43485 Veron Et Al 2015.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Status of Alcyonacean Corals Along Tuticorin Coast of Gulf of Mannar, Southeastern India
Indian Journal of Geo-Marine Sciences Vol. 43(4), April 2014, pp. 666-675 Status of Alcyonacean corals along Tuticorin coast of Gulf of Mannar, Southeastern India S. Rajesh, K. Diraviya Raj, G. Mathews, T. Sivaramakrishnan & J.K. Patterson Edward Suganthi Devadason Marine Research Institute 44-Beach Road, Tuticorin – 628 001, Tamil Nadu, India [E-mail: [email protected]] Received 28 November 2012; revised 7 December 2012 In this study, the assessment of alcyonaceans was conducted in Tuticorin coast of the Gulf of Mannar during the period between 2010 and 2012 in 5 locations; Vaan, Koswari, Kariyachalli and Vilanguchalli islands and mainland Punnakayal patch reef. Average alcyonacean coral cover in Tuticorin coast was 6.76% during 2011-12 which was 5.61% during 2010- 2011. Percentage cover of alcyonacean corals increased in all the study locations; Kariyachalli 12.04 to 13.96%; Vilanguchalli 8.94 to 10.23%; Koswari 1.6 to 3.69; Vaan 0.53 to 0.72; mainland Punnakayal patch reef 4.95 to 5.21% was documented. In total, 15 species from 7 genera were recorded during the study period. Though anthropogenic threats in Tuticorin coast are comparatively high, the abundance of alcyonacean corals has increased considerably showing their resilience and adaptability. [Keywords: Alcyonacean corals, Status, Diversity, Tuticorin, Gulf of Mannar] Introduction experience all the natural and anthropogenic threats. Alcyonacean corals (soft corals and gorgonians) Reef ecosystems of Gulf of Mannar are heavily are modular cnidarians composed of polyps that stressed due to various human induced threats like always have eight tentacles and are oftentimes destructive and over fishing practices, coral mining, connected by vessels classified under subclass domestic and industrial pollution, seaweed and other Octocorallia while hard corals have six tentacles resource collection in reef areas and invasion of (which are hexa corals). -
Checklist of Fish and Invertebrates Listed in the CITES Appendices
JOINTS NATURE \=^ CONSERVATION COMMITTEE Checklist of fish and mvertebrates Usted in the CITES appendices JNCC REPORT (SSN0963-«OStl JOINT NATURE CONSERVATION COMMITTEE Report distribution Report Number: No. 238 Contract Number/JNCC project number: F7 1-12-332 Date received: 9 June 1995 Report tide: Checklist of fish and invertebrates listed in the CITES appendices Contract tide: Revised Checklists of CITES species database Contractor: World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge, CB3 ODL Comments: A further fish and invertebrate edition in the Checklist series begun by NCC in 1979, revised and brought up to date with current CITES listings Restrictions: Distribution: JNCC report collection 2 copies Nature Conservancy Council for England, HQ, Library 1 copy Scottish Natural Heritage, HQ, Library 1 copy Countryside Council for Wales, HQ, Library 1 copy A T Smail, Copyright Libraries Agent, 100 Euston Road, London, NWl 2HQ 5 copies British Library, Legal Deposit Office, Boston Spa, Wetherby, West Yorkshire, LS23 7BQ 1 copy Chadwick-Healey Ltd, Cambridge Place, Cambridge, CB2 INR 1 copy BIOSIS UK, Garforth House, 54 Michlegate, York, YOl ILF 1 copy CITES Management and Scientific Authorities of EC Member States total 30 copies CITES Authorities, UK Dependencies total 13 copies CITES Secretariat 5 copies CITES Animals Committee chairman 1 copy European Commission DG Xl/D/2 1 copy World Conservation Monitoring Centre 20 copies TRAFFIC International 5 copies Animal Quarantine Station, Heathrow 1 copy Department of the Environment (GWD) 5 copies Foreign & Commonwealth Office (ESED) 1 copy HM Customs & Excise 3 copies M Bradley Taylor (ACPO) 1 copy ^\(\\ Joint Nature Conservation Committee Report No. -
Information Exchange for Marine Educators
