Tern Diet in the UK and Ireland: a Review of Key Prey Species and Potential Impacts of Climate Change

Total Page:16

File Type:pdf, Size:1020Kb

Tern Diet in the UK and Ireland: a Review of Key Prey Species and Potential Impacts of Climate Change Tern diet in the UK and Ireland: a review of key prey species and potential impacts of climate change October 2017 Elizabeth Green Species and Habitats Officer, RSPB The project "Improving the conservation prospects of the priority species roseate tern throughout its range in the UK and Ireland" is supported by the LIFE Programme of the European Union. LIFE14 NAT/UK/394 ROSEATE TERN Contents Background ............................................................................................................................................. 1 Introduction ............................................................................................................................................ 1 The diet of breeding terns in the UK, Ireland and southern North Sea .................................................. 2 UK, the North Sea ............................................................................................................................... 3 West Scotland ..................................................................................................................................... 7 The Irish Sea ........................................................................................................................................ 7 The Celtic Sea ...................................................................................................................................... 9 The Southern North Sea ...................................................................................................................... 9 The Wadden Sea, south-eastern North Sea ...................................................................................... 10 Summary ........................................................................................................................................... 11 The ecology and status of sandeels, sprat and herring ........................................................................ 12 Sandeels ............................................................................................................................................ 12 Sprat .................................................................................................................................................. 16 Herring .............................................................................................................................................. 21 Mapping prey hotspots and tern resilience .......................................................................................... 24 Prey hotspots .................................................................................................................................... 24 Resilience and vulnerability of tern colonies to prey shortage ........................................................ 29 Impacts of climate-driven environmental change on sandeels, sprat and herring .............................. 31 Observed environmental change ...................................................................................................... 31 Predicted future environmental change ........................................................................................... 33 Summary and recommendations for fisheries management ............................................................... 34 Acknowledgements ............................................................................................................................... 36 References ............................................................................................................................................ 36 Background In order to improve the status of priority species, pressures on populations must be identified and effectively managed. For the roseate tern, a species of high conservation concern in the UK, this requires an improved understanding of the key issues affecting populations in both the breeding and wintering grounds. One such issue is the availability of high-energy food during the breeding season, when terns must collect enough food to sustain themselves and raise their chicks. Due to the small roseate tern population in the UK (~100 pairs) and Ireland (~1,400 pairs), little research has been carried out on the diet of this species. However, the diets of other tern species in this region and the southern North Sea have been more extensively studied and, although inter-specific variation in diet exists, key prey species are fairly consistent across tern species. Improving our understanding of the diets of Arctic, common, little and Sandwich terns will also support the conservation of these species, for which the UK holds internationally important breeding populations. This report, carried out as part of the EU-funded Roseate Tern LIFE Project, reviews current knowledge regarding the diets of the five tern species that breed in the UK and Ireland and the ecology of their key prey species. The impacts that ongoing climate- driven environmental change may have on key fish species are also discussed, and recommendations are made that aim to safeguard these prey populations and the seabirds they support. Introduction Food availability is an important driver of seabird breeding success (Cairns, 1988). High food availability can increase productivity by improving survival or growth rates of chicks or enabling adults to raise a greater number of chicks (Martin, 1987; Monaghan et al., 1989; Robinson and Hamer, 2000). The energy content of food is also a critical factor, and varies