Madhu Sudan Receives Nevanlinna Prize, Volume 49, Number 10

Total Page:16

File Type:pdf, Size:1020Kb

Madhu Sudan Receives Nevanlinna Prize, Volume 49, Number 10 Madhu Sudan Receives Nevanlinna Prize On August 20, 2002, the Sudan has been a main contributor to the devel- Rolf Nevanlinna Prize was opment of the theory of probabilistically checkable awarded at the opening cer- proofs. Given a proof of a mathematical statement, emonies of the International the theory provides a way to recast the proof in a Congress of Mathematicians form where its fundamental logic is encoded as a (ICM) in Beijing, China. The sequence of computer bits. A “verifier” can, by prizewinner is MADHU SUDAN. checking only some of the bits, determine with In 1982 the University high probability whether the proof is correct. What of Helsinki granted funds is extremely surprising, and quite counterintuitive, to award the Nevanlinna is that the number of bits the verifier needs to Prize, which honors the examine can be made extremely small. The theory work of a young mathe- was developed in papers by Sudan, S. Arora, U. Feige, matician (less than 40 years S. Goldwasser, C. Lund, L. Lovász, R. Motwani, of age) in the mathematical S. Safra, and M. Szegedy. For this work, these authors aspects of information sci- jointly received the 2001 Gödel Prize of the Associ- Madhu Sudan ence. The prize is pre- ation for Computing Machinery. sented every four years in Also together with other researchers, Sudan has conjunction with the ICM. Previous recipients of the made fundamental contributions to understanding Nevanlinna Prize are: Robert Tarjan (1982), Leslie the nonapproximability of solutions to combina- Valiant (1986), Alexander Razborov (1990), Avi torial optimization problems. This work connects Wigderson (1994), and Peter Shor (1998). to the fundamental outstanding question in The Nevanlinna Prize is awarded by the theoretical computer science: Does P equal NP? A International Mathematical Union on the advice of problem is in P if there is a polynomial-time algo- a selection committee. The selection committee rithm that solves it. A problem is in NP if it has the for the 2002 prize consisted of: Andrei Agrachev, property that a proposed solution can be checked Ingrid Daubechies, Wolfgang Hackbusch, Michael O. in polynomial-time but that no polynomial-time Rabin (chair), and Alexander Schrijver. algorithm is known to solve it. What Sudan and Madhu Sudan was born on September 12, 1966, others showed is that, for certain combinatorial in Madras (now Chennai), India. He received his optimization problems, approximating an optimal B. Tech. degree in computer science from the In- solution is just as hard as finding an optimal dian Institute of Technology in New Delhi (1987) solution. This result is closely related to the work and his Ph.D. in computer science at the University on probabilistically checkable proofs. of California at Berkeley (1992). He was a research The third area in which Sudan made important staff member at the IBM Thomas J. Watson Re- contributions is error-correcting codes. A class of search Center in Yorktown Heights, New York widely used codes is the Reed-Solomon codes (and (1992–7). He is currently an associate professor in their variants), which were invented in the 1960s. the Department of Electrical Engineering and Com- For forty years it was assumed that the codes could puter Science at the Massachusetts Institute of correct only a certain number of errors. By creat- Technology. ing a new decoding algorithm, Sudan demonstrated Madhu Sudan has made important contribu- that the Reed-Solomon codes could correct many tions to several areas of theoretical computer sci- more errors than previously thought possible. ence, including probabilistically checkable proofs, —Allyn Jackson nonapproximability of optimization problems, and error-correcting codes. 1266 NOTICES OF THE AMS VOLUME 49, NUMBER 10.
