Annual Report 2020-2021

Total Page:16

File Type:pdf, Size:1020Kb

Annual Report 2020-2021 ANNUAL REPORT 2020-2021 DRAFT COPY, TO BE UPDATED BOTANICAL SURVEY OF INDIA Ministry of Environment, Forest & Climate Change 1 ANNUAL REPORT 2020-21 BOTANICAL SURVEY OF INDIA Ministry of Environment, Forest & Climate Change Govt. of India 2 ANNUAL REPORT 2020-21 Botanical Survey of India Editorial Committee S.S. Dash D.K. Agrawala A. N. Shukla Debasmita Dutta Pramanick Assistance Sinchita Biswas Published by The Director Botanical Survey of India CGO Complex, 3rd MSO Building Wing-F, 5th& 6th Floor DF- Block, Sector-1, Salt Lake City Kolkata-700 064 (West Bengal) Website: http//bsi.gov.in Acknowledgements All Regional Centres of Botanical Survey of India 3 CONTENT 1. BSI organogram 2. Research Programmes A. Annual Research Programme a. AJC Bose Indian Botanic Garden, Howrah b. Andaman & Nicobar Regional Centre, Port Blair c. Arid Zone regional Centre, Jodhpur d. Arunachal Pradesh Regional Centre, Itanagar e. Botanic Garden of Indian Republic, Noida f. Central Botanical Laboratory, Howrah g. Central National Herbarium, Howrah h. Central Regional Centre, Allahabad i. Deccan Regional Centre, Hyderabad j. Headquarter, BSI, Kolkata k. High Altitude Western Himalayan Regional Centre, Solan l. Eastern Regional Centre, Shillong m. Industrial Section Indian Museum, Kolkata n. Northern Regional Centre, Dehradun o. Sikkim Himalayan Regional Centre, Gangtok p. Southern Regional Centre, Coimbatore q. Western Regional Centre, Pune B. Flora of India Programme 3. New Discoveries a. New to science b. New records 4. Ex-situ conservation 5. Publications a. Papers published b. Books published c. Hindi published d. Books published by BSI 6. Training/Workshop/Seminar/Symposium/Conference organized by BSI 7. Participation of BSI Officials In Seminar/Symposium/Conference/Training 8. Activities of Research Scholars 9. Funded/Collaborative project 10. Assistance to Botanic Garden Scheme 11. Herbarium information 12. Awards and Honors 13. Service rendered 14. Events and activities 4 AJC BOSE INDIAN BOTANIC GARDEN, BSI, HOWRAH I. COMPLETED PROJECTS Project - 1 Exploration of Caterpillar fungi in Himalaya: Morpho-taxonomy, Molecular phylogeny, Chemical & nutraceutical properties. Name of the Executing officer: Dr. Kanad Das, Scientist E, AJCBIBG, BSI, Howrah (alongwith Dr. M.E. Hembrom and Dr. Arvind Parihar) Duration of the Project: April 2019 – Mar 2021 About the work done: (April 2020 to September 2020) Introduction: Himalayan Caterpillar fungi belonging to the genus Ophiocordyceps and its allies are highly prized and most exploited among all the macrofungi. Ophiocordyceps sinensis, the most appreciated one, has a long history of being used in Chinese Traditional Medicine. Because of its diversified medicinal properties demand for O. sinensis has significantly increased in recent years. Subsequently, to meet the demand of fruiting bodies the entire alpine Himalayan stretch has come under huge pressure of exploitation. In this Himalayan stretch these fungi are collected in Nepal, Bhutan and India (especially Uttaranchal, Sikkim, Himachal Pradesh and Arunachal Pradesh). It is distributed in grass- and shrub-lands that receive a minimum of 350 mm average annual precipitation. It is found at an altitude of 3000–5000 meters above sea level. It is worth mentioning that several species under same or different genera of these caterpillar fungi are lookalikes i.e. morphologically similar. Caterpillar fungi distributed in different parts of Indian Himalaya are to be investigated for identification. Methodology adopted : LSU and SSU genes were isolated from samples collected in 2019 from Eastern to North- West Himalaya. These genes were amplified and sequenced. Datasets were prepared with the sequences of allied samples/species and our isolated genes. These sequences were aligned mostly with mafft alignment tool. Maximum likelihood analyses were conducted with the aligned sequences through raxmlGUI 2.0 to get phylograms. SSU- and LSU-based phylograms were constructed separately to get the phylogenetic estimation. Compilation work with text, illustrations and phylograms was initiated. Achievements including : a. Total area covered : NIL b. Number of tours undertaken : NIL c. Number of species collected : NIL d. Number of species identified (with name) : NIL e. Number of species incorporated : NIL 4.7 Output indicators for the assessment of the project : Phylogenetic inferences and data interpretation; Result of HPLC; Comparison of Nutraceutical Properties in different samples located in different parts of Indian Himalaya. 