between different prey species (Harris and Hislop, 1978) but also within species depending on body condition. Indeed, years of poor body condition of prey have been associated with poor seabird breeding success (Wanless et al., 2005; Österbrom et al., 2006; Österbrom et al., 2008). Such bottom-up effects of forage fish on predators are likely to be strongest when the predator is a specialist that feeds on one or a small number of fish species (Cairns, 1987; Engelhard et al., 2014). One such group of piscivores is the terns. Five tern species breed in the UK: the Arctic tern Sterna paradisaea, common tern Sterna hirundo, little tern Sternula albifrons, roseate tern Sterna dougallii and the Sandwich tern Sterna sandvicensis. Terns target a relatively small number of prey species and generally behave as single prey loaders (although see Dunn, 1972), making them particularly sensitive to changes in food availability and quality (Furness and Tasker, 2000). Tern chicks are generally fed on high energy prey, with low quality species or small individuals being consumed by adults during foraging trips (Dunn, 1972; Ewins, 1985; Wilson et al., 2004; Perrow et al., 2010; Perrow et al., 2011b). However, during periods of low availability of their preferred prey, chicks may be fed on less calorific items. High energy prey tend to be marine fish which have a high protein and fat content, such as sandeels and clupeids (Harris and Hislop, 1978; Massias and Becker, 1990), whereas low energy prey contain more indigestible material and include crustaceans, such as shrimp, and freshwater fish, such as the three-spined stickleback (Massias and Becker, 1990). Experimental studies have shown that chicks fed on a high quality prey (herring) grow quickly while chicks fed on low quality prey (shrimp or sticklebacks) suffer poor growth rates and in some cases even lose weight (Massias and Becker, 1990). This highlights how crucial it is for terns to have access to an abundant supply of high quality prey during the breeding season. 1 Tern diet is likely to be affected by foraging range, as different prey species associate with different areas and habitats (Reay, 1970; Whitehead, 1985; Araujo et al. 2000; Wright et al., 2000). The tern with the shortest foraging range is the smallest-bodied of the five species, the little tern, while the largest- bodied species, the Sandwich tern, has the largest foraging range (Eglington and Perrow, 2014). Thaxter et al. (2012) reviewed studies of foraging distances of seabirds and reported that the maximum foraging range of little terns was 11 km, while that of Arctic, common and roseate was 30 km and Sandwich terns were reported to travel up to 54 km. The mean foraging ranges estimated in the same study were much lower, at 2.1 km for little terns, 7.1 km for Arctic terns, 4.5 km for common terns, 12.2 km for roseate terns and 11.5 km for Sandwich terns. Moderate confidence was associated with the estimates of Arctic, common and Sandwich terns, whereas estimates of little terns and roseate terns were described as low confidence due to a lack of direct measurements (Thaxter et al., 2012). There is substantial variation in estimates of foraging distances between years, colonies, individuals, tidal conditions (Steinen et al., 2000; Perrow et al., 2004; Paiva et al., 2008; Perrow et al., 2010) and even reviews; see Eglington and Perrow (2014) for a comprehensive summary. Therefore it may be inappropriate to consider species as being either strictly inshore or offshore foragers, except perhaps for the little tern (inshore). Diet composition is also influenced by the time of day, the tide and the weather (Veen, 1977; Frick and Becker, 1995; Wendeln, 1997; Stienen et al., 2000; Morris 2012). For example, some diet studies have found that clupeids are most frequently caught in the mornings and evenings, while sandeels are most frequent during the middle of the day (Stienen et al., 2000; Morris 2012). This corresponds with greater availability of clupeids
Recommended publications
  • Norway Pout, Sandeel and North Sea Sprat
    FINAL REPORT Initial assessment of the Norway sandeel, pout and North Sea sprat fishery Norges Fiskarlag Report No.: 2017-008, Rev 3 Date: January 2nd 2018 Certificate code: 251453-2017-AQ-NOR-ASI Report type: Final Report DNV GL – Business Assurance Report title: Initial assessment of the Norway sandeel, pout and North Sea sprat fishery DNV GL Business Assurance Customer: Norges Fiskarlag, Pirsenteret, Norway AS 7462 TRONDHEIM Veritasveien 1 Contact person: Tor Bjørklund Larsen 1322 HØVIK, Norway Date of issue: January 2nd 2018 Tel: +47 67 57 99 00 Project No.: PRJC -557210 -2016 -MSC -NOR http://www.dnvgl.com Organisation unit: ZNONO418 Report No.: 2017-008, Rev 3 Certificate No.: 251453-2017-AQ-NOR-ASI Objective: Assessment of the Norway sandeel, pout and North Sea sprat fishery against MSC Fisheries Standards v2.0. Prepared by: Verified by: Lucia Revenga Sigrun Bekkevold Team Leader and P2 Expert Principle Consultant Hans Lassen P1 Expert Geir Hønneland P3 Expert Stefan Midteide Project Manager Copyright © DNV GL 2014. All rights reserved. This publication or parts thereof may not be copied, reproduced or transmitted in any form, or by any means, whether digitally or otherwise without the prior written consent of DNV GL. DNV GL and the Horizon Graphic are trademarks of DNV GL AS. The content of this publication shall be kept confidential by the customer, unless otherwise agreed in writing. Reference to part of this publication which may lead to misinterpretation is prohibited. DNV GL Distribution: ☒ Unrestricted distribution (internal and external) ☐ Unrestricted distribution within DNV GL ☐ Limited distribution within DNV GL after 3 years ☐ No distribution (confidential) ☐ Secret Rev.
