Polyols and UV‐Sunscreens in the Prasiola‐Clade (Trebouxiophyceae

Total Page:16

File Type:pdf, Size:1020Kb

Polyols and UV‐Sunscreens in the Prasiola‐Clade (Trebouxiophyceae J. Phycol. 54, 264–274 (2018) © 2018 The Authors Journal of Phycology published by Wiley Periodicals, Inc. on behalf of Phycological Society of America This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. DOI: 10.1111/jpy.12619 POLYOLS AND UV-SUNSCREENS IN THE PRASIOLA-CLADE (TREBOUXIOPHYCEAE, CHLOROPHYTA) AS METABOLITES FOR STRESS RESPONSE AND CHEMOTAXONOMY1 Vivien Hotter, Karin Glaser Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Albert-Einstein-Straße 3, D-18059 Rostock, Germany Anja Hartmann, Markus Ganzera Institute of Pharmacy, Pharmacognosy, University of Innsbruck, Innrain 80-82/IV, A-6020 Innsbruck, Austria and Ulf Karsten 2 Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Albert-Einstein-Straße 3, D-18059 Rostock, Germany In many regions of the world, aeroterrestrial green algae of the Trebouxiophyceae (Chlorophyta) In contrast to their aquatic relatives, aeroterres- represent very abundant soil microorganisms, and trial algae are directly exposed to the atmosphere hence their taxonomy is crucial to investigate their and thereby subject to harsh environmental condi- physiological performance and ecological impor- tions, such as strong diurnal and seasonal changes tance. Due to a lack in morphological features, of ultraviolet radiation (UVR; Hartmann et al. taxonomic and phylogenetic studies of Treboux- 2016) and strong differences between cellular and iophycean algae can be a challenging task. Since atmospheric water potential (Holzinger and Karsten chemotaxonomic markers could be a great assistance 2013). Differences in water potential drive water in this regard, 22 strains of aeroterrestrial Treboux- movement across membranes, between different cel- iophyceae were chemically screened for their polyol- lular compartments, and between organisms and patterns as well as for mycosporine-like amino acids their environment (e.g., Larcher 2003), and thus (MAAs) in their aqueous extracts using RP-HPLC and determine, for example, water availability for poik- LC-MS. D-sorbitol was exclusively detected in ilohydric organisms, such as green algae (Kranner members of the Prasiolaceae family. The novel MAA et al. 2008). Due to the incapability of green algae prasiolin and a related compound (“prasiolin-like”) to actively regulate the water budget, their cells des- were present in all investigated members of the iccate if the extracellular water potential is lower Prasiola-clade, but missing in all other tested than the intracellular one. Since life without water Trebouxiophyceae. While prasiolin could only be is impossible, uncontrolled dehydration leads to detected in field material directly after extraction, the increasing mortality unless an organism is desicca- “prasiolin-like” compound present in the other algae tion tolerant. In arid regions water is scarce and its was fully converted into prasiolin after 24 h. These availability unpredictable. Nevertheless, many mem- findings suggest D-sorbitol and prasiolin-like com- bers of the Chlorophyta and Streptophyta such as pounds are suitable chemotaxonomic markers for the Interfilum, Klebsormidium, Coccomyxa, Rosenvingiella,or Prasiolaceae and Prasiola-clade, respectively. Addi- Prasiola are found in various terrestrial habitats all tional UV-exposure experiments with selected strains over the world, from deserts and alpine regions to show that MAA formation and accumulation can be urban areas, where they inhabit both natural and induced, supporting their role as UV-sunscreen. artificial surfaces such as soil, tree bark, roof tiles, etc. (e.g., Karsten et al. 2007a,b,c, Rindi 2007, Key index words: chemotaxonomy; MAAs; polyols; Moniz et al. 2012, Darienko et al. 2015, Rysanek prasiolin; sunscreen; terrestrial algae; UV radiation et al. 2015, and references therein). Abbreviations: MAAs, mycosporine-like amino acids; Aeroterrestrial green algae developed numerous RP-HPLC, reversed phase high performance liquid mechanisms to survive desiccation (for review see chromatography; UVR, ultraviolet radiation Holzinger and Karsten 2013). Green algal members of the class Trebouxiophyceae are capable of synthe- 1Received 24 July 2017. Accepted 7 January 2018. First Published sizing and accumulating polyols. These low molecu- Online 18 January 