National Oceanic and Atmospheric Administration Information Exchange for Marine Educators Archive of Educational Programs, Activities, and Websites Environmental and Ocean Literacy Environmental literacy is key to preserving the nation's natural resources for current and future use and enjoyment. An environmentally literate public results in increased stewardship of the natural environment. Many organizations are working to increase the understanding of students, teachers, and the general public about the environment in general, and the oceans and coasts in particular. The following are just some of the large-scale and regional initiatives which seek to provide standards and guidance for our educational efforts and form partnerships to reach broader audiences. (In the interest of brevity, please forgive the abbreviations, the abbreviated lists of collaborators, and the lack of mention of funding institutions). The lists are far from inclusive. Please send additional entries for inclusion in future newsletters. Background Documents Environmental Literacy in America - What 10 Years of NEETF/Roper Research and Related Studies Say About Environmental Literacy in the U.S. http://www.neetf.org/pubs/index.htm The U.S. Commission on Ocean Policy devoted a full chapter on promoting lifelong ocean education, Ocean Stewardship: The Importance of Education and Public Awareness. It reviews the current status of ocean education and provides recommendations for strengthening national educational capacity. http://www.oceancommission.gov/documents/full_color_rpt/08_chapter8.pdf Environmental and Ocean Literacy and Standards Mainstreaming Environmental Education – The North American Association for Environmental Education is involved with efforts to make high-quality environmental education part of all education in the United States and has initiated the National Project for Excellence in Environmental Education. -
EXTENDED COST BENEFIT ANALYSIS of PRESENT and FUTURE USE of INDONESIAN CORAL REEFS an Empirical Approach to Sustainable Management of Tropical Marine Resources
Aus dem Institut für Agrarökonomie der Christian-Albrechts-Universität zu Kiel EXTENDED COST BENEFIT ANALYSIS OF PRESENT AND FUTURE USE OF INDONESIAN CORAL REEFS An Empirical Approach to Sustainable Management of Tropical Marine Resources Dissertation zur Erlangung des Doktorgrades der Agrar-und Ernährungswissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Magister of Science Achmad Fahrudin aus Jakarta (Indonesien) Kiel, November 2003 Dekan : Prof. Dr. Friedhelm Taube Erster Berichterstatter : Prof. Dr. Christian Noell Zweiter Berichterstatter : Prof. Dr. Franciscus Colijn Tag der mündlichen Prüfung: 06.11.2003 i Gedruckt mit Genehmigung der Agrar- und Ernährungswissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel ii Zusammenfassung Korallen stellen einen wichtigen Faktor der indonesischen Wirtschaft dar. Im Vergleich zu anderen Ländern weisen die Korallenriffe Indonesiens die höchsten Schädigungen auf. Das zerstörende Fischen ist ein Hauptgrund für die Degradation der Korallenriffe in Indonesien, so dass das Gesamtsystem dieser Fangpraxis analysiert werden muss. Dazu wurden im Rahmen dieser Studie die Standortbedingungen der Korallen erfasst, die Hauptnutzungen mit ihren jeweiligen Auswirkungen und typischen Merkmale der Nutzungen bestimmt sowie die politische Haltung der gegenwärtigen Regierung gegenüber diesem Problemfeld untersucht. Die Feldarbeit wurde in der Zeit von März 2001 bis März 2002 an den Korallenstandorten Seribu Islands (Jakarta), Menjangan Island (Bali) und Gili Islands -
CORAL REEF DEGRADATION in the INDIAN OCEAN Status Report 2005
Coral Reef Degradation in the Indian Ocean Status Report 2005 Coral Reef Degradation in the Indian Ocean. The coastal ecosystem of the Indian Ocean includes environments such as mangroves, sea- Program Coordination grass beds and coral reefs. These habitats are some CORDIO Secretariat Coral Reef Degradation of the most productive and diverse environments Olof Lindén on the planet. They form an essential link in the David Souter Department of Biology and Environmental food webs that leads to fish and other seafood in the Indian Ocean Science providing food security to the local human University of Kalmar population. In addition coral reefs and mangrove 29 82 Kalmar, Sweden Status Report 2005 forests protect the coastal areas against erosion. (e-mail: [email protected], Unfortunately, due to a number of human activi- [email protected]) Editors: DAVID SOUTER & OLOF LINDÉN ties, these valuable environments are now being degraded at an alarming rate. The use of destruc- CORDIO East Africa Coordination Center David Obura tive fishing techniques on reefs, coral mining and P.O. Box 035 pollution are examples of some of these stresses Bamburi, Mombasa, Kenya from local sources on the coral reefs. Climate (e-mail: [email protected], change