    [Show full text]
  • Runde Miljøsenter: North Atlantic Seabird Seminar
    North Atlantic Seabird Seminar – Fosnavåg, Norway 20-21 April 2015 Michael Hundeide (ed.) Runde Environmental Centre In cooperation with: Birdlife Norway (NOF) and Norwegian Biologist Association (BiO). Distribution: Open/Closed Runde Miljøsenter AS Client(s) 6096 Runde Org. Nr. 987 410 752 MVA Telephone: +47 70 08 08 00 E-mail: [email protected] Date: Web: www.rundesenteret.no 18.09.2015 Report Runde Miljøsenter Norsk: Nordatlantisk sjøfuglseminar 2015. Fosnavåg 20. og 21. April Rapportnummer: English: North Atlantic Seabird Seminar – Fosnavåg, Norway 20-21 April 2015 Author(s): Number of pages: Michael Hundeide (ed.) 52 Key words: Seabird ecology, Runde, North Atlantic, sand eel Sammendrag (Norsk):Rapporten er en gjengivelse av de temaer som ble presentert og diskutert på det internasjonale sjøfuglseminaret i Fosnavåg 20. og 21. april 2015: En rekke sjøfuglbestander har hatt en drastisk tilbakegang på Runde i senere år. Særlig gjelder dette artene: Krykkje, havhest, toppskarv, lomvi, alke, lunde m.fl. Med unntak av havsule, storjo og havørn som har hatt en økende tendens, har så å si samtlige av de andre sjøfuglartene gått ned. Denne situasjonen er ikke enestående for Runde og Norge, samme tendens gjør seg også gjeldende i Storbritannia, på Island og i hele Nordøst -Atlanteren. Selv om årsakene til krisen hos sjøfuglene er sammensatte og komplekse, var de fleste innleggsholderne enige om følgende punkter: 1) En vesentlig del av årsaken til krisen for sjøfuglbestandene på Runde og i Nordøst-Atlanteren skyldes mangel på egnet energirik mat (fettrik fisk av rett størrelse særlig tobis i Skottland, Færøyene og Sør-Vestlige Island) i hekkesesongen. Dette kan i sin tur forklares som en indirekte effekt av en liten økning i gjennomsnittstemperatur i havet.
    [Show full text]
  • Little Fish, Big Impact: Managing a Crucial Link in Ocean Food Webs
    little fish BIG IMPACT Managing a crucial link in ocean food webs A report from the Lenfest Forage Fish Task Force The Lenfest Ocean Program invests in scientific research on the environmental, economic, and social impacts of fishing, fisheries management, and aquaculture. Supported research projects result in peer-reviewed publications in leading scientific journals. The Program works with the scientists to ensure that research results are delivered effectively to decision makers and the public, who can take action based on the findings. The program was established in 2004 by the Lenfest Foundation and is managed by the Pew Charitable Trusts (www.lenfestocean.org, Twitter handle: @LenfestOcean). The Institute for Ocean Conservation Science (IOCS) is part of the Stony Brook University School of Marine and Atmospheric Sciences. It is dedicated to advancing ocean conservation through science. IOCS conducts world-class scientific research that increases knowledge about critical threats to oceans and their inhabitants, provides the foundation for smarter ocean policy, and establishes new frameworks for improved ocean conservation. Suggested citation: Pikitch, E., Boersma, P.D., Boyd, I.L., Conover, D.O., Cury, P., Essington, T., Heppell, S.S., Houde, E.D., Mangel, M., Pauly, D., Plagányi, É., Sainsbury, K., and Steneck, R.S. 2012. Little Fish, Big Impact: Managing a Crucial Link in Ocean Food Webs. Lenfest Ocean Program. Washington, DC. 108 pp. Cover photo illustration: shoal of forage fish (center), surrounded by (clockwise from top), humpback whale, Cape gannet, Steller sea lions, Atlantic puffins, sardines and black-legged kittiwake. Credits Cover (center) and title page: © Jason Pickering/SeaPics.com Banner, pages ii–1: © Brandon Cole Design: Janin/Cliff Design Inc.
