WO 2018/118197 Al 28 June 2018 (28.06.2018) W !P O PCT

Total Page:16

File Type:pdf, Size:1020Kb

WO 2018/118197 Al 28 June 2018 (28.06.2018) W !P O PCT (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/118197 Al 28 June 2018 (28.06.2018) W !P O PCT (51) International Patent Classification: Published: A23K 20/116 (2016.01) A61K 31/568 (2006.01) — with international search report (Art. 21(3)) A61K 31/352 (2006.01) (21) International Application Number: PCT/US20 17/056685 (22) International Filing Date: 14 October 2017 (14.10.2017) (25) Filing Language: English (26) Publication Language: English (30) Priority Data: 62/437,239 2 1 December 20 16 (2 1. 12.20 16) US 62/482,196 26 July 2017 (26.07.2017) US (72) Inventor; and (71) Applicant: POSTREL, Richard [US/US]; 5244 N. Bay Rd, Miami Beach, FL 33 140 (US). (74) Agent: JONES, George; 11761 North Shore Dr, Reston, VA 20190 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). Declarations under Rule 4.17: — of inventorship (Rule 4.17(iv)) (54) Title: HEALTHIER AGING IN DOMESTICATED ANIMALS (57) Abstract: This invention provides compositions, systems and methods that improve and/or optimize the health and performance of animals, especially mammals including humans, canines, equines, felines, etc. Key aspects of the principle invention and its parts include the monitoring, management and modulation of the body's natural cannabinoid systems through its native mechanisms thereby optimizing its processes by supplementation with endogenously occurring components and/or by administering synthetic compounds. — The invention selects from multiple available resources to modify and/or rebalance an individual system or it may be applied across interconnected systems. The encompassing system that is intricately involved in the operations and intensities, e.g., the balancing of most other systems of our bodies, relates to cannabinoid compounds and their receptors. The cannabinoid pathways can be coordinated in rebalancing multiple and various metabolic pathways. Extending Life and Its Vitality BACKGROU ND Qua lity of life, especia lly in mam mals, is extended using thera pies relating to aging, food allergies, pain and reduced vigor. These thera pies as set forth in describing the invention reba la nce molecu la r, cel lu lar and subcel lular biochemica l requirements of mitochondria and other organel le processes Mam mals are large com plex organisms made of tril lions of cel ls. These cel ls com prise high ly specia lized differentiated cel ls and less differentiated cel ls that might act as stem cel ls to produce one or more high ly specia lized differentiated cell. The cells differentiate t o maximize their abilities for assigned tasks while leaving other essentia l functions to other specia lized cel ls. The cel ls specia lize by emphasizing certain activities and eschewing others. They do this by selective induction of the proteins the individua l cel l makes and uses. We categorize cel ls, tissues, enzymes, etc. by assigning by designating them as belonging to one of more systems - i.e., groups interacting t o perform related functions. For exa mple, the respiratory system has the task of ha rvesting oxygen and disposing of carbon dioxide. The respiratory system has severa l su bsystems including the lu ngs and their alveoli that exchange gas molecu les in air with those dissolved in blood. It also includes a pa rt of the muscu lar system, the muscles that pu mp the air in and out of the alveoli. There is another subsystem, part of the respiratory system that provides the mucous and keeps the cell su rfaces healthy and damp. The cells of the lu ng each have ion excha nge systems that maintain cell volu me and are importa nt for muscle movement and secretions. The respiratory system is but one "system" of the com plex mam malia n body. Animals also need a circulatory system, a lym phatic system, a digestive system, an immu ne system, an integu menta ry system, a skeleta l system, a muscular system, a nervous system, a urina ry system, an endocrine system and a reproductive system. Each of these systems com prises multiple layers of su bsystems. Specia lized grou ping of cel ls performing related tasks are assem bled into structures ca lled orga ns. Many orga ns and their cel ls ca n be pa rticipa nts in more than one system. Coordinating the various systems t o act in concert for the survival of the orga nism is a complicated task requiring consta nt monitoring and rebala ncing activities of the numerous su bsystems and their su bsystems and the individua l cel ls that perform the systemic tasks. Each cel l itself is required t o accom plish several functions. The plasma membra ne sepa rates the cell from the outside; regions withi n the cel l, e.g., nucleus, golgi, endoplasmic reticulum, mitochond ria, etc. have specia lized functions that they perform. Nutrients must be internalized, while harmfu l or unnecessa ry compounds must be excluded. The right proteins must be made at the right