Recommended publications
  • Tarjan Transcript Final with Timestamps
    A.M. Turing Award Oral History Interview with Robert (Bob) Endre Tarjan by Roy Levin San Mateo, California July 12, 2017 Levin: My name is Roy Levin. Today is July 12th, 2017, and I’m in San Mateo, California at the home of Robert Tarjan, where I’ll be interviewing him for the ACM Turing Award Winners project. Good afternoon, Bob, and thanks for spending the time to talk to me today. Tarjan: You’re welcome. Levin: I’d like to start by talking about your early technical interests and where they came from. When do you first recall being interested in what we might call technical things? Tarjan: Well, the first thing I would say in that direction is my mom took me to the public library in Pomona, where I grew up, which opened up a huge world to me. I started reading science fiction books and stories. Originally, I wanted to be the first person on Mars, that was what I was thinking, and I got interested in astronomy, started reading a lot of science stuff. I got to junior high school and I had an amazing math teacher. His name was Mr. Wall. I had him two years, in the eighth and ninth grade. He was teaching the New Math to us before there was such a thing as “New Math.” He taught us Peano’s axioms and things like that. It was a wonderful thing for a kid like me who was really excited about science and mathematics and so on. The other thing that happened was I discovered Scientific American in the public library and started reading Martin Gardner’s columns on mathematical games and was completely fascinated.
    [Show full text]
  • Tools for Tutoring Theoretical Computer Science Topics
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations Dissertations and Theses November 2019 Tools for Tutoring Theoretical Computer Science Topics Mark McCartin-Lim University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 Part of the Artificial Intelligence and Robotics Commons, Graphics and Human Computer Interfaces Commons, Other Computer Sciences Commons, and the Theory and Algorithms Commons Recommended Citation McCartin-Lim, Mark, "Tools for Tutoring Theoretical Computer Science Topics" (2019). Doctoral Dissertations. 1797. https://doi.org/10.7275/15233091 https://scholarworks.umass.edu/dissertations_2/1797 This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu. TOOLS FOR TUTORING THEORETICAL COMPUTER SCIENCE TOPICS A Dissertation Presented by MARK MCCARTIN-LIM Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY September 2019 College of Information and Computer Sciences c Copyright by Mark McCartin-Lim 2019 All Rights Reserved TOOLS FOR TUTORING THEORETICAL COMPUTER SCIENCE TOPICS A Dissertation Presented by MARK MCCARTIN-LIM Approved as to style and content by: Andrew McGregor, Co-chair Beverly Woolf, Co-chair David Mix Barrington, Member Siman Wong, Member James Allan, Department Chair College of Information and Computer Sciences DEDICATION To the students who faithfully came to my office hours, whose struggles and perseverance inspired this dissertation. To my good friend Lucas, who provided much needed moral support during the hardest times, and who gave me the courage to choose this dissertation topic.
    [Show full text]
  • Information and Announcements Mathematics Prizes Awarded At
    Information and Announcements Mathematics Prizes Awarded at ICM 2014 The International Congress of Mathematicians (ICM) is held once in four years under the auspices of the International Mathematical Union (IMU). The ICM is the largest, and the most prestigious, meeting of the mathematics community. During the ICM, the Fields Medal, the Nevanlinna Prize, the Gauss Prize, the Chern Medal and the Leelavati Prize are awarded. The Fields Medals are awarded to mathematicians under the age of 40 to recognize existing outstanding mathematical work and for the promise of future achievement. A maximum of four Fields Medals are awarded during an ICM. The Nevanlinna Prize is awarded for outstanding contributions to mathematical aspects of information sciences; this awardee is also under the age of 40. The Gauss Prize is given for mathematical research which has made a big impact outside mathematics – in industry or technology, etc. The Chern Medal is awarded to a person whose mathematical accomplishments deserve the highest level of recognition from the mathematical community. The Leelavati Prize is sponsored by Infosys and is a recognition of an individual’s extraordinary achievements in popularizing among the public at large, mathematics, as an intellectual pursuit which plays a crucial role in everyday life. The 27th ICM was held in Seoul, South Korea during August 13–21, 2014. Fields Medals The following four mathematicians were awarded the Fields Medal in 2014. 1. Artur Avila, “for his profound contributions to dynamical systems theory, which have changed the face of the field, using the powerful idea of renormalization as a unifying principle”. Work of Artur Avila (born 29th June 1979): Artur Avila’s outstanding work on dynamical systems, and analysis has made him a leader in the field.