    [Show full text]
  • Fisheries in Denmark
    DIRECTORATE-GENERAL FOR INTERNAL POLICIES POLICY DEPARTMENT B: STRUCTURAL AND COHESION POLICIES FISHERIES FISHERIES IN DENMARK NOTE This document was requested by the European Parliament's Committee on Fisheries. AUTHORS Jakub SEMRAU, Juan José ORTEGA GRAS Policy Department B: Structural and Cohesion Policies European Parliament B-1047 Brussels E-mail: [email protected] EDITORIAL ASSISTANCE Virginija KELMELYTE LINGUISTIC VERSIONS Original: EN Translations: DA, ES ABOUT THE EDITOR To contact the Policy Department or to subscribe to its monthly newsletter please write to: [email protected] Manuscript completed in September 2013. © European Parliament, 2013. This document is available on the Internet at: http://www.europarl.europa.eu/studies DISCLAIMER The opinions expressed in this document are the sole responsibility of the author and do not necessarily represent the official position of the European Parliament. Reproduction and translation for non-commercial purposes are authorized, provided the source is acknowledged and the publisher is given prior notice and sent a copy. DIRECTORATE-GENERAL FOR INTERNAL POLICIES POLICY DEPARTMENT B: STRUCTURAL AND COHESION POLICIES FISHERIES FISHERIES IN DENMARK NOTE Abstract The present note was requested by the Committee on Fisheries of the European Parliament for its Delegation to the northern part of Jutland, Denmark (28-30 October 2013). The note provides a review of the main characteristics of the Danish fisheries sector, covering both the North and Baltic seas, and the waters of Skagerrak and Kattegat. It provides an overview of issues such as the legal and institutional framework, fisheries management, catches, the fishing fleet, fishing industry, trade, employment, the fish market and marine research.
    [Show full text]
  • Use of Wild Fish and Other Aquatic Organisms As Feed in Aquaculture – a Review of Practices and Implications in Europe1
    209 Use of wild fish and other aquatic organisms as feed in aquaculture – a review of practices and implications in Europe1 Tim Huntington Poseidon Aquatic Resource Management Ltd. Windrush, Warborne Lane Portmore, Nr. Lymington Hampshire SO41 5RJ United Kingdom Summary 210 1. Introduction 212 2. Overview of aquaculture systems and practices in Europe 212 3. Use of fish and other aquatic species as feed for aquaculture and animal feeds in Europe 220 4. Sustainability issues of reduction fisheries and feedfish as inputs for aquaculture and animal feed 234 5. Environmental impact of aquaculture based on feedfish as inputs 248 6. Current and potential alternative uses of feedfish and other aquatic species and the related macro-level impact on food security and poverty alleviation 251 7. Regional issues on the use of fish and/or other aquatic species as feed for aquaculture 257 8. Conclusions and recommendations 260 References 263 Huntington, T. 2009. Use of wild fish and other aquatic organisms as feed in aquaculture – a review of practices and implications in Europe. In M.R. Hasan and M. Halwart (eds.). Fish as feed inputs for aquaculture: practices, sustainability and implications. FAO Fisheries and Aquaculture Technical Paper. No. 518. Rome, FAO. pp. 209–268. 1 The geographic scope of this report is Europe, with a particular focus on Denmark, Iceland, Norway, Spain, Russian Federation, United Kingdom, Faeroe Islands, Sweden, France, Germany, Greenland,Ireland, Italy, Netherlands, Poland, Portugal and Ukraine. 210 Fish as feed inputs for aquaculture – Practices, sustainability and implications SUMMARY The intensive production of mainly carnivorous species in Europe uses fish feeds with a high content of fishmeal and fish oil, currently consuming around 615 000 tonnes of fishmeal and 317 000 tonnes of fish oils per year, thus requiring around 1.9 million tonnes of feedfish.
