ > 0 is the damping coefficient, k > 0 is the spring constant and ξ(t) represents white L´evynoise. I. M. Sokolov, Harmonic oscillator under L´evynoise: Unexpected properties in the phase space. Phys. Rev. E. Stat. Nonlin Soft Matter Phys 83, 041118 (2011). 2 of 27 The formal solution is Z t x(t) = F (t) + G(t − t0)ξ(t0)dt0; (2) −∞ where G(t) is the Green function for the homogeneous equation. The solution for the velocity component can be written as Z t 0 0 0 v(t) = Fv (t) + Gv (t − t )ξ(t )dt ; (3) −∞ d d where Fv (t) = dt F (t) and Gv (t) = dt G(t). 3 of 27 • Replace the white noise with a sequence of instantaneous shots of random amplitude at random times. • They can be expressed in terms of the formal derivative of compound renewal process, a random walk subordinated to a counting process called continuous-time random walk. A continuous time random walk (CTRW) is a pure jump process given by a sum of i.i.d. random jumps fYi gi2N separated by i.i.d. random waiting times (positive random variables) fJi gi2N.
    [Show full text]
  • Solving Black-Schole Equation Using Standard Fractional Brownian Motion
    http://jmr.ccsenet.org Journal of Mathematics Research Vol. 11, No. 2; 2019 Solving Black-Schole Equation Using Standard Fractional Brownian Motion Didier Alain Njamen Njomen1 & Eric Djeutcha2 1 Department of Mathematics and Computer’s Science, Faculty of Science, University of Maroua, Cameroon 2 Department of Mathematics, Higher Teachers’ Training College, University of Maroua, Cameroon Correspondence: Didier Alain Njamen Njomen, Department of Mathematics and Computer’s Science, Faculty of Science, University of Maroua, Po-Box 814, Cameroon. Received: May 2, 2017 Accepted: June 5, 2017 Online Published: March 24, 2019 doi:10.5539/jmr.v11n2p142 URL: https://doi.org/10.5539/jmr.v11n2p142 Abstract In this paper, we emphasize the Black-Scholes equation using standard fractional Brownian motion BH with the hurst index H 2 [0; 1]. N. Ciprian (Necula, C. (2002)) and Bright and Angela (Bright, O., Angela, I., & Chukwunezu (2014)) get the same formula for the evaluation of a Call and Put of a fractional European with the different approaches. We propose a formula by adapting the non-fractional Black-Scholes model using a λH factor to evaluate the european option. The price of the option at time t 2]0; T[ depends on λH(T − t), and the cost of the action S t, but not only from t − T as in the classical model. At the end, we propose the formula giving the implied volatility of sensitivities of the option and indicators of the financial market. Keywords: stock price, black-Scholes model, fractional Brownian motion, options, volatility 1. Introduction Among the first systematic treatments of the option pricing problem has been the pioneering work of Black, Scholes and Merton (see Black, F.
    [Show full text]
  • (G)ARCH Processes and the Phenomenon of Misleading and Unambiguous Signals
    (G)ARCH processes and the phenomenon of misleading and unambiguous signals Ana Beatriz Torres de Sousa Thesis to obtain the Master of Science Degree in Mathematics and Applications Supervisor: Prof. Manuel Jo˜ao Cabral Morais Examination Committee Chairperson: Prof. Ant´onio Manuel Pacheco Pires Supervisor: Prof. Manuel Jo˜ao Cabral Morais Members of the Committee: Prof. Patr´ıcia Alexandra de Azevedo Carvalho Ferreira e Pereira Ramos December 2015 Acknowledgments During the preparation of this dissertation, I received the help and support of several people to whom I would like to thank. First of all, I want to express my genuine gratitude to my supervisor, Professor Manuel Cabral Morais, for his guidance, constructive criticism, proofreading and specially for his patience during our weekly and stimulating meetings via Skype. My thanks are also extensive to: Professor Yarema Okhrin because without his programming sug- gestion I would have waited much longer for the simulations to end; and Professor Wolfgang Schmid for providing crucial critical values and, thus, saving me from excruciating computations and time consuming simulations. This thesis could not have been written without the support and infinite patience of my family and friends. I am deeply grateful to: my parents, Manuela and Fernando, for always being there pushing me forward; my sister Rita who showed me that even the hardest obstacles can be overcome with persistence; and my grandmother Alice who always believed in me even when I did not. i ii Resumo Uma s´erie temporal ´euma sequˆencia de observa¸c˜oes ordenadas no tempo. No estudo destas sequˆencias, ´enecess´ario reconhecer explicitamente a importˆancia da ordem pela qual as observa¸c˜oes s˜ao recolhidas, logo recorrer `aan´alise e aos modelos de s´eries temporais.