4.8 Major impacts reported during the financial year: 5 New to Science: Two (2) Sr. No. Name of the species Journal 1. Russula lakhanpalii A. Ghosh, K. Das & R.P. Bhatt; Nova Nova Hedwigia Hedwigia111(1-2): 118, 2020 2. Russula indocatillus A. Ghosh, K. Das & R.P. Bhatt; Nova Nova Hedwigia Hedwigia111(1-2): 124, 2020 4. About the work done:(April 2019 – Mar 2021) 4.5 Methodology adopted: Compilation work with text, illustrations and phylograms was initiated. 4.6 Achievements including : a. Total area covered : NIL b. Number of tours undertaken : NIL c. Number of species collected : NIL d. Number of species identified (with name) : NIL e. Number of species incorporated : NIL 4.7 Output indicators for the assessment of the project : Phylogenetic inferences and data interpretation; Result of HPLC; Comparison of Nutraceutical Properties in different samples located in different parts of Indian Himalaya. 4.8 Major impacts reported during the financial year : New to Science: Five (5) Sr. No. Name of the species Journal 1. Lactarius brunneoaurantiacus K. Das & I. Bera; Nordic J. Bot. Nordic Journal of Botany doi: 10.1111/njb.02940 2. Lactarius indoscrobiculatus K. Das & I. Bera; Nordic J. Bot. Nordic Journal of Botany doi: 10.1111/njb.02940 3. Russula ashihoi K. Das, A. Ghosh, Buyck & Hembrom; Nordic Nordic Journal J.Bot. doi: 10.1111/njb.02962 of Botany 4. Russula indonigra A. Ghosh, K. Das, Buyck & Hembrom; Nordic Journal NordicJ. Bot. doi: 10.1111/njb.02962 of Botany 5. Russula baniyakundensis A. Ghosh, K. Das & D. Chakr.; Phytotaxa Phytotaxa483(3): 249, 2020 New record to India: One (1) Sr. No. Name of the species Journal 1. Lactarius abieticola X.H. Wang Nelumbo 6 Project - 2 1. Name of the project: Development of Musa section (Ex-situ conservation) in AJC Bose Indian Botanic Garden, Howrah (Completed) 2. Executing Scientist (s) : Dr.S.S. Hameed, Scientist-‘E’, Dr.K. Saravanan, Botanist & Mr. S.K. Arjun, Bot.Asst. 3. Duration of the project: One year 4. About the work done: 4.1. Introduction: Musa is one of two or three genera in the family Musaceae; consists of bananas and plantains. Around 70 species of Musa are known, with broad variety of uses. Musa sectional systematics possesses a history dating back to 1887. Earlier classification was based on morphological traits such as Bananas with fleshy fruit; ornamental bananas with upright inflorescences and bracts were vibrantly coloured; and Bananas that were giant in size. During the course of time five sections in Musa came into existence like Eumusa, Rhodochlamys, Callimusa, Australimusa, and Ingentimusa. However, Makku Hakkinen in 2013 reduced these five sections of Musa into Musa and Callimusa based on genetic evidence and markers. In India more than 120 varieties of banana are being cultivated, however our main objective to introduce all the endemic and wild Musa and Callimusa varieties. 4.2. Objectives: To introduce and cultivate wild, endemic and exotic Musa and Callimusa varieties occurring in India through collection and exchange and develop a Musa section in AJCBIBG, Howrah. 4.3. Site of the study: A well-developed Musa section developed in AJCBIBG near to the Rosarium (adjacent to the Great Banyan Tree) becomes the integral part of Botanic Gardens in terms of conservation of germplasm as well as for educational purpose and curiosity. This would serve a long way in conserving wild and cultivated Musa varieties in AJCBIBG. The site is well demarcated and the land levelling has been made suitably. Hence, such sections would act as a gene pool of Musas’s for future breeding programmes (Images attached). 