2018. Published Online 21 February 2018, Wiley lar weight carbohydrates exhibit multiple functions. Online Library (wileyonlinelibrary.com). They act as antioxidants, stabilize proteins under 2Author for correspondence: e-mail [email protected]. Editorial Responsibility: W. Henley (Associate Editor) heat stress conditions and are rapidly available 264 CHEMOTAXONOMY IN THE PRASIOLA-CLADE 265 respiratory substrates in case of energy deficiency Prasiola stipitata, but also proved its inducibility by (Yancey 2005, Karsten et al. 2007c). Polyols are also UV exposure. A chemical screening of various mem- osmotically active, that is, they decrease the intracel- bers of the Trebouxiophyceae confirmed the occur- lular water potential when accumulated (Holzinger rence of this 324 nm-MAA in Watanabea spp. and and Karsten 2013). Thereby, desiccation is reduced Prasiola spp. (Karsten et al. 2005, 2007b). Recently, or even prevented without negatively affecting meta- Hartmann et al. (2016) elucidated the chemical bolic integrity. Hence, polyols are also called com- structure of this putative 324 nm-MAA in the closely patible solutes (Yancey 2005). Aeroterrestrial related Prasiola calophylla as N-[5,6 hydroxy-5(hydro- members of the Trebouxiophyceae, such as Apatococ- xymethyl)-2-methoxy-3-oxo-1-cycohexen-1-yl] glu- cus, Chloroidium, Coccomyxa, Prasiola, Rosenvingiella, tamic acid, which indeed represents a novel MAA. It Stichococcus and Trentepohlia, synthesize a variety of was named prasiolin. However, so far only a few polyols, such as arabitol, erythritol, glycerol, ribitol, members of the Trebouxiophyceae have been stud- D-sorbitol and volemitol (Feige and Kremer 1980, ied for the presence of this and other MAAs and Gustavs et al. 2010, 2011). While in some clades like until now the occurrence of prasiolin is experimen- Apatococcus spp. a combination of these substances tally proven only in P. calophylla. can be detected, others like Prasiola spp. contain Stress metabolites such as polyols and MAAs are only one compound (Gustavs et al. 2011). There- not only essential for the long-term survival of green fore, polyol and other low molecular weight carbo- algae under atmospheric conditions, but they can hydrate patterns can be used for chemotaxonomy also be useful in chemotaxonomy. Many aeroterres- (Karsten et al. 1999). trial green algae resemble each other morphologi- Throughout the day or season, exposure to UVR cally (Rindi 2007) and some species even display can change rapidly. While UV-C (200–280 nm) is high phenotypic plasticity (Rindi and Guiry 2002, biologically irrelevant as this wavelength is absorbed Darienko et al. 2015, 2016). This makes green algal by the ozone layer of the stratosphere, both UV-A identification down to the species level based on (315–400 nm) and UV-B (280–315 nm) reach earth’ morphological traits often complicated and some- surface. UV-B radiation is especially harmful to times even unreliable (John and Maggs 1997, Rindi many biological processes (McKenzie et al. 2007, 2007). Polyphasic approaches combining morpho- and references therein), such as photosynthesis or logical, molecular and/or physiological/biochemical enzyme activity (Holzinger and Lutz€ 2006, Sharma data sets are a promising solution to overcome these et al. 2017, and references therein). Since photosyn- problems in species identification (Proeschold and thesis is a physiological key process for algae, its Leliaert 2007, Coesel and Krienitz 2008, Darienko function is vital. et al. 2010). To oppose UVR damage, aeroterrestrial Treboux- In chemotaxonomy, chemical traits are used to iophyceae belonging to the Lobosphaera-, Watanabea- assign organisms to taxa with equal compounds. and Prasiola-clade biosynthesize and accumulate Any chemical compound is suitable as a chemotaxo- mycosporine-like amino acids (MAAs; Karsten et al. nomic marker if it is taxon specific, consistent 2005, 2007b). These sunscreen compounds absorb within a lineage and present in detectable amounts UVR and re-emit it as harmless heat, thereby shield- (Karsten et al. 2007a). Prominent examples are pho- ing intracellular structures and biomolecules (Ban- tosynthetic pigments for algae subdivision (Roy daranayake 1998). MAAs are the most common et al. 2011) or low-molecular weight carbohydrate photoprotective compounds in aquatic organisms, patterns to distinguish lineages within the Bangio- from cyanobacteria and algae to invertebrates and phyceae (Karsten et al. 1999). Stress metabolites can fish (Dunlap and Shick 1998, Sommaruga and Gar- also be suitable chemotaxonomic markers (Dar- cia-Pichel 1999). While MAAs have been investigated ienko et al. 2010). Gustavs et al. (2011) screened a extensively in red algae (Karsten et al. 1998, Frank- wide range of Trebouxiophyceae for their polyols lin et al. 1999, Karsten and Wiencke 1999, Karsten and detected several clade-specific patterns. For 2000, Kr€abs et al. 2002, Boedeker and Karsten 2005, instance, D-sorbitol was proposed as a marker for Pandey et al. 2017) as well as in cyanobacteria and the Prasiola-, D-ribitol for
