Devonian Stratigraphy in Estonia: Current State and Problems
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Message from the New Chairman
Subcommission on Devonian Stratigraphy Newsletter No. 21 April, 2005 MESSAGE FROM THE NEW CHAIRMAN Dear SDS Members: This new Newsletter gives me the pleasant opportunity to thank you for your confidence which should allow me to lead our Devonian Subcommission successfully through the next four years until the next International Geological Congress in Norway. Ahmed El Hassani, as Vice-Chairman, and John Marshall, as our new Secretary, will assist and help me. As it has been our habit in the past, our outgoing chairman, Pierre Bultynck, has continued his duties until the end of the calendar year, and in the name of all the Subcommission, I like to express our warmest thanks to him for all his efforts, his enthusi- asm for our tasks, his patience with the often too slow progress of research, and for the humorous, well organized and skil- ful handling of our affairs, including our annual meetings. At the same time I like to thank all our outgoing Titular Members for their partly long-time service and I express my hope that they will continue their SDS work with the same interest and energy as Corresponding Members. The new ICS rules require a rather constant change of voting members and the change from TM to CM status should not necessarily be taken as an excuse to adopt the lifestyle of a “Devonian pensioner”. I see no reason why constantly active SDS members shouldn´t become TM again, at a later stage. On the other side, the rather strong exchange of voting members should bring in some fresh ideas and some shift towards modern stratigraphical tech- niques. -
Vertebrate Microremains from the Lower Silurian of Siberia and Central Asia: Palaeobiodiversity and Palaeobiogeography
Journal of Micropalaeontology, 30: 97–106. 2011 The Micropalaeontological Society Vertebrate microremains from the Lower Silurian of Siberia and Central Asia: palaeobiodiversity and palaeobiogeography ŽIVILĖ ŽIGAITĖ1,2,*, VALENTINA KARATAJŪTĖ-TALIMAA3 & ALAIN BLIECK1 1UFR Sciences de la Terre, FRE 3298 du CNRS ‘Géosystèmes’, Université Lille – 1, F-59655 Villeneuve d’Ascq Cedex, France 2Department of Evolution and Development, Uppsala University, Norbyvägen 18A, SE-75236 Uppsala, Sweden 3Department of Geology and Mineralogy, Vilnius University, M.K.Ciurlionio 21/27, LT-03101 Vilnius, Lithuania *Corresponding author (e-mail: [email protected]) ABSTRACT – The biostratigraphic and palaeogeographical distributions of early vertebrate microfossils from a number of Lower Silurian localities in northwestern Mongolia, Tuva and southern Siberia were reviewed. Vertebrate microremains showed high taxonomic diversity, comprising acanthodians, chon- drichthyans, putative galeaspids, heterostracans, mongolepids, tesakoviaspids, thelodonts and possible eriptychiids. The majority of taxa have lower stratigraphic levels of occurrence compared to other Silurian palaeobiogeographical provinces, such as the European-Russian or Canadian Arctic. Vertebrate micro- remains are numerous within the samples, which may indicate warm-water low-latitude palaeobasins with rich shelf faunas. This disagrees with the recent interpretations of the territory as a northern high-latitude Siberian palaeocontinent. The palaeobiogeographical distribution of vertebrate taxa indicates an endemic palaeobiogeographical province of connected epeiric palaeoseas with external isolation during the early Silurian. In previous works separation between Tuvan and Siberian palaeobiogeographical provinces has been suggested. After careful revision of the vertebrate microfossil record of the region, we find that differences in a few vertebrate taxa do not provide not strong enough evidence to reliably distinguish these provinces. -
Geologists of Russian Origin in Latin America