4.4. Methodology adopted:The germplasm of different Musa and Callimusa varieties and the germ plasm of the wild and cultivated varieties were obtained from the regional Centres of BSI where the particular species occurs. Further, different varieties of Musa growing in AJCBIBG has also been brought to the site and planted systematically at a place for developing the section. a. Nil 4.5. Achievements including: a. Total area covered - NA b. Number of tours undertaken - NIL c. Number of species collected – 3 endemic species from Andaman & Nicobar Island d. Number of species identified - 3 1. Musa acuminata, 2. Musa bulbisiana, 3. Musa indandamanensis e. Number of species incorporated – N.A 4.6. Output indicators for the assessment of the project: Monthly, quarterly and annual reports 4.7. Major impacts reported during the financial year: A Musa section for AJCBIBG developed 7 Project - 3 1. Name of the Project : Wood rotting fungi of Valmiki National Park. 2. Executing Scientist (s) : MANOJ EMANUEL HEMBROM, Botanist, BSI, AJCBIBG, Howrah 3. Duration of the project : 2019(October) – 2021(November) 4. About the work done 4.1 Introduction: Wood-rotting macrofungi are highly artificial in terms of taxonomy and mostly belong to two well-known advance fungal phyla of ‘Ascomycota’ and ‘Basidiomycota’. Their primary role is to cause rot on dead and decaying woods either by ‘White rot’ (mostly)
Recommended publications
  • Predicting Risks of Invasion of Caulerpa Species in Florida
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2006 Predicting Risks Of Invasion Of Caulerpa Species In Florida Christian Glardon University of Central Florida Part of the Biology Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Glardon, Christian, "Predicting Risks Of Invasion Of Caulerpa Species In Florida" (2006). Electronic Theses and Dissertations, 2004-2019. 840. https://stars.library.ucf.edu/etd/840 PREDICTING RISKS OF INVASION OF CAULERPA SPECIES IN FLORIDA by CHRISTIAN GEORGES GLARDON B.S. University of Lausanne, Switzerland A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Biology in the College of Arts and Sciences at the University of Central Florida Orlando, Florida Spring Term 2006 ABSTRACT Invasions of exotic species are one of the primary causes of biodiversity loss on our planet (National Research Council 1995). In the marine environment, all habitat types including estuaries, coral reefs, mud flats, and rocky intertidal shorelines have been impacted (e.g. Bertness et al. 2001). Recently, the topic of invasive species has caught the public’s attention. In particular, there is worldwide concern about the aquarium strain of the green alga Caulerpa taxifolia (Vahl) C. Agardh that was introduced to the Mediterranean Sea in 1984 from the Monaco Oceanographic Museum.
    [Show full text]
  • Coreopsideae Daniel J
    Chapter42 Coreopsideae Daniel J. Crawford, Mes! n Tadesse, Mark E. Mort, "ebecca T. Kimball and Christopher P. "andle HISTORICAL OVERVIEW AND PHYLOGENY In a cladistic analysis of morphological features of Heliantheae by Karis (1993), Coreopsidinae were reported Morphological data to be an ingroup within Heliantheae s.l. The group was A synthesis and analysis of the systematic information on represented in the analysis by Isostigma, Chrysanthellum, tribe Heliantheae was provided by Stuessy (1977a) with Cosmos, and Coreopsis. In a subsequent paper (Karis and indications of “three main evolutionary lines” within "yding 1994), the treatment of Coreopsidinae was the the tribe. He recognized ! fteen subtribes and, of these, same as the one provided above except for the follow- Coreopsidinae along with Fitchiinae, are considered ing: Diodontium, which was placed in synonymy with as constituting the third and smallest natural grouping Glossocardia by "obinson (1981), was reinstated following within the tribe. Coreopsidinae, including 31 genera, the work of Veldkamp and Kre# er (1991), who also rele- were divided into seven informal groups. Turner and gated Glossogyne and Guerreroia as synonyms of Glossocardia, Powell (1977), in the same work, proposed the new tribe but raised Glossogyne sect. Trionicinia to generic rank; Coreopsideae Turner & Powell but did not describe it. Eryngiophyllum was placed as a synonym of Chrysanthellum Their basis for the new tribe appears to be ! nding a suit- following the work of Turner (1988); Fitchia, which was able place for subtribe Jaumeinae. They suggested that the placed in Fitchiinae by "obinson (1981), was returned previously recognized genera of Jaumeinae ( Jaumea and to Coreopsidinae; Guardiola was left as an unassigned Venegasia) could be related to Coreopsidinae or to some Heliantheae; Guizotia and Staurochlamys were placed in members of Senecioneae.