time and delivered to the right place. Every reaction involves chemica l and physical energy which must be available. The intracellu lar systems or activities like those of the la rger orga nism, also involve com plicated bala ncings and rebalancings t o meet im mediate needs of the cel l, the orga n and the animal. This system of consta nt reba la ncings has t o be almost insta nta neously flexible for ra pid response t o the thousa nds of chemica l reactions occu rring every second. One importa nt vector system for the control and reba la ncing tasks uses several compou nds, such as ana nda mide, 2- arachidonoylglycerol and their receptors. These were the first two com pou nds identified as players in our endoca nna binoid system. There are severa l other cannabinoids now identified that bind these receptors or one of severa l other receptors now identified as active in the can na binolic systems. Mam malia n cel ls are eukaryotic cel ls and therefore, like in euka ryotic organisms genera lly, these cells and their host orga nisms rely on their mitochondria t o produce adenosine triphosphate (ATP). Mitochondria (a nd chloroplasts in plants) have their own genomes, DNA genes, that replicate independently from DNA of a cel l's nucleus. But the mitochondrial genome only provides coding instruction for 1% of the proteins that are active in a mitochond rion. This is another illustration of the interdependence between the meta bolic pathways in a cel l. Virtua lly all processes of the orga nisms and of each of the cel ls of each organism require numerous overlapping pathways for continuing life and function of the organism. The overlapping pathways ca nnot be considered in isolation. All pathways require severa l inputs of energy. At a minimu m, every protein involved in a pathway required energy from high energy phosphate molecules for its synthesis. The energy source most often is mitochond ria lly derived ATP. Enzymatic reactions are genera lly cou pled with ATPase or GTPase activities that drive the biochemica l reactions. The mitochondria themselves can not exist in isolation. The majority of the proteins and lipids constituting the mitochondrial meta bolic machinery, its transport protei ns, enzymes and membra nes, are provided by the hea lthy operation of numerous cel l pathways that themselves are reliant on mitochond rial ATP production. The systems must coordinate to provide the pa rts t o the other systems o n demand. When one system malfunctions one o r more back-up systems must alter their operations to meet the new needs. Aging is a progression of seria l brea kdown events, general ly commencing with one of the cells in a system failing t o meet the needs of other cells. Each breakdown requires opportu nistic remedies t o add ress each minor failing. Cumu latively, the agi ng process is a gradua l decline, as back-up after back-up is activated. But each back-u p is less efficient tha n the previous with the result that performa nce conti nuously declines, the decline accelerates and vitality eva porates. When remaining back-ups are insufficient, death of cel ls, their tissues/orga ns, and eventual ly of the organism itself, results.
Recommended publications
  • 615 Neuroscience-Cayman-Bertin
    Thomas G. Brock, Ph.D. Introduction to Neuroscience In our first Biology classes, we learned that lipids form the membranes around cells. For many students, interests quickly moved to the intracellular constituents ‘that really matter’, or to how cells or systems work in health and disease. If there was further thought about lipids, it might have been limited to more personal issues, like an expanding waistline. It was easy to forget about lipids in the complexities of, say, Alzheimer’s Disease, where tau protein is hyperphosphorylated by a host of kinases before forming neurofibrillary tangles and amyloid precursor protein is processed by assorted secretases, ultimately aggregating to form neurodegenerating plaques. What possible role could lipids have in all this? After all, lipids just form the membranes around cells. Fortunately, neuroscientists study complex systems. Whether working at the molecular, cellular, or organismal level, the research focus always returns to the intricately interconnected bigger picture. Perhaps surprisingly, lipids keep emerging as part of the bigger picture. At least, the smaller lipids do. Many of the smaller lipids, including the cannabinoids and eicosanoids, act as paracrine hormones, modulating cell functions in a receptor-mediated fashion. In this sense, they are rather like the peptide hormones in their diversity and actions. In the neurosystem, this means that these signaling lipids determine if synapses fire or not, when cells differentiate or die, and whether tissues remain healthy or become inflamed. Returning to the question posed above about lipids in Alzheimer’s, these mediators have roles at many levels in the course of the disease, as presented in an article on page 42 of this catalog.