is another stress factor which is causing [email protected]) additional destruction of the reefs. CORDIO is a collaborative research and CORDIO South Asia Coordination Center development program involving expert groups in Dan Wilhelmsson (to 2004) Status Report 2005 countries of the Indian Ocean. The focus of Jerker Tamelander (from 2005) IUCN (World Conservation Union) CORDIO is to mitigate the widespread degrada- 53 Horton Place, Colombo 7, Sri Lanka tion of the coral reefs and other coastal eco- (e-mail: [email protected]) systems by supporting research, providing knowledge, creating awareness, and assist in CORDIO Indian Ocean Islands developing alternative livelihoods. -
Resurrecting a Subgenus to Genus: Molecular Phylogeny of Euphyllia and Fimbriaphyllia (Order Scleractinia; Family Euphylliidae; Clade V)
Resurrecting a subgenus to genus: molecular phylogeny of Euphyllia and Fimbriaphyllia (order Scleractinia; family Euphylliidae; clade V) Katrina S. Luzon1,2,3,*, Mei-Fang Lin4,5,6,*, Ma. Carmen A. Ablan Lagman1,7, Wilfredo Roehl Y. Licuanan1,2,3 and Chaolun Allen Chen4,8,9,* 1 Biology Department, De La Salle University, Manila, Philippines 2 Shields Ocean Research (SHORE) Center, De La Salle University, Manila, Philippines 3 The Marine Science Institute, University of the Philippines, Quezon City, Philippines 4 Biodiversity Research Center, Academia Sinica, Taipei, Taiwan 5 Department of Molecular and Cell Biology, James Cook University, Townsville, Australia 6 Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan 7 Center for Natural Sciences and Environmental Research (CENSER), De La Salle University, Manila, Philippines 8 Taiwan International Graduate Program-Biodiversity, Academia Sinica, Taipei, Taiwan 9 Institute of Oceanography, National Taiwan University, Taipei, Taiwan * These authors contributed equally to this work. ABSTRACT Background. The corallum is crucial in building coral reefs and in diagnosing systematic relationships in the order Scleractinia. However, molecular phylogenetic analyses revealed a paraphyly in a majority of traditional families and genera among Scleractinia showing that other biological attributes of the coral, such as polyp morphology and reproductive traits, are underutilized. Among scleractinian genera, the Euphyllia, with nine nominal species in the Indo-Pacific region, is one of the groups Submitted 30 May 2017 that await phylogenetic resolution. Multiple genetic markers were used to construct Accepted 31 October 2017 Published 4 December 2017 the phylogeny of six Euphyllia species, namely E. ancora, E. divisa, E. -
Damage on South African Coral Reefs and an Assessment of Their Sustainable Diving Capacity Using a Fisheries Approach
BULLETIN OF MARINE SCIENCE, 67(3): 1025–1042, 2000 CORAL REEF PAPER DAMAGE ON SOUTH AFRICAN CORAL REEFS AND AN ASSESSMENT OF THEIR SUSTAINABLE DIVING CAPACITY USING A FISHERIES APPROACH Michael H. Schleyer and Bruce J. Tomalin ABSTRACT Coral reefs in a marine reserve at Sodwana Bay (27°30'S) make it a premier dive resort. Corals are at the southern limits of their African distribution on these reefs which are dominated by soft corals. The coastline is exposed and turbulent. An assessment of the degree to which sport diving damages the reefs is needed for their management. This study showed that recognizable diver damage is generally concentrated in heavily dived areas. This damage and that of unknown cause probably attributable to divers exceeded natural damage on the reefs, despite the normally rough seas. Fishing line discarded in angling areas also caused considerable damage by tangling around branching corals which become algal fouled and die. Heaviest damage was caused in isolated areas by a minor crown-of-thorns outbreak. A linear regression indicated that 10% diver damage occurs at 9000 dives per dive site p.a. Taking uncertainty into account, a precautionary limit of 7000 dives per dive site p.a. was recommended. Further recommendations are that the reefs be zoned in terms of their sensitivity to diver damage, depth and use by divers according to qualification, and a ban be placed on the use of diving gloves to reduce handling of the reefs. The complexity and beauty of coral reefs make them an attractive and valuable re- source for ecotourism (Davis and Tisdell, 1995). -
Bertarelli Programme in Marine Science Coral Reef Expedition to the British Indian Ocean Territory, April 2019