    [Show full text]
  • Fungal Planet Description Sheets: 716–784 By: P.W
    Fungal Planet description sheets: 716–784 By: P.W. Crous, M.J. Wingfield, T.I. Burgess, G.E.St.J. Hardy, J. Gené, J. Guarro, I.G. Baseia, D. García, L.F.P. Gusmão, C.M. Souza-Motta, R. Thangavel, S. Adamčík, A. Barili, C.W. Barnes, J.D.P. Bezerra, J.J. Bordallo, J.F. Cano-Lira, R.J.V. de Oliveira, E. Ercole, V. Hubka, I. Iturrieta-González, A. Kubátová, M.P. Martín, P.-A. Moreau, A. Morte, M.E. Ordoñez, A. Rodríguez, A.M. Stchigel, A. Vizzini, J. Abdollahzadeh, V.P. Abreu, K. Adamčíková, G.M.R. Albuquerque, A.V. Alexandrova, E. Álvarez Duarte, C. Armstrong-Cho, S. Banniza, R.N. Barbosa, J.-M. Bellanger, J.L. Bezerra, T.S. Cabral, M. Caboň, E. Caicedo, T. Cantillo, A.J. Carnegie, L.T. Carmo, R.F. Castañeda-Ruiz, C.R. Clement, A. Čmoková, L.B. Conceição, R.H.S.F. Cruz, U. Damm, B.D.B. da Silva, G.A. da Silva, R.M.F. da Silva, A.L.C.M. de A. Santiago, L.F. de Oliveira, C.A.F. de Souza, F. Déniel, B. Dima, G. Dong, J. Edwards, C.R. Félix, J. Fournier, T.B. Gibertoni, K. Hosaka, T. Iturriaga, M. Jadan, J.-L. Jany, Ž. Jurjević, M. Kolařík, I. Kušan, M.F. Landell, T.R. Leite Cordeiro, D.X. Lima, M. Loizides, S. Luo, A.R. Machado, H. Madrid, O.M.C. Magalhães, P. Marinho, N. Matočec, A. Mešić, A.N. Miller, O.V. Morozova, R.P. Neves, K. Nonaka, A. Nováková, N.H.
    [Show full text]
  • Western Ghats & Sri Lanka Biodiversity Hotspot
    Ecosystem Profile WESTERN GHATS & SRI LANKA BIODIVERSITY HOTSPOT WESTERN GHATS REGION FINAL VERSION MAY 2007 Prepared by: Kamal S. Bawa, Arundhati Das and Jagdish Krishnaswamy (Ashoka Trust for Research in Ecology & the Environment - ATREE) K. Ullas Karanth, N. Samba Kumar and Madhu Rao (Wildlife Conservation Society) in collaboration with: Praveen Bhargav, Wildlife First K.N. Ganeshaiah, University of Agricultural Sciences Srinivas V., Foundation for Ecological Research, Advocacy and Learning incorporating contributions from: Narayani Barve, ATREE Sham Davande, ATREE Balanchandra Hegde, Sahyadri Wildlife and Forest Conservation Trust N.M. Ishwar, Wildlife Institute of India Zafar-ul Islam, Indian Bird Conservation Network Niren Jain, Kudremukh Wildlife Foundation Jayant Kulkarni, Envirosearch S. Lele, Centre for Interdisciplinary Studies in Environment & Development M.D. Madhusudan, Nature Conservation Foundation Nandita Mahadev, University of Agricultural Sciences Kiran M.C., ATREE Prachi Mehta, Envirosearch Divya Mudappa, Nature Conservation Foundation Seema Purshothaman, ATREE Roopali Raghavan, ATREE T. R. Shankar Raman, Nature Conservation Foundation Sharmishta Sarkar, ATREE Mohammed Irfan Ullah, ATREE and with the technical support of: Conservation International-Center for Applied Biodiversity Science Assisted by the following experts and contributors: Rauf Ali Gladwin Joseph Uma Shaanker Rene Borges R. Kannan B. Siddharthan Jake Brunner Ajith Kumar C.S. Silori ii Milind Bunyan M.S.R. Murthy Mewa Singh Ravi Chellam Venkat Narayana H. Sudarshan B.A. Daniel T.S. Nayar R. Sukumar Ranjit Daniels Rohan Pethiyagoda R. Vasudeva Soubadra Devy Narendra Prasad K. Vasudevan P. Dharma Rajan M.K. Prasad Muthu Velautham P.S. Easa Asad Rahmani Arun Venkatraman Madhav Gadgil S.N. Rai Siddharth Yadav T. Ganesh Pratim Roy Santosh George P.S.