    [Show full text]
  • To Download the PDF File
    Biological Activities of Selected Dietary Apiaceae, Lamiaceae, and Fabaceae By Huang Huang A Thesis Submitted to the Faculty of Graduate Studies and Research of Carleton University, in partial fulfillment of the requirements for the degree of a Master of Science in Biology Department of Biology Carleton University Ottawa, ON, Canada 2010 © Copyright 2010, Huang Huang i Library and Archives Blbliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l'6dition 395 Wellington Street 395, rue Wellington OttawaONK1A0N4 OttawaONK1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-71582-6 Our file Notre reference ISBN: 978-0-494-71582-6 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Blbliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par Nntemet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]
  • Effects of Levodopa on Endocannabinoid Levels in Rat Basal Ganglia: Implications for the Treatment of Levodopa-Induced Dyskinesias
    European Journal of Neuroscience, Vol. 18, pp. 1607±1614, 2003 ß Federation of European Neuroscience Societies Effects of levodopa on endocannabinoid levels in rat basal ganglia: implications for the treatment of levodopa-induced dyskinesias Belen Ferrer,1 Nick Asbrock,2 Satish Kathuria,2 Daniele Piomelli2 and Andrea Giuffrida3 1Fundacion Hospital Carlos Haya, 29010 Malaga, Spain 2Department of Pharmacology, University of California at Irvine, 360 Medical Surge II, Irvine, California 92697, USA 3Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas 78229, USA Keywords: 2-arachidonylglycerol, 6-hydroxydopamine, anandamide, cannabinoid, fatty acid ethanolamides Abstract The majority of Parkinson's disease patients undergoing levodopa therapy develop disabling motor complications (dyskinesias) within 10 years of treatment. Stimulation of cannabinoid receptors, the pharmacological target of D9-tetrahydrocannabinol, is emerging as a promising therapy to alleviate levodopa-associated dyskinesias. However, the mechanisms underlying this bene®cial action remain elusive, as do the effects exerted by levodopa therapy on the endocannabinoid system. Although levodopa is known to cause changes in CB1 receptor expression in animal models of Parkinson's disease, we have no information on whether this drug alters the brain concentrations of the endocannabinoids anandamide and 2-arachidonylglycerol. To address this question, we used an isotope dilution assay to measure endocannabinoid levels in the caudate±putamen, globus pallidus and substantia nigra of intact and unilaterally 6-OHDA-lesioned rats undergoing acute or chronic treatment with levodopa (50 mg/kg). In intact animals, systemic administration of levodopa increased anandamide concentrations throughout the basal ganglia via activation of dopamine D1/D2 receptors. In 6-OHDA- lesioned rats, anandamide levels were signi®cantly reduced in the caudate±putamen ipsilateral to the lesion; however, neither acute nor chronic levodopa treatment affected endocannabinoid levels in these animals.