REVISTA DEL MUSEO DE LA PLATA 2018, Volumen 3, Número 2: 223-295 Geologists of Russian origin in Latin America P. Tchoumatchenco1 , A.C. Riccardi 2 , †M. Durand Delga3 , R. Alonso 4 , 7 8 M. Wiasemsky5 , D. Boltovskoy 6 , R. Charrier , E. Minina 1Geological Institute, Bulgarian Academy of Sciences Acad. G. Bonchev Str. Bl. 24, 1113 Sofia, Bulgaria, [email protected] 2Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Argentina, [email protected] 3Passed away August19, 2012 4Universidad Nacional de Salta, Argentina, [email protected] 581, Chemin du Plan de Charlet, F-74190 Passy, France, [email protected] 6Dep. Ecologia, Genetica y Evolucion, Fac. Ciencias Exactas y Naturales, Univ. de Buenos Aires, Argentina, [email protected] 7History of Geology Group, Sociedad Geológica de Chile, Santiago de Chile, [email protected] 8State Geological Museum “V.I.Vernadsky”, Mohovaya ul. 11/11, Moscow 125009, Russian Federation, [email protected] REVISTA DEL MUSEO DE LA PLATA / 2018, Volumen 3, Número 2: 223-295 / ISSN 2545-6377 ISSN 2545-6377 UNIVERSIDAD NACIONAL DE LA PLATA - FACULTAD DE CIENCIAS NATURALES Y MUSEO Revista del Museo de La Plata 2018 Volumen 3, Número 2 (Julio-Diciembre): 223-295 Geologists of Russian origin in Latin America P. Tchoumatchenco1, A.C. Riccardi2, †M. Durand Delga3, R. Alonso4, M. Wiasemsky5, D. Boltovskoy6, R. Charrier7, E. Minina8 1 Geological Institute, Bulgarian Academy of Sciences Acad. G. Bonchev Str. Bl. 24, 1113 Sofia, Bulgaria, [email protected] 2 Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Argentina, [email protected] 3 Passed away August19, 2012 4 Universidad Nacional de Salta, Argentina, [email protected] 5 81, Chemin du Plan de Charlet, F-74190 Passy, France, [email protected] 6 Dep. -
Categorical Versus Geometric Morphometric Approaches To
[Palaeontology, 2020, pp. 1–16] CATEGORICAL VERSUS GEOMETRIC MORPHOMETRIC APPROACHES TO CHARACTERIZING THE EVOLUTION OF MORPHOLOGICAL DISPARITY IN OSTEOSTRACI (VERTEBRATA, STEM GNATHOSTOMATA) by HUMBERTO G. FERRON 1,2* , JENNY M. GREENWOOD1, BRADLEY DELINE3,CARLOSMARTINEZ-PEREZ 1,2,HECTOR BOTELLA2, ROBERT S. SANSOM4,MARCELLORUTA5 and PHILIP C. J. DONOGHUE1,* 1School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK; [email protected], [email protected], [email protected] 2Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de Valencia, C/ Catedratic Jose Beltran Martınez 2, 46980, Paterna, Valencia, Spain; [email protected], [email protected] 3Department of Geosciences, University of West Georgia, Carrollton, GA 30118, USA; [email protected] 4School of Earth & Environmental Sciences, University of Manchester, Manchester, M13 9PT, UK; [email protected] 5School of Life Sciences, University of Lincoln, Riseholme Hall, Lincoln, LN2 2LG, UK; [email protected] *Corresponding authors Typescript received 2 October 2019; accepted in revised form 27 February 2020 Abstract: Morphological variation (disparity) is almost aspects of morphology. Phylomorphospaces reveal conver- invariably characterized by two non-mutually exclusive gence towards a generalized ‘horseshoe’-shaped cranial mor- approaches: (1) quantitatively, through geometric morpho- phology and two strong trends involving major groups of metrics; -
Studies in Organic Geochemistry"
A Thesis entitled "STUDIES IN ORGANIC GEOCHEMISTRY" submitted to the UNIVERSITY OF GLASGOW in part fulfilment of the requirements for admittance to the degree of DOCTOR OF PHILOSOPHY in the Faculty of Science by JAMES RANKIN MAXWELL, B.Sc. Chemistry Department April, 1967 ProQuest Number: 11011805 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 11011805 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 To t:vv rorontn , v/if^ and dna^ktor, I wish to express my gratitude to Drs. G.Eglinton and J.D, Loudon for their close interest and guidance throughout the work of this thesis. My appreciation is also due to Dr. A.G, Douglas, whose assistance at all times proved to he invaluable. I would also like to thank Miss F. Greene and Miss T.Devit for technical assistance, my colleagues of the Organic Geochemistry Unit and Dr. A, McCormick for their advice and help, Mr, J.M.L. Cameron and his staff for the micro-analyses, Mrs. F. Lawrie and Miss A. -
K Urik, Pycnosteus Tuberculatus (Rohon), Ganosteus Stellatus Rohon and Psammosteus Bergi (Obr.) Are Now Presented in a Somewhat Modified Form
EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. XVII KOIDE I(EEMIA • GEOLOOGIA. 1968, Nr. 3 H3BECTH51 AKAJlEMHH HAYK 3CTOHCKOH CCP. TOM XVII XI1MH5! * T'EOJ10ri15L 1968. N'o 0 D . OBRUCHEV, E. MARK-KURIK ON THE EVOLUTION OF THE PSAMMOSTEIDS (HETEROSTRACI) After our joint paper ( 1965) has been published, new materials of psammosteids have been collected in the Baltic area, and a number of new restorations have been made, and some of the older ones modified. The purpose of the present paper is to give a concise account of the evolution and ontogenetic development of this interesting group of fossil Agnatha, together with some data on their morphology. This study is based solely on the material from the Main Devonian Field (Baltic states, Leningrad, Pskov and adjacent regions), which is the chief area of deve iopment of the psammosteids in the Soviet Union, as well as in the world in general. In the Givetian and Frasnian of the Main Devonian Field the psam mosteids are represented by seven genera, comprising numerous species. Their fossil remains consist as a rule of isolated plates and scales. Only in very few cases same of the plates have been preserved in natural tonnection. Most frequently the branchial plates are met with, so that many species have been founded only on these plates. Lateral and ridge scales are rather common. Dorsal and ventral plates are twice as ·rare as the branchials. Other plates: rostrals, pineals, orbitals, postorbitals, cor nuals and the anterior plates of the ventral carapace, have been discovered only in a few occasions. Although the material of many forms is rather insufficient, attempts have been made to make restorations of a number of psammosteids (Fig. -
Energy Procedia
Available online at www.sciencedirect.com Energy Procedia Energy Procedia 00 (2008) 000–000 www.elsevier.com/locate/XXX GHGT-9 Possibilities for geological storage and mineral trapping of industrial CO2 emissions in the Baltic region Alla Shogenovaa, Saulius Šliaupab,c, Kazbulat Shogenova, Rasa Šliaupieneb, Raisa Pomerancevad, Rein Vahera, Mai Uibue, Rein Kuusike aInstitute of Geology, Tallinn University of Technology, Ehitajete tee5, 19086 Tallinn, Estonia bInstitute of Geology and Geography, T. Sevcenkos 13, Lt-03223, Vilnius, Lithuania cVilnius University,Universiteti St.3, LT-01513, Vilnius, Lithuania dLatvian Environment, Geology & Meteorology Agency, Maskavas St. 165, LV-1019, Riga, Latvia eLaboratory of Inorganic Materials, Ehitajete tee5, Tallinn 19086, Estonia Elsevier use only: Received date here; revised date here; accepted date here Abstract Industrial CO2 emissions and possibilities for geological storage of CO2 in Estonia, Latvia and Lithuania were studied within the framework of EU GEOCAPACITY and CO2NET EAST projects supported by European Commission Sixth Framework Programme (FP6). Twenty-two large industrial sources produced 14.5 Mt of CO2 in Estonia, 1.9 Mt in Latvia and 4.8 Mt in Lithuania in 2007. The two greatest Estonian power stations, using oil-shale, produced 9.4 and 2.7 Mt of CO2. The Baltic States are located within the Baltic sedimentary basin, the thickness of which varies from 100 m in NE Estonia up to 1900 m in SW Latvia and 2300 m in western Lithuania. The most prospective formation for the geological storage of CO2 is the Cambrian reservoir, with an estimated potential of 300 Mt of CO2 in 15 large structures located in Latvia. -
Tartu, 26.-27. September 2003 Elga Mark-Kurik Ja Jйri Nemliher Tallinna
Eesti geoloogia uue sajandi kiinnisel 38 Tartu, 26.-27. september 2003 VEEL KORD КESK-DEVONI АВА V А КIНТIDEST Elga Mark-Kurik ja Jйri Nemliher Tallinna Tehnikatilikooli Geoloogia Instituut, Estonia pst. 7, 10143 Tallinn ([email protected]; [email protected]) Abava kihid on kauaaegse asendi tottu Kesk- ja Ulem-Devoni piiril pohjustanud rohkem vaidlusi kui mбni teine stratigraafiline tiksus Baltikumi Нibiloigetes. Selle asendiga seoses on neid kihte kasitletud kord iseseisva tiksusena (Liepins 1960, Mark-Kurik 1991), marksa sagedamini aga lasuva, Gauja lademe osana (Kurss et al. 1981, Mark-Kurik 1981) vбi lamava, Burtnieki lademe osana (Kleesment 1995, Kleesment & Mark-Kurik 1997, Vingisaar 1997). Abava kihtide kui Uksuse liitmist selle vбi teise kбrgemat jarku Uksusega on pбhjustanud antud Uksuse piiride, eriti Ulemise piiri