Recommended publications
  • Chlorophyta, Trebouxiophyceae) in Lake Tanganyika (Africa)*
    Biologia 63/6: 799—805, 2008 Section Botany DOI: 10.2478/s11756-008-0101-4 Siderocelis irregularis (Chlorophyta, Trebouxiophyceae) in Lake Tanganyika (Africa)* Maya P. Stoyneva1, Elisabeth Ingolič2,WernerKofler3 &WimVyverman4 1Sofia University ‘St Kliment Ohridski’, Faculty of Biology, Department of Botany, 8 bld. Dragan Zankov, BG-1164 Sofia, Bulgaria; e-mail: [email protected], [email protected]fia.bg 2Graz University of Technology, Research Institute for Electron Microscopy, Steyrergasse 17,A-8010 Graz, Austria; e-mail: [email protected] 3University of Innsbruck, Institute of Botany, Sternwartestrasse 15,A-6020 Innsbruck, Austria; e-mail: werner.kofl[email protected] 4Ghent University, Department Biology, Laboratory of Protistology and Aquatic Ecology, Krijgslaan 281-S8,B-9000 Gent, Belgium; e-mail: [email protected] Abstract: Siderocelis irregularis Hindák, representing a genus Siderocelis (Naumann) Fott that is known from European temperate waters, was identified as a common phytoplankter in Lake Tanganyika. It was found aposymbiotic as well as ingested (possibly endosymbiotic) in lake heterotrophs, mainly Strombidium sp. and Vorticella spp. The morphology and ultrastructure of the species, studied with LM, SEM and TEM, are described with emphasis on the structure of the cell wall and the pyrenoid. Key words: Chlorophyta; cell wall; pyrenoid; symbiosis; ciliates; Strombidium; Vorticella Introduction ics of symbiotic species in general came into alignment with that of free-living algae and the term ‘zoochlorel- Tight partnerships between algae and aquatic inver- lae’ was abandoned as being taxonomically ambiguous tebrates, including symbiotic relationships, have long (e.g. Bal 1968; Reisser & Wiessner 1984; Taylor 1984; been of interest and a number of excellent reviews are Reisser 1992a).
    [Show full text]
  • Mycosporine-Like Amino Acids (Maas) in Time-Series of Lichen Specimens from Natural History Collections
    molecules Article Mycosporine-Like Amino Acids (MAAs) in Time-Series of Lichen Specimens from Natural History Collections Marylène Chollet-Krugler 1, Thi Thu Tram Nguyen 1,2 , Aurelie Sauvager 1, Holger Thüs 3,4,* and Joël Boustie 1,* 1 CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Univ Rennes, F-35000 Rennes, France; [email protected] (M.C.-K.); [email protected] (T.T.T.N.); [email protected] (A.S.) 2 Department of Chemistry, Faculty of Science, Can Tho University of Medicine and Pharmacy, 179 Nguyen Van Cu Street, An Khanh, Ninh Kieu, Can Tho, 902495 Vietnam 3 State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany 4 The Natural History Museum London, Cromwell Rd, Kensington, London SW7 5BD, UK * Correspondence: [email protected] (H.T.); [email protected] (J.B.) Academic Editors: Sophie Tomasi and Joël Boustie Received: 12 February 2019; Accepted: 16 March 2019; Published: 19 March 2019 Abstract: Mycosporine-like amino acids (MAAs) were quantified in fresh and preserved material of the chlorolichen Dermatocarpon luridum var. luridum (Verrucariaceae/Ascomycota). The analyzed samples represented a time-series of over 150 years. An HPLC coupled with a diode array detector (HPLC-DAD) in hydrophilic interaction liquid chromatography (HILIC) mode method was developed and validated for the quantitative determination of MAAs. We found evidence for substance specific differences in the quality of preservation of two MAAs (mycosporine glutamicol, mycosporine glutaminol) in Natural History Collections. We found no change in average mycosporine glutamicol concentrations over time. Mycosporine glutaminol concentrations instead decreased rapidly with no trace of this substance detectable in collections older than nine years.