    [Show full text]
  • Cannabinoids in the Pathophysiology of Skin Inflammation
    molecules Review Cannabinoids in the Pathophysiology of Skin Inflammation Cristian Scheau 1 , Ioana Anca Badarau 1, Livia-Gratiela Mihai 1, Andreea-Elena Scheau 2, Daniel Octavian Costache 3, Carolina Constantin 4,5, Daniela Calina 6 , Constantin Caruntu 1,7,*, Raluca Simona Costache 8,* and Ana Caruntu 9,10 1 Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; [email protected] (C.S.); [email protected] (I.A.B.); [email protected] (L.-G.M.) 2 Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania; [email protected] 3 Department of Dermatology, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania; [email protected] 4 Immunology Department, ”Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania; [email protected] 5 Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania 6 Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; [email protected] 7 Department of Dermatology, “Prof. N. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania 8 Gastroenterology and Internal Medicine Clinic, Carol Davila University Central Emergency Military Hospital, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania 9 Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania; [email protected] 10 Faculty of Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania * Correspondence: [email protected] (C.C.); [email protected] (R.S.C.); Tel.: +40-745-086-978 (C.C.) Academic Editor: Eric J. Downer Received: 30 December 2019; Accepted: 2 February 2020; Published: 4 February 2020 Abstract: Cannabinoids are increasingly-used substances in the treatment of chronic pain, some neuropsychiatric disorders and more recently, skin disorders with an inflammatory component.
    [Show full text]
  • The Role of Cannabinoids in Dermatology
    COMMENTARY The role of cannabinoids in dermatology Jessica S. Mounessa, BS,a,b Julia A. Siegel, BA,c Cory A. Dunnick, MD,a,b and Robert P. Dellavalle, MD, PhD, MSPHa,b Aurora and Denver, Colorado, and Worcester, Massachusetts Key words: cannabinoid; cannabis; dermatitis; endocannabinoid; inflammatory skin disease; keratinocyte carcinoma; melanoma; palmitoylethanolamide; pruritus; skin cancer; tetrahydrocannabinol. wenty-eight states currently allow for Abbreviations used: comprehensive public medical cannabis programs, and this number continues to CB1: cannabinoid 1 T1 CB2: cannabinoid 2 grow. Approximately 1 in 10 adult cannabis users in 2 PEA: palmitoylethanolamide the United States use it for medical purposes. THC: tetrahydrocannabinol Numerous studies have investigated its uses for chronic pain, spasticity, anorexia, and nausea. In recent years, researchers have also investigated its work independently of descending inhibitory use for the treatment of dermatologic conditions pathways.5 including pruritus, inflammatory skin disease, and Cannabinoids may also have anti-inflammatory skin cancer. properties useful for the treatment of both allergic Perhaps the most promising role for cannabinoids contact dermatitis and atopic dermatitis. Petrosino is in the treatment of itch. In a study of patients with et al6 reported that mice released PEA in response to uremic pruritus on maintenance hemodialysis, 2,4-dinitrofluorobenzeneeinduced allergic contact topical application of a cream with structured dermatitis as an endogenous protective agent. PEA physiologic lipids (derma membrane structure) and may work to reduce later stages of allergic contact endogenous cannabinoids applied twice daily for dermatitis, including mast-cell infiltration, angiogen- 3 weeks completely eliminated pruritus in 8 of 21 esis, and itching.7-9 Tetra-hydrocannabinol (THC) patients (38%).
    [Show full text]
  • Review Article Small Molecules from Nature Targeting G-Protein Coupled Cannabinoid Receptors: Potential Leads for Drug Discovery and Development
    Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2015, Article ID 238482, 26 pages http://dx.doi.org/10.1155/2015/238482 Review Article Small Molecules from Nature Targeting G-Protein Coupled Cannabinoid Receptors: Potential Leads for Drug Discovery and Development Charu Sharma,1 Bassem Sadek,2 Sameer N. Goyal,3 Satyesh Sinha,4 Mohammad Amjad Kamal,5,6 and Shreesh Ojha2 1 Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE 2Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE 3DepartmentofPharmacology,R.C.PatelInstituteofPharmaceuticalEducation&Research,Shirpur,Mahrastra425405,India 4Department of Internal Medicine, College of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA 5King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia 6Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia Correspondence should be addressed to Shreesh Ojha; [email protected] Received 24 April 2015; Accepted 24 August 2015 Academic Editor: Ki-Wan Oh Copyright © 2015 Charu Sharma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The cannabinoid molecules are derived from Cannabis sativa plant which acts on the cannabinoid receptors types 1 and 2 (CB1 and CB2) which have been explored as potential therapeutic targets for drug discovery and development. Currently, there are 9 numerous cannabinoid based synthetic drugs used in clinical practice like the popular ones such as nabilone, dronabinol, and Δ - tetrahydrocannabinol mediates its action through CB1/CB2 receptors.