Bertarelli Programme in Marine Science Coral Reef Expedition to the British Indian Ocean Territory, April 2019 Figure 1: Early signs of coral reef recovery in BIOT, Takamaka, Salomon 1 | P a g e Executive Summary The Bertarelli Programme in Marine Science Coral Reef Expedition to the British Indian Ocean Territory on Coral Reef Condition took place in April 2019, and involved Bangor University, Oxford University, University College of London, and Woods Hole Oceanographic Institution, USA. The team joined the British Patrol Vessel Grampian Frontier in Male, Maldives on 6th April and travelled south, arriving Diego Garcia on 27th April 2019. Exceptionally calm seas were experienced until 17th April, and then rough conditions which progressively worsened until 27th April. Thirteen experienced scientific divers including a Medical Officer conducted a total of 113 dives, equating to 301 person dives and 318 hours underwater over the period. The team undertook 7 scientific tasks to investigate the current condition of the coral reefs at 34 sites across the archipelago as follows: Tasks 1 & 2: Coral condition, cover, juveniles, and water temperatures (C. Sheppard, A. Sheppard). Task 3: Extend video archive for long term assessment of coral reef benthic community structure (J. Turner, R. Roche, J. Sannassy Pilly). Task 4: Three-dimensional determination of reef structural complexity and spatial analysis of coral recruitment (D. Bayley, A. Mogg). Tasks 5 & 6: Spatiotemporal variations in internal wave driven upwelling and resilience potential across the Chagos Archipelago (G. Williams, M. Fox, A. Heenan, R. Roche) Task 7: Coral reef recovery and resilience (B. Wilson and A. Rose). The coral reefs of the Archipelago are still in an erosional state with very low coral cover 3 years after the back to back bleaching events of 2015/2016. -
Forecasting Intensifying Disturbance Effects on Coral Reefs
Author Manuscript This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/GCB.15059 This article is protected by copyright. All rights reserved Forecasting intensifying disturbance effects on coral reefs Julie Vercelloni∗1, 2, 3, 4, Benoit Liquet3, 5, Emma V. Kennedy†2, Manuel Gonzalez-Rivero´ ‡1, 2, M. Julian Caley3, 4, Erin E. Peterson3, 6, Marji Puotinen7, Ove Hoegh-Guldberg1, 2, and Kerrie Mengersen3, 4, 6 1ARC Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia 2The Global Change Institute, The University of Queensland, St Lucia, QLD 4072, Australia 3ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology, Brisbane, QLD 4000, Australia 4School of Mathematical Sciences, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia 5Universite´ de Pau et des Pays de l’Adour, E2S UPPA, CNRS, LMAP, Pau, France 6Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000 Australia 7Australian Institute of Marine Science, Indian Ocean Marine Research Centre, University of Western Australia, Crawley, WA 6009, Australia 1 Running title Modelling the structure of reef communities ∗Corresponding author - Electronic address: [email protected]; Phone number: +61731389817; ORCiD: 0000-0001-5227-014X †PresentAuthor Manuscript affiliation: School of Earth and Environmental Sciences, Faculty of Science, The University of Queensland, St Lucia, QLD 4072, Australia ‡Present affiliation: Australian Institute of Marine Science, PMB 3, Townsville MC, QLD 4810, Australia 1 This article is protected by copyright. -
The Great Barrier Reef and Coral Sea 20 Tom C.L
The Great Barrier Reef and Coral Sea 20 Tom C.L. Bridge, Robin J. Beaman, Pim Bongaerts, Paul R. Muir, Merrick Ekins, and Tiffany Sih Abstract agement approaches that explicitly considered latitudinal The Coral Sea lies in the southwestern Pacific Ocean, bor- and cross-shelf gradients in the environment resulted in dered by Australia, Papua New Guinea, the Solomon mesophotic reefs being well-represented in no-take areas in Islands, Vanuatu, New Caledonia, and the Tasman Sea. The the GBR. In contrast, mesophotic reefs in the Coral Sea Great Barrier Reef (GBR) constitutes the western margin currently receive little protection. of the Coral Sea and supports extensive submerged reef systems in mesophotic depths. The majority of research on Keywords the GBR has focused on Scleractinian corals, although Mesophotic coral ecosystems · Coral · Reef other taxa (e.g., fishes) are receiving increasing attention. · Queensland · Australia