    [Show full text]
  • “To Be a Good Mathematician, You Need Inner Voice” ”Огонёкъ” Met with Yakov Sinai, One of the World’S Most Renowned Mathematicians
    “To be a good mathematician, you need inner voice” ”ОгонёкЪ” met with Yakov Sinai, one of the world’s most renowned mathematicians. As the new year begins, Russia intensifies the preparations for the International Congress of Mathematicians (ICM 2022), the main mathematical event of the near future. 1966 was the last time we welcomed the crème de la crème of mathematics in Moscow. “Огонёк” met with Yakov Sinai, one of the world’s top mathematicians who spoke at ICM more than once, and found out what he thinks about order and chaos in the modern world.1 Committed to science. Yakov Sinai's close-up. One of the most eminent mathematicians of our time, Yakov Sinai has spent most of his life studying order and chaos, a research endeavor at the junction of probability theory, dynamical systems theory, and mathematical physics. Born into a family of Moscow scientists on September 21, 1935, Yakov Sinai graduated from the department of Mechanics and Mathematics (‘Mekhmat’) of Moscow State University in 1957. Andrey Kolmogorov’s most famous student, Sinai contributed to a wealth of mathematical discoveries that bear his and his teacher’s names, such as Kolmogorov-Sinai entropy, Sinai’s billiards, Sinai’s random walk, and more. From 1998 to 2002, he chaired the Fields Committee which awards one of the world’s most prestigious medals every four years. Yakov Sinai is a winner of nearly all coveted mathematical distinctions: the Abel Prize (an equivalent of the Nobel Prize for mathematicians), the Kolmogorov Medal, the Moscow Mathematical Society Award, the Boltzmann Medal, the Dirac Medal, the Dannie Heineman Prize, the Wolf Prize, the Jürgen Moser Prize, the Henri Poincaré Prize, and more.
    [Show full text]
  • Reducibility
    Reducibility t REDUCIBILITY AMONG COMBINATORIAL PROBLEMS Richard M. Karp University of California at Berkeley Abstract: A large class of computational problems involve the determination of properties of graphs, digraphs, integers, arrays of integers, finite families of finite sets, boolean formulas and elements of other countable domains. Through simple encodings from such domains into the set of words over a finite alphabet these problems can be converted into language recognition problems, and we can inquire into their computational complexity. It is reasonable to consider such a problem satisfactorily solved when an algorithm for its solution is found which terminates within a . number of steps bounded by a polynomial in the length of the input. We show that a large number of classic unsolved problems of cover- ing. matching, packing, routing, assignment and sequencing are equivalent, in the sense that either each of them possesses a polynomial-bounded algorithm or none of them does. 1. INTRODUCTION All the general methods presently known for computing the chromatic number of a graph, deciding whether a graph has a Hamilton circuit. or solving a system of linear inequalities in which the variables are constrained to be 0 or 1, require a combinatorial search for which the worst case time requirement grows exponentially with the length of the input. In this paper we give theorems which strongly suggest, but do not imply, that these problems, as well as many others, will remain intractable perpetually. t This research was partially supported by National Science Founda- tion Grant GJ-474. 85 R. E. Miller et al. (eds.), Complexity of Computer Computations © Plenum Press, New York 1972 86 RICHARD M.