    [Show full text]
  • Potential Cannabis Antagonists for Marijuana Intoxication
    Central Journal of Pharmacology & Clinical Toxicology Bringing Excellence in Open Access Review Article *Corresponding author Matthew Kagan, M.D., Cedars-Sinai Medical Center, 8730 Alden Drive, Los Angeles, CA 90048, USA, Tel: 310- Potential Cannabis Antagonists 423-3465; Fax: 310.423.8397; Email: Matthew.Kagan@ cshs.org Submitted: 11 October 2018 for Marijuana Intoxication Accepted: 23 October 2018 William W. Ishak, Jonathan Dang, Steven Clevenger, Shaina Published: 25 October 2018 Ganjian, Samantha Cohen, and Matthew Kagan* ISSN: 2333-7079 Cedars-Sinai Medical Center, USA Copyright © 2018 Kagan et al. Abstract OPEN ACCESS Keywords Cannabis use is on the rise leading to the need to address the medical, psychosocial, • Cannabis and economic effects of cannabis intoxication. While effective agents have not yet been • Cannabinoids implemented for the treatment of acute marijuana intoxication, a number of compounds • Antagonist continue to hold promise for treatment of cannabinoid intoxication. Potential therapeutic • Marijuana agents are reviewed with advantages and side effects. Three agents appear to merit • Intoxication further inquiry; most notably Cannabidiol with some evidence of antipsychotic activity • THC and in addition Virodhamine and Tetrahydrocannabivarin with a similar mixed receptor profile. Given the results of this research, continued development of agents acting on cannabinoid receptors with and without peripheral selectivity may lead to an effective treatment for acute cannabinoid intoxication. Much work still remains to develop strategies that will interrupt and reverse the effects of acute marijuana intoxication. ABBREVIATIONS Therapeutic uses of cannabis include chronic pain, loss of appetite, spasticity, and chemotherapy-associated nausea and CBD: Cannabidiol; CBG: Cannabigerol; THCV: vomiting [8]. Recreational cannabis use is on the rise with more Tetrahydrocannabivarin; THC: Tetrahydrocannabinol states approving its use and it is viewed as no different from INTRODUCTION recreational use of alcohol or tobacco [9].
    [Show full text]
  • Potential Health Benefits of Cannabis Extracts: a Review Maria Rosana Ramirez
    International Journal of Chemical and Biomedical Science 2016; 2(1): 1-8 Published online March 1, 2016 (http://www.aascit.org/journal/ijcbs) Potential Health Benefits of Cannabis Extracts: A Review Maria Rosana Ramirez CITER-The National Scientific and Technical Research Council (CONICET), Argentine Government, Agency, Argentina Email address [email protected] Citation Maria Rosana Ramirez. Potential Health Benefits of Cannabis Extracts: A Review. International Journal of Chemical and Biomedical Science . Vol. 2, No. 1, 2016, pp. 1-8. Keywords Abstract Non-cannabinoids Compounds, A central tenet underlying the use of plant preparations is that herbs contain many Cannabis Extracts, bioactive compounds. Cannabis contains tetrahydrocannabinols (THC) a primary Bioactivity metabolite with reported psychotropic effects. Therefore, the presence of THC makes controversial the use of Cannabis to treat diseases by which their uses and applications were limited. The question then is: is it possible to use the extracts from Cannabis to treat the diseases related with it use in folk medicine? More recently, the synergistic Received: January 24, 2016 contributions of bioactive constituents have been scientifically demonstrated. We Revised: February 10, 2016 reviewed the literature concerning medical cannabis and its secondary metabolites, Accepted: February 12, 2016 including fraction and total extracts. Scientific evidence shows that secondary metabolites in cannabis may enhance the positive effects of THC a primary metabolite. Other chemical components (cannabinoid and non-cannabinoid) in cannabis or its extracts may reduce THC-induced anxiety, cholinergic deficits, and immunosuppression; which could increase its therapeutic potential. Particular attention will be placed on non- cannabinoid compounds interactions that could produce synergy with respect to treatment of pain, inflammation, epilepsy, fungal and bacterial infections.