To date, 192 coral species (44% of the GBR total) are recorded from mesophotic depths, most of which occur shallower than 60 m. East of the Australian continental 20.1 Introduction margin, the Queensland Plateau contains many large, oce- anic reefs. Due to their isolated location, Australia’s Coral The Coral Sea lies in the southwestern Pacific Ocean, cover- Sea reefs remain poorly studied; however, preliminary ing an area of approximately 4.8 million square kilometers investigations have confirmed the presence of mesophotic between latitudes 8° and 30° S (Fig. 20.1a). The Coral Sea is coral ecosystems, and the clear, oligotrophic waters of the bordered by the Australian continent on the west, Papua New Coral Sea likely support extensive mesophotic reefs. -
BIOT Field Report
©2015 Khaled bin Sultan Living Oceans Foundation. All Rights Reserved. Science Without Borders®. All research was completed under: British Indian Ocean Territory, The immigration Ordinance 2006, Permit for Visit. Dated 10th April, 2015, issued by Tom Moody, Administrator. This report was developed as one component of the Global Reef Expedition: BIOT research project. Citation: Global Reef Expedition: British Indian Ocean Territory. Field Report 19. Bruckner, A.W. (2015). Khaled bin Sultan Living Oceans Foundation, Annapolis, MD. pp 36. The Khaled bin Sultan Living Oceans Foundation (KSLOF) was incorporated in California as a 501(c)(3), public benefit, Private Operating Foundation in September 2000. The Living Oceans Foundation is dedicated to providing science-based solutions to protect and restore ocean health. For more information, visit http://www.lof.org and https://www.facebook.com/livingoceansfoundation Twitter: https://twitter.com/LivingOceansFdn Khaled bin Sultan Living Oceans Foundation 130 Severn Avenue Annapolis, MD, 21403, USA [email protected] Executive Director Philip G. Renaud Chief Scientist Andrew W. Bruckner, Ph.D. Images by Andrew Bruckner, unless noted. Maps completed by Alex Dempsey, Jeremy Kerr and Steve Saul Fish observations compiled by Georgia Coward and Badi Samaniego Front cover: Eagle Island. Photo by Ken Marks. Back cover: A shallow reef off Salomon Atoll. The reef is carpeted in leather corals and a bleached anemone, Heteractis magnifica, is visible in the fore ground. A school of giant trevally, Caranx ignobilis, pass over the reef. Photo by Phil Renaud. Executive Summary Between 7 March 2015 and 3 May 2015, the Khaled bin Sultan Living Oceans Foundation conducted two coral reef research missions as components of our Global Reef Expedition (GRE) program. -
Climate Change Impacts on Corals: BIOT and the Pitcairn Islands 1
Climate change impacts on corals: BIOT and the Pitcairn Islands 1 Climate change impacts on corals in the UK Overseas Territories of BIOT and the Pitcairn Islands 2 Climate change impacts on corals: BIOT and the Pitcairn Islands BIOT The British Indian Ocean Territory Changes in sea level and extreme (BIOT) consists of five atolls of low-lying weather events In BIOT, sea level is rising twice as fast as the global islands, including the largest atoll in average. Extreme sea levels appear related to El Niño the world, Great Chagos Bank, and a or La Niña events. When combined with bleaching and number of submerged atolls and banks. acidification sea level rise will reduce the effectiveness of reefs to perform as breakwaters. BIOT has experienced Diego Garcia is the only inhabited island. considerable shoreline erosion, which suggests loss of The BIOT Marine Protected Area (MPA) was designated breakwater effects from protective fringing reefs. in 2010. It covers the entire maritime zone and coastal waters, an approximate area of 640,000 km2. The Other human pressures marine environment is rich and diverse, attracting Rats have caused a crash of seabird populations, sea birds, sharks, cetaceans and sea turtles and with disrupting guano nutrient flows to the detriment of some extensive seagrass and coral reef habitats. It includes reef organisms including sponges and corals. Around the endangered Chagos brain coral (Ctenella chagius), an Diego Garcia, small scale fishing is allowed to residents endemic massive coral unique to BIOT. but illegal, unreported and unregulated (IUU) fishing is also known to occur, and there are concerns of pollution BIOT reefs have suffered extensive bleaching and mortality, and anchor damage within the lagoon.