ebamaarasus ning halb jalgitavus geoloogilisel kaш·distamisel (Kurik et al. 1989). Viimatimainitud asjaolu tottu loobus Kurss hiljem ( 1992) Abava kui iseseisva stratigraafilise tiksuse kasutamisest. Siiski ei saa mainimata jatta Abava kihtidele spetsiifilist kalafaunat, samuti selle tiksikelementide.laia levikut Ida Euroopa platvormil ning naaberaladel ja kaugemalgi ning nimetatud kihtide tllhtsust regioonidevahelise korrelatsiooni aspektist (Mark-Kurik 1991, Ahlberg et al. 1999, Mark-Kurik et al. 1999). Eestis kuuluvad Abava kihid Givet' ladejargu Burtnieki lademesse, moodustades selle kolmanda ehk Ulemise kihikompleksi. Кihtide paksus on 15,1-32 m. Need koosnevad heledavarvilisest peeneteralisest pбimjaskihilisest liivakivist, ka peeneteralisest hallist, rohekas- voi lillakashallist aleuroliidist. Aleuroliiti on antud Uksuses enam kui 25 %. Samuti esineb selles halli voi punakaspruuni savi. Kagu-Eesti puurstidamikes on Abava tasemelt leitud dolokivi ning domeriiti. Mineraloogiliselt on meie Vбhandu jбе aarsed paljandid ning Latis paiknev Lejeji paljand sarnased (Kleesment 1995). Eelpool mainitud paljand (stratottiiip) asub Kuramaal Venta jбgikonnas Abava jбе vasakul kaldal (suudmest 4 km Ulesvoolu) Lejeji talu vastas. -
A New Middle Devonian (Givetian) Psammosteid (Vertebrata: Heterostraci) from Poland
Annales Societatis Geologorum Poloniae (2020), vol. 90: 75 – 93 doi: https://doi.org/10.14241/asgp.2020.04 A NEW MIDDLE DEVONIAN (GIVETIAN) PSAMMOSTEID (VERTEBRATA: HETEROSTRACI) FROM POLAND Marek DEC Institute of Palaeobiology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland; e-mail: [email protected] Dec, M., 2020. A new Middle Devonian (Givetian) psammosteid (Vertebrata: Heterostraci) from Poland. Annales Societatis Geologorum Poloniae, 90: 75 – 93. Abstract: A new genus and species of psammosteid heterostracan, Psarkosteus mediocris gen. et sp. nov., is de- scribed from the Middle Devonian (Givetian) of the Skały Formation, the Holy Cross Mountains, Poland. The dor- sal plate of Psarkosteus is constricted in its anterior part and the postorbital plate is long and narrow. Both features, along with the morphology and variety of tubercles, distinguish it from other representatives of the group. Most distinctive are big, teardrop-shaped tubercles, each with a flat or slightly concave surface and with its tip directed posteriorly, and a crenulated base, located along the branchial plates. The lateral line system in Psarkosteus is similar to that of Drepanaspis gemuendenensis and confirms earlier reconstructions. Key words: Pteraspidomorphi, Heterostraci, Psammosteidae, Middle Devonian, Holy Cross Mountains. Manuscript received 19 February, 2020 accepted 1 June 2020 INTRODUCTION The fossil record of the Heterostraci is poor in Poland, 2017; Glinskiy, 2018). The main problem is concerned although fossils are known from Upper Silurian, Lower with their relationships within the Pteraspidiformes. The and Middle Devonian deposits. From a core sample of the Psammosteidae were supposed to be (1) a sister group to the Upper Silurian (Přidoli) succession in Mielnik a represen- pteraspids s.l., that is Protopteraspididae + Pteraspididae s.l. -
146 Since 1961 Distribution of Organic Matter and Evaluation of Brittleness
since 1961 BALTICA Volume 33 Number 2 December 2020: 146–165 https://doi.org/10.5200/baltica.2020.2.3 Distribution of organic matter and evaluation of brittleness index of the Lower Silurian shales of west Lithuania based on interpretation of well logs Saulius Šliaupa, Jurga Lazauskienė, Saulius Lozovskis, Rasa Šliaupienė Šliaupa, S., Lazauskienė, J., Lozovskis, S., Šliaupienė, R. 2020. Distribution of organic matter and evaluation of brittle- ness index of the Lower Silurian shales of west Lithuania based on interpretation of well logs. Baltica, 33 (2), 146–165. Vilnius. ISSN 0067-3064. Manuscript submitted 21 August 2020 / Accepted 16 November 2020 / Published online 22 December 2020 © Baltica 2020 Abstract. There is little known of the basic parameters of the Lower Silurian graptolitic black shales that are considered the most prospective unconventional gas reservoir in west Lithuania, situated in the deep central part