    [Show full text]
  • An Examination of Tern Diet in a Changing Gulf of Maine
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses Dissertations and Theses October 2019 An Examination of Tern Diet in a Changing Gulf of Maine Keenan Yakola Follow this and additional works at: https://scholarworks.umass.edu/masters_theses_2 Part of the Ecology and Evolutionary Biology Commons, and the Marine Biology Commons Recommended Citation Yakola, Keenan, "An Examination of Tern Diet in a Changing Gulf of Maine" (2019). Masters Theses. 865. https://scholarworks.umass.edu/masters_theses_2/865 This Open Access Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. AN EXAMINATION OF TERN DIETS IN A CHANGING GULF OF MAINE A Thesis Presented by KEENAN C. YAKOLA Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE September 2019 Environmental Conservation AN EXAMINATION OF TERN DIETS IN A CHANGING GULF OF MAINE A Thesis Presented by KEENAN C. YAKOLA Approved as to style and content by: ____________________________________________ Michelle Staudinger, Co-Chair ____________________________________________ Adrian Jordaan, Co-Chair ____________________________________________ Stephen Kress, Member __________________________________________ Curt Griffin, Department Head Environmental Conservation ACKNOWLEDGEMENTS I would first like to thank for my two co-advisors would supported me throughout this process. Both Michelle Staudinger and Adrian Jordaan have been a constant source of support and knowledge and I can’t imagine going through this process without them.
    [Show full text]
  • Status and Diet of the European Shag (Mediterranean Subspecies) Phalacrocorax Aristotelis Desmarestii in the Libyan Sea (South Crete) During the Breeding Season
    Xirouchakis et alContributed.: European ShagPapers in the Libyan Sea 1 STATUS AND DIET OF THE EUROPEAN SHAG (MEDITERRANEAN SUBSPECIES) PHALACROCORAX ARISTOTELIS DESMARESTII IN THE LIBYAN SEA (SOUTH CRETE) DURING THE BREEDING SEASON STAVROS M. XIROUCHAKIS1, PANAGIOTIS KASAPIDIS2, ARIS CHRISTIDIS3, GIORGOS ANDREOU1, IOANNIS KONTOGEORGOS4 & PETROS LYMBERAKIS1 1Natural History Museum of Crete, University of Crete, P.O. Box 2208, Heraklion 71409, Crete, Greece ([email protected]) 2Institute of Marine Biology, Biotechnology & Aquaculture, Hellenic Centre for Marine Research (HCMR), P.O. Box 2214, Heraklion 71003, Crete, Greece 3Fisheries Research Institute, Hellenic Agricultural Organization DEMETER, Nea Peramos, Kavala 64007, Macedonia, Greece 4Department of Biology, University of Crete, P.O. Box 2208, Heraklion 71409, Crete, Greece Received 21 June 2016, accepted 21 September 2016 ABSTRACT XIROUCHAKIS, S.M., KASAPIDIS, P., CHRISTIDIS, A., ANDREOU, G., KONTOGEORGOS, I. & LYMBERAKIS, P. 2017. Status and diet of the European Shag (Mediterranean subspecies) Phalacrocorax aristotelis desmarestii in the Libyan Sea (south Crete) during the breeding season. Marine Ornithology 45: 1–9. During 2010–2012 we collected data on the population status and ecology of the European Shag (Mediterranean subspecies) Phalacrocorax aristotelis desmarestii on Gavdos Island (south Crete), conducting boat-based surveys, nest monitoring, and diet analysis. The species’ population was estimated at 80–110 pairs, with 59% breeding success and 1.6 fledglings per successful nest. Pellet morphological and genetic analysis of otoliths and fish bones, respectively, showed that the shags’ diet consisted of 31 species. A total of 4 223 otoliths were identified to species level; 47.2% belonged to sand smelts Atherina boyeri, 14.2% to bogues Boops boops, 11.3% to picarels Spicara smaris, and 10.5% to damselfishes Chromis chromis.