    [Show full text]
  • The Nomenclatural History of Plants of Early Sri Lankan Botany
    21 Cey. J. Sci. (Bio. Sci.) Vol. 28,2001,21-33 THE NOMENCLATURAL HISTORY OF PLANTS OF EARLY SRI LANKAN BOTANY L. H. Cramer 152, Dutugemunu Road, Lewella, Kandy, Sri Lanka. ABSTRACT A historico-botanical "account of the beginnings of Sri Lanka's plant nomenclature from the 4th century to the first quarter of the 19th century assesses the origins of this nomenclature in a traditional use of Sinhala names, especially for ayurvedic plants, owing to their connection with health care. The importance of such names to the west appeared in the European search in the 16th century for local medicaments known only under them. Hermann's naming of plants in the Musaeum Zeylanicum was related to their local names; but Linnaeus substituted these names under genera in the Flora Zeylanica, a methodology marking the first advance towards a Linnaean nomenclature. Moon advanced this nomenclature further adopting Linnaeus' binomial system in naming his Sri Lankan plants; but this Catalogue of Plants (Part 11) aimed at a Sinhala nomenclature failed as many of his names had no correspondence with their botanic identities and often denoted more than one plant in different places. INTRODUCTION Plant nomenclature is often a tricky branch of systematic botany bound as it is with a code of technical principles. The uninitiated restricts it to the botany with puzzling names or one of frequent name changes. Still, it remains a science, a Linnaean foundation of a branch of systematic botany (Linnaeus, 1751). It grew out of a simple system of vernacular or local names of herbs used for economic, medicinal or decorative purposes and were associated with an underlying degree of related knowledge (Stearn, 1972).
    [Show full text]
  • Gori River Basin Substate BSAP
    A BIODIVERSITY LOG AND STRATEGY INPUT DOCUMENT FOR THE GORI RIVER BASIN WESTERN HIMALAYA ECOREGION DISTRICT PITHORAGARH, UTTARANCHAL A SUB-STATE PROCESS UNDER THE NATIONAL BIODIVERSITY STRATEGY AND ACTION PLAN INDIA BY FOUNDATION FOR ECOLOGICAL SECURITY MUNSIARI, DISTRICT PITHORAGARH, UTTARANCHAL 2003 SUBMITTED TO THE MINISTRY OF ENVIRONMENT AND FORESTS GOVERNMENT OF INDIA NEW DELHI CONTENTS FOREWORD ............................................................................................................ 4 The authoring institution. ........................................................................................................... 4 The scope. .................................................................................................................................. 5 A DESCRIPTION OF THE AREA ............................................................................... 9 The landscape............................................................................................................................. 9 The People ............................................................................................................................... 10 THE BIODIVERSITY OF THE GORI RIVER BASIN. ................................................ 15 A brief description of the biodiversity values. ......................................................................... 15 Habitat and community representation in flora. .......................................................................... 15 Species richness and life-form