    [Show full text]
  • DOMINANCE of TARDIGRADA in ASSOCIATED FAUNA of TERRESTRIAL MACROALGAE Prasiola Crispa (CHLOROPHYTA: PRASIOLACEAE) from a PENGUIN
    14 DOMINANCE OF TARDIGRADA IN ASSOCIATED FAUNA OF TERRESTRIAL MACROALGAE Prasiola crispa (CHLOROPHYTA: PRASIOLACEAE) FROM A PENGUIN ROOKERY NEAR ARCTOWSKI STATION (KING GEORGE ISLAND, SOUTH SHETLAND ISLANDS, MARITIME ANTARCTICA) http://dx.doi.org/10.4322/apa.2014.083 Adriana Galindo Dalto1,*, Geyze Magalhães de Faria1, Tais Maria de Souza Campos1, Yocie Yoneshigue Valentin1 1Laboratório de Macroalgas Marinhas, Instituto de Biologia, Universidade Federal do Rio de Janeiro – UFRJ, Av. Carlos Chagas Filho, 373, sala A1-94, Centro de Ciências da Saúde, Ilha do Fundão, CEP 21941-902, Rio de Janeiro, RJ, Brazil *e-mail: [email protected] Abstract: Tardigrada are among the microinvertebrates commonly associated to terrestrial vegetation, especially in extreme environments such as Antarctica. In the austral summer 2010/2011, Tardigrada were found in high densities on Prasiola crispa sampled at penguin rookeries from Arctowski Station area (King George Island). Taxonomic identi cations performed to date suggest that the genus Ramazzottius is the dominant taxa on P. crispa. is genus has been reported for West Antarctica and Sub-Antarctic Region. In this context, the present work intends to contribute to the knowledge of the terrestrial invertebrate fauna associated to P. crispa of the ice-free areas around Admiralty Bay. Keywords: microinvertebrates, terrestrial macroalgae, tardigrada, Ramazzottius Introduction Tardigrada are micrometazoans (average 250-500 µm) that Antarctic Tardigrada were at the beginning described present a large distribution in variety of diverse habitats, from by Murray (1906) and Richters (1908) (apud Convey & rain forests to arid polar environments, including nunataks McInnes, 2005), a er species lists of Antarctic Tardigrada and mountain tops to abyssal plains of the oceanic regions were prepared by Morikawa (1962), Sudzuki (1964), (Brusca & Brusca, 2007; McInnes, 2010a).
    [Show full text]
  • Neoproterozoic Origin and Multiple Transitions to Macroscopic Growth in Green Seaweeds
    Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds Andrea Del Cortonaa,b,c,d,1, Christopher J. Jacksone, François Bucchinib,c, Michiel Van Belb,c, Sofie D’hondta, f g h i,j,k e Pavel Skaloud , Charles F. Delwiche , Andrew H. Knoll , John A. Raven , Heroen Verbruggen , Klaas Vandepoeleb,c,d,1,2, Olivier De Clercka,1,2, and Frederik Leliaerta,l,1,2 aDepartment of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium; bDepartment of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Zwijnaarde, Belgium; cVlaams Instituut voor Biotechnologie Center for Plant Systems Biology, 9052 Zwijnaarde, Belgium; dBioinformatics Institute Ghent, Ghent University, 9052 Zwijnaarde, Belgium; eSchool of Biosciences, University of Melbourne, Melbourne, VIC 3010, Australia; fDepartment of Botany, Faculty of Science, Charles University, CZ-12800 Prague 2, Czech Republic; gDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; hDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; iDivision of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom; jSchool of Biological Sciences, University of Western Australia, WA 6009, Australia; kClimate Change Cluster, University of Technology, Ultimo, NSW 2006, Australia; and lMeise Botanic Garden, 1860 Meise, Belgium Edited by Pamela S. Soltis, University of Florida, Gainesville, FL, and approved December 13, 2019 (received for review June 11, 2019) The Neoproterozoic Era records the transition from a largely clear interpretation of how many times and when green seaweeds bacterial to a predominantly eukaryotic phototrophic world, creat- emerged from unicellular ancestors (8). ing the foundation for the complex benthic ecosystems that have There is general consensus that an early split in the evolution sustained Metazoa from the Ediacaran Period onward.