    [Show full text]
  • 1. Endocannabinoid System (ECS)
    UNIVERSITÀ DI PISA Dipartimento di Farmacia Corso di Laurea Specialistica in Chimica e Tecnologia Farmaceutiche Tesi di Laurea: DESIGN AND SYNTHESIS OF HETEROCYCLIC DERIVATIVES AS POTENTIAL MAGL INHIBITORS Relatori: Prof. Marco Macchia Candidato: Glenda Tarchi Prof.ssa Clementina Manera (matricola N° 445314) Dott.ssa Chiara Arena Settore Scientifico Disciplinare: CHIM-08 ANNO ACCADEMICO 2013–2014 INDEX Sommario INDEX ......................................................................................... 3 1. Endocannabinoid system (ECS) ......................................... 6 1.1 Endocannabinoid receptors ........................................................... 7 1.2 Mechanism of endocannabinoid neuronal signaling ..................... 9 1.3 Endocannabinoids biosynthesis ................................................... 11 1.4 Enzymes involved in endocannabinoids degradation ................. 16 1.4.1 FAAH ........................................................................................................ 16 1.4.2 MAGL ....................................................................................................... 18 1.4.3 ABHD6 ..................................................................................................... 20 1.4.4 ABDH12 ................................................................................................... 21 2. MAGL like pharmacological target ................................ 23 2.1 The role of MAGL in pain and inflammation ............................. 24 2.1.1 Relation between
    [Show full text]
  • 2 Spice English Presentation
    Spice Spice contains no compensatory substances Специи не содержит компенсационные вещества Spice is a mix of herbs (shredded plant material) and manmade chemicals with mind-altering effects. It is often called “synthetic marijuana” because some of the chemicals in it are similar to ones in marijuana; but its effects are sometimes very different from marijuana, and frequently much stronger. It is most often labeled “Not for Human Consumption” and disguised as incense. Eliminationprocess • The synthetic agonists such as THC is fat soluble. • Probably, they are stored as THC in cell membranes. • Some of the chemicals in Spice, however, attach to those receptors more strongly than THC, which could lead to a much stronger and more unpredictable effect. • Additionally, there are many chemicals that remain unidentified in products sold as Spice and it is therefore not clear how they may affect the user. • Moreover, these chemicals are often being changed as the makers of Spice alter them to avoid the products being illegal. • To dissolve the Spice crystals Acetone is used endocannabinoids synhtetic THC cannabinoids CB1 and CB2 agonister Binds to cannabinoidreceptor CB1 CB2 - In the brain -in the immune system Decreased avtivity in the cell ____________________ Maria Ellgren Since some of the compounds have a longer toxic effects compared to naturally THC, as reported: • negative effects that often occur the day after consumption, as a general hangover , but without nausea, mentally slow, confused, distracted, impairment of long and short term memory • Other reports mention the qualitative impairment of cognitive processes and emotional functioning, like all the oxygen leaves the brain.