    [Show full text]
  • Riparian Flora of Thamiraparani River in Kanyakumari District, Tamilnadu, India J
    International Journal of Scientific Research and Modern Education (IJSRME) Impact Factor: 6.225, ISSN (Online): 2455 – 5630 (www.rdmodernresearch.com) Volume 2, Issue 1, 2017 RIPARIAN FLORA OF THAMIRAPARANI RIVER IN KANYAKUMARI DISTRICT, TAMILNADU, INDIA J. S. Angel Felix*, Z. Miller Paul*, S. Jeeva** & S. Sukumaran* * Department of Botany and Research Centre, Nesamony Memorial Christian College, Marthandam, Kanyakumari District, Tamilnadu, India. ** Scott Christian College (Autonomous), Research Centre in Botany, Nagercoil, Tamilnadu Cite This Article: J. S. Angel Felix, Z. Miller Paul, S. Jeeva & S. Sukumaran, “Riparian Flora of Thamiraparani River in Kanyakumari District, Tamilnadu, India”, International Journal of Scientific Research and Modern Education, Volume 2, Issue 1, Page Number 72-90, 2017. Copy Right: © IJSRME, 2017 (All Rights Reserved). This is an Open Access Article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract: Riparian flora is an expressed survey to analyze marginal vegetation of river zones. The present study was conducted in Thamiraparani river of Kanyakumari District, Tamil Nadu, India. Result of the current study showed a total of, 720 species of angiosperms belonging to 449 genera under 126 families of these 76.5% were dicots and 23.5% of monocots were recorded.Habitually 30.4% herbs , 26.7% trees, 15.7% shrubs, 6.9% climbing shrubs, 5.2% perennial herbs, 3.3% annual herbs, 2 % twining herbs, 1.7% twining shrubs, 1.6% aquatic herbs, 1.3% climbing herbs, 0.6% rhizomatous herbs, 0.7% marshy herbs, 0.7% tunerous herbs, 0.6% lianas, 0.4% tuberous climbing herbs, 0.4% stragglinbg shrubs, 0.3% climbers, 0.3% climbing palms, 0.3% prostrate herbs, climbing shrub, creeping herb, epiphytic herb, parasitic shrub and parasitic twining herb were 0.1% .
    [Show full text]
  • Preliminary Classification of Leotiomycetes
    Mycosphere 10(1): 310–489 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/7 Preliminary classification of Leotiomycetes Ekanayaka AH1,2, Hyde KD1,2, Gentekaki E2,3, McKenzie EHC4, Zhao Q1,*, Bulgakov TS5, Camporesi E6,7 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand 5Russian Research Institute of Floriculture and Subtropical Crops, 2/28 Yana Fabritsiusa Street, Sochi 354002, Krasnodar region, Russia 6A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy. 7A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314 Brescia, Italy. Ekanayaka AH, Hyde KD, Gentekaki E, McKenzie EHC, Zhao Q, Bulgakov TS, Camporesi E 2019 – Preliminary classification of Leotiomycetes. Mycosphere 10(1), 310–489, Doi 10.5943/mycosphere/10/1/7 Abstract Leotiomycetes is regarded as the inoperculate class of discomycetes within the phylum Ascomycota. Taxa are mainly characterized by asci with a simple pore blueing in Melzer’s reagent, although some taxa have lost this character. The monophyly of this class has been verified in several recent molecular studies. However, circumscription of the orders, families and generic level delimitation are still unsettled. This paper provides a modified backbone tree for the class Leotiomycetes based on phylogenetic analysis of combined ITS, LSU, SSU, TEF, and RPB2 loci. In the phylogenetic analysis, Leotiomycetes separates into 19 clades, which can be recognized as orders and order-level clades.