    [Show full text]
  • JUDD W.S. Et. Al. (2002) Plant Systematics: a Phylogenetic Approach. Chapter 7. an Overview of Green
    UNCORRECTED PAGE PROOFS An Overview of Green Plant Phylogeny he word plant is commonly used to refer to any auto- trophic eukaryotic organism capable of converting light energy into chemical energy via the process of photosynthe- sis. More specifically, these organisms produce carbohydrates from carbon dioxide and water in the presence of chlorophyll inside of organelles called chloroplasts. Sometimes the term plant is extended to include autotrophic prokaryotic forms, especially the (eu)bacterial lineage known as the cyanobacteria (or blue- green algae). Many traditional botany textbooks even include the fungi, which differ dramatically in being heterotrophic eukaryotic organisms that enzymatically break down living or dead organic material and then absorb the simpler products. Fungi appear to be more closely related to animals, another lineage of heterotrophs characterized by eating other organisms and digesting them inter- nally. In this chapter we first briefly discuss the origin and evolution of several separately evolved plant lineages, both to acquaint you with these important branches of the tree of life and to help put the green plant lineage in broad phylogenetic perspective. We then focus attention on the evolution of green plants, emphasizing sev- eral critical transitions. Specifically, we concentrate on the origins of land plants (embryophytes), of vascular plants (tracheophytes), of 1 UNCORRECTED PAGE PROOFS 2 CHAPTER SEVEN seed plants (spermatophytes), and of flowering plants dons.” In some cases it is possible to abandon such (angiosperms). names entirely, but in others it is tempting to retain Although knowledge of fossil plants is critical to a them, either as common names for certain forms of orga- deep understanding of each of these shifts and some key nization (e.g., the “bryophytic” life cycle), or to refer to a fossils are mentioned, much of our discussion focuses on clade (e.g., applying “gymnosperms” to a hypothesized extant groups.
    [Show full text]
  • The Green Puzzle Stichococcus (Trebouxiophyceae, Chlorophyta): New Generic and Species Concept Among This Widely Distributed Genus
    Phytotaxa 441 (2): 113–142 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2020 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.441.2.2 The green puzzle Stichococcus (Trebouxiophyceae, Chlorophyta): New generic and species concept among this widely distributed genus THOMAS PRÖSCHOLD1,3* & TATYANA DARIENKO2,4 1 University of Innsbruck, Research Department for Limnology, A-5310 Mondsee, Austria 2 University of Göttingen, Albrecht-von-Haller-Institute of Plant Sciences, Experimental Phycology and Sammlung für Algenkulturen, D-37073 Göttingen, Germany 3 [email protected]; http://orcid.org/0000-0002-7858-0434 4 [email protected]; http://orcid.org/0000-0002-1957-0076 *Correspondence author Abstract Phylogenetic analyses have revealed that the traditional order Prasiolales, which contains filamentous and pseudoparenchy- matous genera Prasiola and Rosenvingiella with complex life cycle, also contains taxa of more simple morphology such as coccoids like Pseudochlorella and Edaphochlorella or rod-like organisms like Stichococcus and Pseudostichococcus (called Prasiola clade of the Trebouxiophyceae). Recent studies have shown a high biodiversity among these organisms and questioned the traditional generic and species concept. We studied 34 strains assigned as Stichococcus, Pseudostichococcus, Diplosphaera and Desmocococcus. Phylogenetic analyses using a multigene approach revealed that these strains belong to eight independent lineages within the Prasiola clade of the Trebouxiophyceae. For testing if these lineages represent genera, we studied the secondary structures of SSU and ITS rDNA sequences to find genetic synapomorphies. The secondary struc- ture of the V9 region of SSU is diagnostic to support the proposal for separation of eight genera.