    [Show full text]
  • Benjamin Rossman
    Benjamin Rossman 40 St George Street, Room 6214 Phone: 416-946-7825 Toronto, ON M5S 3G4 Canada E-mail: ben.rossman@utoronto.ca POSITIONS University of Toronto 2016 – present Assistant Professor of Mathematics and Computer Science National Institute of Informatics (Tokyo, Japan) 2013 – 2016 Assistant Professor in the Kawarabayashi Large Graph Project Simons Institute for the Theory of Computing (Berkeley, CA) 2014 – 2015 Simons-Berkeley Research Fellow Tokyo Institute of Technology 2010 – 2013 NSF Mathematical Sciences Postdoctoral Research Fellow EDUCATION Massachusetts Institute of Technology Ph.D. in Computer Science 2010 · Advisor: Madhu Sudan · Thesis: Average-Case Complexity of Detecting Cliques University of Pennsylvania M.A. in Mathematics 2002 B.A. in Mathematics, Summa Cum Laude 2001 HONORS AND AWARDS André Aisenstadt Prize in Mathematics 2018 Invited Speaker at the International Congress of Mathematicians 2018 Alfred P. Sloan Research Fellowship 2017 Best Paper Award at FOCS (IEEE Symposium on Foundations of Computer Science) 2015 Best Paper Award at CCC (Computational Complexity Conference) 2015 Best Paper Award at CSR (International Computer Science Symposium in Russia) 2014 Ackermann Award (Outstanding Dissertation Award of the European Association for 2011 Computer Science Logic) George M. Sprowls Award (Best Doctoral Theses in Computer Science at MIT) 2010 NSF Mathematical Sciences Postdoctoral Research Fellowship 2010 National Defense Science and Engineering Graduate Fellowship 2006 1 NSF Graduate Research Fellowship 2006
    [Show full text]
  • Program Sunday Evening: Welcome Recep- Tion from 7Pm to 9Pm at the Staff Lounge of the Department of Computer Science, Ny Munkegade, Building 540, 2Nd floor
    Computational ELECTRONIC REGISTRATION Complexity The registration for CCC’03 is web based. Please register at http://www.brics.dk/Complexity2003/. Registration Fees (In Danish Kroner) Eighteenth Annual IEEE Conference Advance† Late Members‡∗ 1800 DKK 2200 DKK ∗ Sponsored by Nonmembers 2200 DKK 2800 DKK Students+ 500 DKK 600 DKK The IEEE Computer Society ∗The registration fee includes a copy of the proceedings, Technical Committee on receptions Sunday and Monday, the banquet Wednesday, and lunches Monday, Tuesday and Wednesday. Mathematical Foundations +The registration fee includes a copy of the proceedings, of Computing receptions Sunday and Monday, and lunches Monday, Tuesday and Wednesday. The banquet Wednesday is not included. †The advance registration deadline is June 15. ‡ACM, EATCS, IEEE, or SIGACT members. Extra proceedings/banquet tickets Extra proceedings are 350 DKK. Extra banquet tick- ets are 300 DKK. Both can be purchased when reg- istering and will also be available for sale on site. Alternative registration If electronic registration is not possible, please con- tact the organizers at one of the following: E-mail: complexity2003@brics.dk Mail: Complexity 2003 c/o Peter Bro Miltersen In cooperation with Department of Computer Science University of Aarhus ACM-SIGACT and EATCS Ny Munkegade, Building 540 DK 8000 Aarhus C, Denmark Fax: (+45) 8942 3255 July 7–10, 2003 Arhus,˚ Denmark Conference homepage Conference Information Information about this year’s conference is available Location All sessions of the conference and the on the Web at Kolmogorov workshop will be held in Auditorium http://www.brics.dk/Complexity2003/ F of the Department of Mathematical Sciences at Information about the Computational Complexity Aarhus University, Ny Munkegade, building 530, 1st conference is available at floor.