of the Baltic sedimentary basin. Hundreds of deep oil exploration wells have been drilled in the area of interest, owing to extensive exploration of oil fields. The lower and middle Llandovery interval was mainly drilled with coring, while most of the section was covered by only logging. Therefore, the knowledge of major parameters of the Lower Silurian shales is rather obscure and is based on scarce rock sample data. The gamma- ray, electrical resistivity and sonic logs were utilised, together with mineralogical studies of rock samples to document vertical and lateral distribution of organic matter. Also, the brittleness index was defined to charac- terise the whole Lower Silurian section. Some unexpected trends were identified that may redirect exploration strategy in west Lithuania. -
Tectonic Regimes in the Baltic Shield During the Last 1200 Ma • a Review
Tectonic regimes in the Baltic Shield during the last 1200 Ma • A review Sven Åke Larsson ' ', Bva-L^na Tuliborq- 1 Department of Geology Chalmers University of Technology/Göteborij U^vjrsivy 2 Terralogica AB November 1993 TECTONIC REGIMES IN THE BALTIC SHIELD DURING THE LAST 1200 Ma - A REVIEW Sven Åke Larsson12, Eva-Lena Tullborg2 1 Department of Geology, Chalmers University of Technology/Göteborg University 2 Terralogica AB November 1993 This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client. Information on SKB technical reports from 1977-1978 (TR 121), 1979 (TR 79-28), 1980 (TR 80-26), 1981 (TR 81-17), 1982 (TR 82-28), 1983 (TR 83-77), 1984 (TR 85-01), 1985 (TR 85-20), 1986 (TR 86-31), 1987 (TR 87-33), 1988 (TR 88-32),. 1989 (TR 89-40), 1990 (TR 90-46), 1991 (TR 91-64) and 1992 (TR 92-46) is available through SKB. ) TECTONIC REGIMES IN THE BALTIC SHIELD DURING THE LAST 1200 Ma - A REVIEW by Sven Åke Larson and Eva-Lena Tullborg Department of Geology, Chalmers University of Technology / Göteborg University & Terralogica AB Gråbo, November, 1993 Keywords: Baltic shield, Tectonicregimes. Upper Protero/.oic, Phanerozoic, Mag- matism. Sedimentation. Erosion. Metamorphism, Continental drift. Stress regimes. , ABSTRACT 1 his report is a review about tectonic regimes in the Baltic (Fennoscandian) Shield from the Sveeonorwegian (1.2 Ga ago) to the present. It also covers what is known about palaeostress during this period, which was chosen to include both orogenic and anorogenic events. -
EGT Aastaraamat 2020 ENG.Indd
YEARBOOK GEOLOGICAL SURVEY OF ESTONIA F. R. Kreutzwaldi 5 44314 Rakvere Telephone: (+372) 630 2333 E-mail: [email protected] ISSN 2733-3337 © Eesti Geoloogiateenistus 2021 2 Foreword . 3 About GSE . 5 Cooperation . 6 Human resource development . 9 Fieldwork areas 2020 . 12 GEOLOGICAL MAPPING AND GEOLOGICAL DATA Coring – a major milestone in subsurface investigations in Estonia . 13 Coring projects for geological investigations at the GSE in 2020 . 15 Distribution, extraction, and exploitation of construction minerals in Pärnu county . 17 Mineral resources, geophysical anomalies, and Kärdla Crater in Hiiumaa . .22 Geological mapping in Pärnu County . .26 Opening year of the digital Geological Archive . .29 HYDROGEOLOGY AND ENVIRONMENTAL GEOLOGY Status of Estonian groundwater bodies in 2014–2019 . 31 Salinisation of groundwater in Ida-Viru County . .35 Groundwater survey of Kukruse waste rock heap . .37 The quality of groundwater and surface water in areas with a high proportion of agricultural land . .39 Transient 3D modelling of 18O concentrations with the MODFLOW-2005 and MT3DMS codes in a regional-scale aquifer system: an example from the Estonian Artesian Basin . .42 Radon research in insuffi ciently studied municipalities: Keila and Võru towns, Rõuge, Setomaa, Võru, and Ruhnu rural municipalities . .46 GroundEco – joint management of groundwater dependent ecosystems in transboundary Gauja–Koiva river basin . .50 MARINE GEOLOGY Coastal monitoring in 2019-2020 . .53 Geophysical surveys of fairways . .56 Environmental status of seabed sediments in the Baltic Sea . .58 The strait of Suur väin between the Estonian mainland and the Muhu Island overlies a complex bedrock valley . 60 Foreword 2020 has been an unusual year that none of us is likely to soon forget.