    [Show full text]
  • Composition and Distribution of Subaerial Algal Assemblages in Galway City, Western Ireland
    Cryptogamie, Algol., 2003, 24 (3): 245-267 © 2003 Adac. Tous droits réservés Composition and distribution of subaerial algal assemblages in Galway City, western Ireland Fabio RINDI* and Michael D. GUIRY Department of Botany, Martin Ryan Institute, National University of Ireland, Galway, Ireland (Received 5 October 2002, accepted 26 March 2003) Abstract – The subaerial algal assemblages of Galway City, western Ireland, were studied by examination of field collections and culture observations; four main types of assem- blages were identified. The blue-green assemblage was the most common on stone and cement walls; it was particularly well-developed at sites characterised by poor water drainage. Gloeocapsa alpina and other species of Gloeocapsa with coloured envelopes were the most common forms; Tolypothrix byssoidea and Nostoc microscopicum were also found frequently. The Trentepohlia assemblage occurred also on walls; it was usually produced by large growths of Trentepohlia iolithus, mainly on concrete. Trentepohlia cf. umbrina and Printzina lagenifera were less common and occurred on different substrata. The prasio- lalean assemblage was the community usually found at humid sites at the basis of many walls and corners. Rosenvingiella polyrhiza, Prasiola calophylla and Phormidium autumnale were the most common entities; Klebsormidium flaccidum and Prasiola crispa were locally abundant at some sites. The Desmococcus assemblage was represented by green growths at the basis of many trees and electric-light poles and less frequently occurred at the bases of walls. Desmococcus olivaceus was the dominant form, sometimes with Chlorella ellipsoidea. Trebouxia cf. arboricola, Apatococcus lobatus and Trentepohlia abietina were the most common corticolous algae. Fifty-one subaerial algae were recorded; most did not exhibit any obvious substratum preference, the Trentepohliaceae being the only remarkable excep- tion.
    [Show full text]
  • Supplementary Information the Biodiversity and Geochemistry Of
    Supplementary Information The Biodiversity and Geochemistry of Cryoconite Holes in Queen Maud Land, East Antarctica Figure S1. Principal component analysis of the bacterial OTUs. Samples cluster according to habitats. Figure S2. Principal component analysis of the eukaryotic OTUs. Samples cluster according to habitats. Figure S3. Principal component analysis of selected trace elements that cause the separation (primarily Zr, Ba and Sr). Figure S4. Partial canonical correspondence analysis of the bacterial abundances and all non-collinear environmental variables (i.e., after identification and exclusion of redundant predictor variables) and without spatial effects. Samples from Lake 3 in Utsteinen clustered with higher nitrate concentration and samples from Dubois with a higher TC abundance. Otherwise no clear trends could be observed. Table S1. Number of sequences before and after quality control for bacterial and eukaryotic sequences, respectively. 16S 18S Sample ID Before quality After quality Before quality After quality filtering filtering filtering filtering PES17_36 79285 71418 112519 112201 PES17_38 115832 111434 44238 44166 PES17_39 128336 123761 31865 31789 PES17_40 107580 104609 27128 27074 PES17_42 225182 218495 103515 103323 PES17_43 219156 213095 67378 67199 PES17_47 82531 79949 60130 59998 PES17_48 123666 120275 64459 64306 PES17_49 163446 158674 126366 126115 PES17_50 107304 104667 158362 158063 PES17_51 95033 93296 - - PES17_52 113682 110463 119486 119205 PES17_53 126238 122760 72656 72461 PES17_54 120805 117807 181725 181281 PES17_55 112134 108809 146821 146408 PES17_56 193142 187986 154063 153724 PES17_59 226518 220298 32560 32444 PES17_60 186567 182136 213031 212325 PES17_61 143702 140104 155784 155222 PES17_62 104661 102291 - - PES17_63 114068 111261 101205 100998 PES17_64 101054 98423 70930 70674 PES17_65 117504 113810 192746 192282 Total 3107426 3015821 2236967 2231258 Table S2.