    [Show full text]
  • The Madras Presidency, with Mysore, Coorg and the Associated States
    : TheMADRAS PRESIDENG 'ff^^^^I^t p WithMysore, CooRGAND the Associated States byB. THURSTON -...—.— .^ — finr i Tin- PROVINCIAL GEOGRAPHIES Of IN QJofttell HttinerHitg Blibracg CHARLES WILLIAM WASON COLLECTION CHINA AND THE CHINESE THE GIFT OF CHARLES WILLIAM WASON CLASS OF 1876 1918 Digitized by Microsoft® Cornell University Library DS 485.M27T54 The Madras presidencypresidenc; with MysorMysore, Coor iliiiiliiiiiiilii 3 1924 021 471 002 Digitized by Microsoft® This book was digitized by Microsoft Corporation in cooperation witli Cornell University Libraries, 2007. You may use and print this copy in limited quantity for your personal purposes, but may not distribute or provide access to it (or modified or partial versions of it) for revenue-generating or other commercial purposes. Digitized by Microsoft® Provincial Geographies of India General Editor Sir T. H. HOLLAND, K.C.LE., D.Sc, F.R.S. THE MADRAS PRESIDENCY WITH MYSORE, COORG AND THE ASSOCIATED STATES Digitized by Microsoft® CAMBRIDGE UNIVERSITY PRESS HonBnn: FETTER LANE, E.G. C. F. CLAY, Man^gek (EBiniurBi) : loo, PRINCES STREET Berlin: A. ASHER AND CO. Ji-tipjifl: F. A. BROCKHAUS i^cto Sotfe: G. P. PUTNAM'S SONS iBomlaj sriB Calcutta: MACMILLAN AND CO., Ltd. All rights reserved Digitized by Microsoft® THE MADRAS PRESIDENCY WITH MYSORE, COORG AND THE ASSOCIATED STATES BY EDGAR THURSTON, CLE. SOMETIME SUPERINTENDENT OF THE MADRAS GOVERNMENT MUSEUM Cambridge : at the University Press 1913 Digitized by Microsoft® ffiambttige: PRINTED BY JOHN CLAY, M.A. AT THE UNIVERSITY PRESS. Digitized by Microsoft® EDITOR'S PREFACE "HE casual visitor to India, who limits his observations I of the country to the all-too-short cool season, is so impressed by the contrast between Indian life and that with which he has been previously acquainted that he seldom realises the great local diversity of language and ethnology.
    [Show full text]
  • Download Download
    BIODIVERSITAS ISSN: 1412-033X Volume 21, Number 5, May 2020 E-ISSN: 2085-4722 Pages: 1823-1832 DOI: 10.13057/biodiv/d210508 Morphological variation of two common sea grapes (Caulerpa lentillifera and Caulerpa racemosa) from selected regions in the Philippines JEREMAIAH L. ESTRADA♥, NONNATUS S. BAUTISTA, MARIBEL L. DIONISIO-SESE Plant Biology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños. College, Laguna 4031, Philippines. ♥email: [email protected] Manuscript received: 26 February 2020. Revision accepted: 6 April 2020. Abstract. Estrada JL, Bautista NS, Dionisio-Sese ML. 2020. Morphological variation of two common sea grapes (Caulerpa lentillifera and Caulerpa racemosa) from selected regions in the Philippines. Biodiversitas 21: 1823-1832. Seagrapes, locally known in the Philippines as “lato” or “ar-arusip”, are economically important macroalgae belonging to the edible species of the genus Caulerpa. This study characterized and compared distinct populations of sea grapes from selected regions in the Philippines and described the influence of physicochemical parameters of seawater on their morphology. Morphometric, cluster and principal component analyses showed that morphological plasticity exists in sea grapes species (Caulerpa lentillifera and Caulerpa racemosa) found in different sites in the Philippines. These are evident in morphometric parameters namely, assimilator height, space between assimilators, ramulus diameter and number of rhizoids on stolon wherein significant differences were found. This evident morphological plasticity was analyzed in relation to physicochemical parameters of the seawater. Assimilator height of C. racemosa is significantly associated and highly influenced by water depth, salinity, temperature and dissolved oxygen whereas for C. lentillifera depth and salinity are the significant influencing factors.