    [Show full text]
  • Four Results of Jon Kleinberg a Talk for St.Petersburg Mathematical Society
    Four Results of Jon Kleinberg A Talk for St.Petersburg Mathematical Society Yury Lifshits Steklov Institute of Mathematics at St.Petersburg May 2007 1 / 43 2 Hubs and Authorities 3 Nearest Neighbors: Faster Than Brute Force 4 Navigation in a Small World 5 Bursty Structure in Streams Outline 1 Nevanlinna Prize for Jon Kleinberg History of Nevanlinna Prize Who is Jon Kleinberg 2 / 43 3 Nearest Neighbors: Faster Than Brute Force 4 Navigation in a Small World 5 Bursty Structure in Streams Outline 1 Nevanlinna Prize for Jon Kleinberg History of Nevanlinna Prize Who is Jon Kleinberg 2 Hubs and Authorities 2 / 43 4 Navigation in a Small World 5 Bursty Structure in Streams Outline 1 Nevanlinna Prize for Jon Kleinberg History of Nevanlinna Prize Who is Jon Kleinberg 2 Hubs and Authorities 3 Nearest Neighbors: Faster Than Brute Force 2 / 43 5 Bursty Structure in Streams Outline 1 Nevanlinna Prize for Jon Kleinberg History of Nevanlinna Prize Who is Jon Kleinberg 2 Hubs and Authorities 3 Nearest Neighbors: Faster Than Brute Force 4 Navigation in a Small World 2 / 43 Outline 1 Nevanlinna Prize for Jon Kleinberg History of Nevanlinna Prize Who is Jon Kleinberg 2 Hubs and Authorities 3 Nearest Neighbors: Faster Than Brute Force 4 Navigation in a Small World 5 Bursty Structure in Streams 2 / 43 Part I History of Nevanlinna Prize Career of Jon Kleinberg 3 / 43 Nevanlinna Prize The Rolf Nevanlinna Prize is awarded once every 4 years at the International Congress of Mathematicians, for outstanding contributions in Mathematical Aspects of Information Sciences including: 1 All mathematical aspects of computer science, including complexity theory, logic of programming languages, analysis of algorithms, cryptography, computer vision, pattern recognition, information processing and modelling of intelligence.
    [Show full text]
  • Prahladh Harsha
    Prahladh Harsha Toyota Technological Institute, Chicago phone : +1-773-834-2549 University Press Building fax : +1-773-834-9881 1427 East 60th Street, Second Floor Chicago, IL 60637 email : prahladh@tti-c.org http://ttic.uchicago.edu/∼prahladh Research Interests Computational Complexity, Probabilistically Checkable Proofs (PCPs), Information Theory, Prop- erty Testing, Proof Complexity, Communication Complexity. Education • Doctor of Philosophy (PhD) Computer Science, Massachusetts Institute of Technology, 2004 Research Advisor : Professor Madhu Sudan PhD Thesis: Robust PCPs of Proximity and Shorter PCPs • Master of Science (SM) Computer Science, Massachusetts Institute of Technology, 2000 • Bachelor of Technology (BTech) Computer Science and Engineering, Indian Institute of Technology, Madras, 1998 Work Experience • Toyota Technological Institute, Chicago September 2004 – Present Research Assistant Professor • Technion, Israel Institute of Technology, Haifa February 2007 – May 2007 Visiting Scientist • Microsoft Research, Silicon Valley January 2005 – September 2005 Postdoctoral Researcher Honours and Awards • Summer Research Fellow 1997, Jawaharlal Nehru Center for Advanced Scientific Research, Ban- galore. • Rajiv Gandhi Science Talent Research Fellow 1997, Jawaharlal Nehru Center for Advanced Scien- tific Research, Bangalore. • Award Winner in the Indian National Mathematical Olympiad (INMO) 1993, National Board of Higher Mathematics (NBHM). • National Board of Higher Mathematics (NBHM) Nurture Program award 1995-1998. The Nurture program 1995-1998, coordinated by Prof. Alladi Sitaram, Indian Statistical Institute, Bangalore involves various topics in higher mathematics. 1 • Ranked 7th in the All India Joint Entrance Examination (JEE) for admission into the Indian Institutes of Technology (among the 100,000 candidates who appeared for the examination). • Papers invited to special issues – “Robust PCPs of Proximity, Shorter PCPs, and Applications to Coding” (with Eli Ben- Sasson, Oded Goldreich, Madhu Sudan, and Salil Vadhan).