    [Show full text]
  • Freshwater Algae in Britain and Ireland - Bibliography
    Freshwater algae in Britain and Ireland - Bibliography Floras, monographs, articles with records and environmental information, together with papers dealing with taxonomic/nomenclatural changes since 2003 (previous update of ‘Coded List’) as well as those helpful for identification purposes. Theses are listed only where available online and include unpublished information. Useful websites are listed at the end of the bibliography. Further links to relevant information (catalogues, websites, photocatalogues) can be found on the site managed by the British Phycological Society (http://www.brphycsoc.org/links.lasso). Abbas A, Godward MBE (1964) Cytology in relation to taxonomy in Chaetophorales. Journal of the Linnean Society, Botany 58: 499–597. Abbott J, Emsley F, Hick T, Stubbins J, Turner WB, West W (1886) Contributions to a fauna and flora of West Yorkshire: algae (exclusive of Diatomaceae). Transactions of the Leeds Naturalists' Club and Scientific Association 1: 69–78, pl.1. Acton E (1909) Coccomyxa subellipsoidea, a new member of the Palmellaceae. Annals of Botany 23: 537–573. Acton E (1916a) On the structure and origin of Cladophora-balls. New Phytologist 15: 1–10. Acton E (1916b) On a new penetrating alga. New Phytologist 15: 97–102. Acton E (1916c) Studies on the nuclear division in desmids. 1. Hyalotheca dissiliens (Smith) Bréb. Annals of Botany 30: 379–382. Adams J (1908) A synopsis of Irish algae, freshwater and marine. Proceedings of the Royal Irish Academy 27B: 11–60. Ahmadjian V (1967) A guide to the algae occurring as lichen symbionts: isolation, culture, cultural physiology and identification. Phycologia 6: 127–166 Allanson BR (1973) The fine structure of the periphyton of Chara sp.
    [Show full text]
  • Research Article
    Ecologica Montenegrina 20: 24-39 (2019) This journal is available online at: www.biotaxa.org/em Biodiversity of phototrophs in illuminated entrance zones of seven caves in Montenegro EKATERINA V. KOZLOVA1*, SVETLANA E. MAZINA1,2 & VLADIMIR PEŠIĆ3 1 Department of Ecological Monitoring and Forecasting, Ecological Faculty of Peoples’ Friendship University of Russia, 115093 Moscow, 8-5 Podolskoye shosse, Ecological Faculty, PFUR, Russia 2 Department of Radiochemistry, Chemistry Faculty of Lomonosov Moscow State University 119991, 1-3 Leninskiye Gory, GSP-1, MSU, Moscow, Russia 3 Department of Biology, Faculty of Sciences, University of Montenegro, Cetinjski put b.b., 81000 Podgorica, Montenegro *Corresponding autor: [email protected] Received 4 January 2019 │ Accepted by V. Pešić: 9 February 2019 │ Published online 10 February 2019. Abstract The biodiversity of the entrance zones of the Montenegro caves is barely studied, therefore the purpose of this study was to assess the biodiversity of several caves in Montenegro. The samples of phototrophs were taken from various substrates of the entrance zone of 7 caves in July 2017. A total of 87 species of phototrophs were identified, including 64 species of algae and Cyanobacteria, and 21 species of Bryophyta. Comparison of biodiversity was carried out using Jacquard and Shorygin indices. The prevalence of cyanobacteria in the algal flora and the dominance of green algae were revealed. The composition of the phototrophic communities was influenced mainly by the morphology of the entrance zones, not by the spatial proximity of the studied caves. Key words: karst caves, entrance zone, ecotone, algae, cyanobacteria, bryophyte, Montenegro. Introduction The subterranean karst forms represent habitats that considered more climatically stable than the surface.