    [Show full text]
  • In Silico Assessment of Drug-Like Properties of Phytocannabinoids in Cannabis Sativa
    EDUCATUM JSMT Vol. 4 No. 2 (2017) ISSN 2289-7070 / eISSN 2462-2451 (1-7) https://ejournal.upsi.edu.my/journal/EDSC In Silico Assessment of Drug-Like Properties of Phytocannabinoids in Cannabis Sativa Shakinaz Desa1*, Asiah Osman2, and Richard Hyslop3 1Department of Biology, Universiti Pendidikan Sultan Idris, Malaysia, 2Natural Product Division, Forest Research Institute Malaysia, 3Department of Chemistry and Biochemistry, University of Northern Colorado, USA *Corresponding author: [email protected] Abstract This study investigated drug-like properties of phytocannabinoids in Cannabis sativa using an in silico study. We report sixteen phytocannabinoids: cannabidiol (CBD), cannabidiolic acid (CBDA), cannabinol (CBN), cannabichromene (CBC), cannabigerol (CBG), cannabicyclol (CBL), cannabivarin (CBV), cannabidivarin (CBDV), cannabichromevarin (CBCV), cannabigerovarin (CBGV), cannabinodiol (CBDL), cannabielsoin (CBE), cannabitriol (CBT), Δ9-tetrahydrocannabinol (Δ9-THC), Δ9-tetrahydrocannabivarin (Δ9-THCV), and Δ8-tetrahydrocannabinol (Δ8-THC). All chemical structures and properties were obtained from PubChem Compound, National Center for Biotechnology Information, U.S. National Library of Medicine. Molinspiration was used for the calculation of molecular properties and bioactivity score. The parameters were molecular weight (MW), number of hydrogen acceptor (HBA), number of hydrogen donor (HBD), partition coefficient (cLogP), polar surface area (PSA) and number of rotatable bonds (NROTB). We predicted bioactivity scores for G Protein-Coupled Receptors (GPCR) ligand, ion channel modulator, kinase inhibitor, nuclear receptor ligand, protease inhibitor and enzyme inhibitor. Lipinski’s rule was used as reference to determine the drug-like properties of the phytocannabinoids. All compounds have MW<500, HBA<10, HBD<5, TPSA<140Å2 and NRTOB<10. Bioactivity score showed an active or moderately active in all compounds.
    [Show full text]
  • The Handbook of Cannabis Therapeutics: from Bench to Bedside
    Handbook of Cannabis Therapeutics From Bench to Bedside 9780789030979 Handbook of Cannabis Therapeutics From Bench to Bedside Size: 212 x 152mm Spine size: 26 mm Color pages: Binding: Paperback THE HAWORTH PRESS® Haworth Series in Integrative Healing Ethan Russo Editor The Last Sorcerer: Echoes of the Rainforest by Ethan Russo Professionalism and Ethics in Complementary and Alternative Medicine by John Crellin and Fernando Ania Cannabis and Cannabinoids: Pharmacology, Toxicology, and Therapeutic Potential by Franjo Grotenhermen and Ethan Russo Modern Psychology and Ancient Wisdom: Psychological Healing Practices from the World’s Religious Traditions edited by Sharon G. Mijares Complementary and Alternative Medicine: Clinic Design by Robert A. Roush Herbal Voices: American Herbalism Through the Words of American Herbalists by Anne K. Dougherty The Healing Power of Chinese Herbs and Medicinal Recipes by Joseph P. Hou and Youyu Jin Alternative Therapies in the Treatment of Brain Injury and Neurobehavioral Disorders: A Practical Guide edited by Gregory J. Murrey Handbook of Cannabis Therapeutics: From Bench to Bedside edited by Ethan B. Russo and Franjo Grotenhermen Handbook of Cannabis Therapeutics From Bench to Bedside Ethan B. Russo, MD Franjo Grotenhermen, MD Editors Routledge Taylor &. Francis Croup NEW YORK AND LONDON First Published by The Haworth Press, Inc., 10 Alice Street, Binghamton, NY 13904-1580. Transferred to Digital Printing 2010 by Routledge 270 Madison Ave, New York NY 10016 2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN For more information on this book or to order, visit http://www.haworthpress.com/store/product.asp?sku=5741 or call 1-800-HAWORTH (800-429-6784) in the United States and Canada or (607) 722-5857 outside the United States and Canada or contact [email protected] © 2006 by The Haworth Press, Inc.
    [Show full text]