    [Show full text]
  • Download Download
    OPEN ACCESS All articles published in the Journal of Threatened Taxa are registered under Creative Commons Attribution 4.0 Interna- tional License unless otherwise mentioned. JoTT allows unrestricted use of articles in any medium, reproduction and distribution by providing adequate credit to the authors and the source of publication. Journal of Threatened Taxa The international journal of conservation and taxonomy www.threatenedtaxa.org ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print) Data Paper Flora of Fergusson College campus, Pune, India: monitoring changes over half a century Ashish N. Nerlekar, Sairandhri A. Lapalikar, Akshay A. Onkar, S.L. Laware & M.C. Mahajan 26 February 2016 | Vol. 8 | No. 2 | Pp. 8452–8487 10.11609/jott.1950.8.2.8452-8487 For Focus, Scope, Aims, Policies and Guidelines visit http://threatenedtaxa.org/About_JoTT.asp For Article Submission Guidelines visit http://threatenedtaxa.org/Submission_Guidelines.asp For Policies against Scientific Misconduct visit http://threatenedtaxa.org/JoTT_Policy_against_Scientific_Misconduct.asp For reprints contact <[email protected]> Publisher/Host Partner Threatened Taxa Journal of Threatened Taxa | www.threatenedtaxa.org | 26 February 2016 | 8(2): 8452–8487 Data Paper Data Flora of Fergusson College campus, Pune, India: monitoring changes over half a century ISSN 0974-7907 (Online) Ashish N. Nerlekar 1, Sairandhri A. Lapalikar 2, Akshay A. Onkar 3, S.L. Laware 4 & ISSN 0974-7893 (Print) M.C. Mahajan 5 OPEN ACCESS 1,2,3,4,5 Department of Botany, Fergusson College, Pune, Maharashtra 411004, India 1,2 Current address: Department of Biodiversity, M.E.S. Abasaheb Garware College, Pune, Maharashtra 411004, India 1 [email protected] (corresponding author), 2 [email protected], 3 [email protected], 4 [email protected], 5 [email protected] Abstract: The present study was aimed at determining the vascular plant species richness of an urban green-space- the Fergusson College campus, Pune and comparing it with the results of the past flora which was documented in 1958 by Dr.
    [Show full text]
  • Studies on the Flora of Periyar Tiger Reserv
    KFRI Research Report 150 STUDIES ON THE FLORA OF PERIYAR TIGER RESERV N. Sas idharan KERALA FOREST RESEARCH INSTITUTE PEECHI, THRISSUR July 1998 Pages: 558 CONTENTS Page File Index to Families r.150.2 Abstract r.150.3 1 Introduction i r.150.4 2 Study Area ii r.150.5 3 Method viii r.150.6 4 Results viii r.150.7 5 Discussion xix r.150.8 6 Families 1 r.150.9 7 References 555 r.150.10 Index to families ACANTHACEAE 290 COCHLOSPERMACEAE 16 AGAVACEAE 452 COMBRETACEAE 133 AIZOACEAE 160 COMMELINACEAE 459 ALANGIACEAE 166 CONNARACEAE 85 AMARANTHACEAE 327 CONVOLVULACEAE 262 AMARYLLIDACEAE 452 CORNACEAE 166 ANACARDIACEAE 81 CRASSULACEAE 130 ANCISTROCLADACEAE 28 CUCURBITACEAE 153 ANNONACEAE 3 CYPERACEAE 481 APIACEAE 161 DATISCACEAE 158 APOCYNACEAE 240 DICHAPETALACEAE 62 AQUIFOLIACEAE 65 DILLENIACEAE 2 ARACEAE 471 DIOSCOREACEAE 453 ARALIACEAE 164 DIPTEROCARPACEAE 27 ARECACEAE 466 DROSERACEAE 131 ARISTOLOCHIACEAE 335 EBENACEAE 229 ASCLEPIADACEAE 246 ELAEGNACEAE 354 ASTERACEAE 190 ELAEOCARPACEAE 41 BALANOPHORACEAE 361 ERICACEAE 219 BALSAMINACEAE 44 ERIOCAULACEAE 477 BEGONIACEAE 159 ERYTHROXYLACEAE 42 BIGNONIACEAE 289 EUPHORBIACEAE 361 BOMBACACEAE 34 FABACEAE (LEGUMINOSAE) 86 BORAGINACEAE 260 FLACOURTIACEAE 17 BRASSICACEAE 13 GENTIANACEAE 256 BUDDLEJACEAE 256 GESNERIACEAE 287 BURMANNIACEAE 396 HAEMODORACEAE 451 BURSERACEAE 56 HALORAGACEAE 132 BUXACEAE 361 HIPPOCRATEACEAE 69 CAMPANULACEAE 215 HYDROCHARITACEAE 396 CANNABACEAE 389 HYPERICACEAE 23 CAPPARIDACEAE 14 HYPOXIDACEAE 453 CAPRIFOLIACEAE 166 ICACINACEAE 63 CARYOPHYLLACEAE 22 JUNCACEAE 466 CELASTRACEAE
    [Show full text]