    [Show full text]
  • CFE-Cmstatistics 2020 Book of Abstracts
    CFE-CMStatistics 2020 PROGRAMME AND ABSTRACTS 14th International Conference on Computational and Financial Econometrics (Virtual CFE 2020) http://www.cfenetwork.org/CFE2020 and 13th International Conference of the ERCIM (European Research Consortium for Informatics and Mathematics) Working Group on Computational and Methodological Statistics (Virtual CMStatistics 2020) http://www.cmstatistics.org/CMStatistics2020 19 – 21 December 2020 Computational and Methodological Statistics CMStatistics Computational and CFENetwork Financial Econometrics ⃝c ECOSTA ECONOMETRICS AND STATISTICS. All rights reserved. I CFE-CMStatistics 2020 ISBN 978-9963-2227-9-7 ⃝c 2020 - ECOSTA ECONOMETRICS AND STATISTICS All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any other form or by any means without the prior permission from the publisher. II ⃝c ECOSTA ECONOMETRICS AND STATISTICS. All rights reserved. CFE-CMStatistics 2020 International Organizing Committee: Ana Colubi, Erricos Kontoghiorghes and Manfred Deistler. CFE 2020 Co-chairs: Anurag Banerjee, Scott Brave, Peter Pedroni and Mike So. CFE 2020 Programme Committee: Knut Are Aastveit, Alessandra Amendola, David Ardia, Josu Arteche, Anindya Banerjee, Travis Berge, Mon- ica Billio, Raffaella Calabrese, Massimiliano Caporin, Julien Chevallier, Serge Darolles, Luca De Angelis, Filippo Ferroni, Ana-Maria Fuertes, Massimo Guidolin, Harry Haupt, Masayuki Hirukawa, Benjamin Hol- cblat, Rustam Ibragimov, Laura Jackson Young, Michel Juillard, Edward Knotek, Robinson Kruse-Becher, Svetlana Makarova, Ilia Negri, Ingmar Nolte, Jose Olmo, Yasuhiro Omori, Jesus Otero, Michael Owyang, Alessia Paccagnini, Indeewara Perera, Jean-Yves Pitarakis, Tommaso Proietti, Artem Prokhorov, Tatevik Sekhposyan, Etsuro Shioji, Michael Smith, Robert Taylor, Martin Wagner and Ralf Wilke. CMStatistics 2020 Co-chairs: Tapabrata Maiti, Sofia Olhede, Michael Pitt, Cheng Yong Tang and Tim Verdonck.
    [Show full text]
  • Robust High Dimensional Factor Models with Applications to Statistical Machine Learning∗
    Robust high dimensional factor models with applications to statistical machine learning∗ Jianqing Fanyz, Kaizheng Wangy, Yiqiao Zhongy, Ziwei Zhuy August 14, 2018 Abstract Factor models are a class of powerful statistical models that have been widely used to deal with dependent measurements that arise frequently from various applications from genomics and neuroscience to economics and finance. As data are collected at an ever-growing scale, statistical machine learning faces some new challenges: high dimensionality, strong dependence among observed variables, heavy-tailed variables and heterogeneity. High-dimensional robust factor analysis serves as a powerful toolkit to conquer these challenges. This paper gives a selective overview on recent advance on high-dimensional factor models and their applications to statistics including Factor-Adjusted Robust Model selection (FarmSe- lect) and Factor-Adjusted Robust Multiple testing (FarmTest). We show that classical methods, especially principal component analysis (PCA), can be tailored to many new problems and pro- vide powerful tools for statistical estimation and inference. We highlight PCA and its connec- tions to matrix perturbation theory, robust statistics, random projection, false discovery rate, etc., and illustrate through several applications how insights from these fields yield solutions to modern challenges. We also present far-reaching connections between factor models and popular statistical learning problems, including network analysis and low-rank matrix recovery. Key Words: Factor model, PCA, covariance estimation, perturbation bounds, robustness, random sketch, FarmSelect, FarmTest 1 Introduction In modern data analytics, dependence across high-dimensional outcomes or measurements is ubiq- uitous. For example, stocks within the same industry exhibit significantly correlated returns, hous- ing prices of a country depend on various economic factors, gene expressions can be stimulated arXiv:1808.03889v1 [stat.ME] 12 Aug 2018 by cytokines.
    [Show full text]