    [Show full text]
  • Universidade Federal Do Pampa Campus São Gabriel Programa De Pós-Graduação Em Ciências Biológicas
    UNIVERSIDADE FEDERAL DO PAMPA CAMPUS SÃO GABRIEL PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS EVELISE LEIS CARVALHO GENOMAS ACESSÓRIOS DA ALGA ANTÁRTICA PRASIOLA CRISPA: INFERÊNCIAS ESTRUTURAIS E FILOGENÉTICAS SÃO GABRIEL 2015 EVELISE LEIS CARVALHO GENOMAS ACESSÓRIOS DA ALGA ANTÁRTICA PRASIOLA CRISPA: INFERÊNCIAS ESTRUTURAIS E FILOGENÉTICAS Dissertação apresentada ao Programa de Pós- Graduação Stricto Sensu em Ciências Biológicas da Universidade Federal do Pampa, como requisito parcial para obtenção do Título de Mestre em Ciências Biológicas. Orientador: Prof. Dr. Paulo Marcos Pinto Coorientador: Dr. Gabriel da Luz Wallau São Gabriel 2015 II EVELISE LEIS CARVALHO GENOMAS ACESSÓRIOS DA ALGA ANTÁRTICA PRASIOLA CRISPA: INFERÊNCIAS ESTRUTURAIS E FILOGENÉTICAS Dissertação apresentada ao Programa de Pós- Graduação Stricto Sensu em Ciências Biológicas da Universidade Federal do Pampa, como requisito parcial para obtenção do Título de Mestre em Ciências Biológicas. Dissertação defendida e aprovada em 19 de Maio de 2015. Banca examinadora: ______________________________________________________ Prof. Dr. Paulo Marcos Pinto Orientador - UNIPAMPA ______________________________________________________ Profª. Drª. Alessandra Loureiro Morassutti Membro Titular - PUCRS ______________________________________________________ Prof. Dr. Valdir Marcos Stefenon Membro Titular - UNIPAMPA III À meu pai, Evaldo Carvalho, por me ensinar a jamais desistir dos meus objetivos, por mais árduo que seja o caminho. IV AGRADECIMENTOS Agradeço primeiramente aos meus pais Evaldo e Indiara, pelo incentivo constante, pela confiança depositada, por todo o afeto e amor. Sou e serei eternamente grata pelo exemplo que são em minha vida. Palavras apenas não são seriam suficientes para expressar a admiração, o amor e a gratidão que sinto. Amo vocês incondicionalmente! Aos meus avós José Carlos e Elisa, pelo apoio constante, de todas as formas.
    [Show full text]
  • First Report of a Species of Prasiola (Chlorophyta: Prasiolaceae) from the Mediterranean Sea (Lagoon of Venice)*
    sm69n3343 12/9/05 13:44 Página 343 SCI. MAR., 69 (3): 343-346 SCIENTIA MARINA 2005 First report of a species of Prasiola (Chlorophyta: Prasiolaceae) from the Mediterranean Sea (Lagoon of Venice)* CHIARA MIOTTI1, DANIELE CURIEL1, ANDREA RISMONDO1, GIORGIO BELLEMO1, CHIARA DRI1, EMILIANO CHECCHIN1 and MARA MARZOCCHI2 1 SELC pscarl, Via dell’Elettricità 3d, 30174, Venezia, Italy. E-mail: [email protected] 2 Dipartimento di Biologia, Università di Padova, Via Trieste 75, 35121 Padova, Italy. SUMMARY: A green alga belonging to the genus Prasiola, known from terrestrial, marine and freshwater habitats of polar and cold-temperate regions, is recorded for the first time in the Mediterranean Sea. In 2002, during a survey on soft substrata in the Lagoon of Venice (Italy), specimens referable to this genus were found in several areas. The morphological features of thalli are described and their occurrence in the Lagoon of Venice is discussed. Data on associated algal vegetation are also presented. Keywords: green algae, Lagoon of Venice, Mediterranean Sea, Prasiola, phytobenthos RESUMEN: PRIMERA CITA DE UNA ESPECIE DE PRASIOLA (CHLOROPHYTA: PRASIOLACEAE) PARA EL MAR MEDITERRÁNEO (LAGU- NA DE VENECIA).– Un alga verde, perteneciente al género Prasiola conocida de hábitats terrestres, marinos y de agua dulce, se cita por vez primera en el mar Mediterráneo. En 2002, durante un monitoreo en sustratos blandos en la laguna de Venecia (Italia), fueron hallados en diversas áreas especímenes atribuibles a este género. Las características morfológicas de los talos son descritas y se discute su presencia en la laguna de Venecia. Se presentan datos sobre la vegetación algal asociada.
    [Show full text]