    [Show full text]
  • Navigability of Small World Networks
    Navigability of Small World Networks Pierre Fraigniaud CNRS and University Paris Sud http://www.lri.fr/~pierre Introduction Interaction Networks • Communication networks – Internet – Ad hoc and sensor networks • Societal networks – The Web – P2P networks (the unstructured ones) • Social network – Acquaintance – Mail exchanges • Biology (Interactome network), linguistics, etc. Dec. 19, 2006 HiPC'06 3 Common statistical properties • Low density • “Small world” properties: – Average distance between two nodes is small, typically O(log n) – The probability p that two distinct neighbors u1 and u2 of a same node v are neighbors is large. p = clustering coefficient • “Scale free” properties: – Heavy tailed probability distributions (e.g., of the degrees) Dec. 19, 2006 HiPC'06 4 Gaussian vs. Heavy tail Example : human sizes Example : salaries µ Dec. 19, 2006 HiPC'06 5 Power law loglog ppk prob{prob{ X=kX=k }} ≈≈ kk-α loglog kk Dec. 19, 2006 HiPC'06 6 Random graphs vs. Interaction networks • Random graphs: prob{e exists} ≈ log(n)/n – low clustering coefficient – Gaussian distribution of the degrees • Interaction networks – High clustering coefficient – Heavy tailed distribution of the degrees Dec. 19, 2006 HiPC'06 7 New problematic • Why these networks share these properties? • What model for – Performance analysis of these networks – Algorithm design for these networks • Impact of the measures? • This lecture addresses navigability Dec. 19, 2006 HiPC'06 8 Navigability Milgram Experiment • Source person s (e.g., in Wichita) • Target person t (e.g., in Cambridge) – Name, professional occupation, city of living, etc. • Letter transmitted via a chain of individuals related on a personal basis • Result: “six degrees of separation” Dec.
    [Show full text]
  • A Decade of Lattice Cryptography
    Full text available at: http://dx.doi.org/10.1561/0400000074 A Decade of Lattice Cryptography Chris Peikert Computer Science and Engineering University of Michigan, United States Boston — Delft Full text available at: http://dx.doi.org/10.1561/0400000074 Foundations and Trends R in Theoretical Computer Science Published, sold and distributed by: now Publishers Inc. PO Box 1024 Hanover, MA 02339 United States Tel. +1-781-985-4510 www.nowpublishers.com sales@nowpublishers.com Outside North America: now Publishers Inc. PO Box 179 2600 AD Delft The Netherlands Tel. +31-6-51115274 The preferred citation for this publication is C. Peikert. A Decade of Lattice Cryptography. Foundations and Trends R in Theoretical Computer Science, vol. 10, no. 4, pp. 283–424, 2014. R This Foundations and Trends issue was typeset in LATEX using a class file designed by Neal Parikh. Printed on acid-free paper. ISBN: 978-1-68083-113-9 c 2016 C. Peikert All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise, without prior written permission of the publishers. Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for in- ternal or personal use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on the internet at: www.copyright.com For those organizations that have been granted a photocopy license, a separate system of payment has been arranged.
    [Show full text]
  • Constraint Based Dimension Correlation and Distance
    Preface The papers in this volume were presented at the Fourteenth Annual IEEE Conference on Computational Complexity held from May 4-6, 1999 in Atlanta, Georgia, in conjunction with the Federated Computing Research Conference. This conference was sponsored by the IEEE Computer Society Technical Committee on Mathematical Foundations of Computing, in cooperation with the ACM SIGACT (The special interest group on Algorithms and Complexity Theory) and EATCS (The European Association for Theoretical Computer Science). The call for papers sought original research papers in all areas of computational complexity. A total of 70 papers were submitted for consideration of which 28 papers were accepted for the conference and for inclusion in these proceedings. Six of these papers were accepted to a joint STOC/Complexity session. For these papers the full conference paper appears in the STOC proceedings and a one-page summary appears in these proceedings. The program committee invited two distinguished researchers in computational complexity - Avi Wigderson and Jin-Yi Cai - to present invited talks. These proceedings contain survey articles based on their talks. The program committee thanks Pradyut Shah and Marcus Schaefer for their organizational and computer help, Steve Tate and the SIGACT Electronic Publishing Board for the use and help of the electronic submissions server, Peter Shor and Mike Saks for the electronic conference meeting software and Danielle Martin of the IEEE for editing this volume. The committee would also like to thank the following people for their help in reviewing the papers: E. Allender, V. Arvind, M. Ajtai, A. Ambainis, G. Barequet, S. Baumer, A. Berthiaume, S.
    [Show full text]