    [Show full text]
  • Marvels of Creation: Breathtaking Birds
    BVgkZahd[8gZVi^dc 7gZVi]iV`^c\7^gYh BUDDY & KAY DAVIS Marvels Birds corrections 4-27-01 1 6/13/06 9:32:17 AM BVgkZahd[8gZVi^dc 7gZVi]iV`^c\7^gYh First Printing, January 2006 Copyright © 2005 by Buddy and Kay Davis. All rights reserved. No part of this book may be used or reproduced in any manner whatsoever without written permission of the publisher except in the case of brief quotations in articles and reviews. For information, write Master Books, Inc., P.O. Box 726, Green Forest, AR 72638. Previously published as Special Wonders of Our Feathered Friends. ISBN-13: 978-0-89051-457-3 ISBN-10: 0-89051-457-7 Library of Congress Number: 2005933268 Please visit our website for other great titles: www.masterbooks.net For information regarding author inter- views, please contact the publicity department at (870) 438-5288. Printed in China Marvels Birds corrections 4-27-02 2 6/13/06 9:32:20 AM 8dciZcih INTRODUCTION ............................................7 LAUGHING KOOKABURRA .............................42 ARCTIC TERN ..............................................10 OSPREY .....................................................44 ATLANTIC PUFFIN ........................................12 OSTRICH ...................................................46 BALD EAGLE ...............................................14 PILEATED WOODPECKER ...............................48 BLACK SKIMMER ..........................................16 PTARMIGAN ................................................50 BROWN PELICAN .........................................18 RAINBOW
    [Show full text]
  • An Examination of Tern Diet in a Changing Gulf of Maine
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses Dissertations and Theses October 2019 An Examination of Tern Diet in a Changing Gulf of Maine Keenan Yakola University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/masters_theses_2 Part of the Ecology and Evolutionary Biology Commons, and the Marine Biology Commons Recommended Citation Yakola, Keenan, "An Examination of Tern Diet in a Changing Gulf of Maine" (2019). Masters Theses. 865. https://doi.org/10.7275/15222158 https://scholarworks.umass.edu/masters_theses_2/865 This Open Access Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. AN EXAMINATION OF TERN DIETS IN A CHANGING GULF OF MAINE A Thesis Presented by KEENAN C. YAKOLA Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE September 2019 Environmental Conservation AN EXAMINATION OF TERN DIETS IN A CHANGING GULF OF MAINE A Thesis Presented by KEENAN C. YAKOLA Approved as to style and content by: ____________________________________________ Michelle Staudinger, Co-Chair ____________________________________________ Adrian Jordaan, Co-Chair ____________________________________________ Stephen Kress, Member __________________________________________ Curt Griffin, Department Head Environmental Conservation ACKNOWLEDGEMENTS I would first like to thank for my two co-advisors would supported me throughout this process. Both Michelle Staudinger and Adrian Jordaan have been a constant source of support and knowledge and I can’t imagine going through this process without them.
    [Show full text]
  • Raitt's Sand Eel (Ammodytes Marinus)
    MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Raitt's sand eel (Ammodytes marinus) MarLIN – Marine Life Information Network Marine Evidence–based Sensitivity Assessment (MarESA) Review Morvan Barnes 2008-03-25 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/59]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Barnes, M.K.S. 2008. Ammodytes marinus Raitt's sand eel. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.59.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2008-03-25 Raitt's sand eel (Ammodytes marinus) - Marine Life Information Network See online review for distribution map Distribution data supplied by the Ocean Biogeographic Information System (OBIS).
    [Show full text]
  • Distribution, Abundance, and Feeding Ecology of Baleen Whales in Icelandic Waters: Have Recent Environmental Changes Had an Effect?
    ORIGINAL RESEARCH ARTICLE published: 17 February 2015 ECOLOGY AND EVOLUTION doi: 10.3389/fevo.2015.00006 Distribution, abundance, and feeding ecology of baleen whales in Icelandic waters: have recent environmental changes had an effect? Gísli A. Víkingsson 1*, Daniel G. Pike 2, Héðinn Valdimarsson 3, Anna Schleimer 4, Thorvaldur Gunnlaugsson 1, Teresa Silva 3,5, Bjarki Þ. Elvarsson 1,6, Bjarni Mikkelsen 7, Nils Øien 8, Geneviève Desportes 9, Valur Bogason 1 and Philip S. Hammond 4 1 Marine Resources Section, Marine Research Institute, Reykjavík, Iceland 2 Esox Associates, North Bay, ON, Canada 3 Marine Environment Section, Marine Research Institute, Reykjavík, Iceland 4 Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, UK 5 Institute of Biology, University of Iceland, Reykjavík, Iceland 6 Faculty of Physical Sciences, School of Engineering and Natural Sciences, University of Iceland, Reykjavík, Iceland 7 Faroese Museum of Natural History, Torshavn, Faroe Islands 8 Marine Mammal Research Group, Institute of Marine Research, Bergen, Norway 9 GDnatur, Kerteminde, Denmark Edited by: The location of Iceland at the junction of submarine ridges in the North-East Atlantic Tore Haug, Institute of Marine where warm and cold water masses meet south of the Arctic Circle contributes to high Research, Norway productivity of the waters around the island. During the last two decades, substantial Reviewed by: increases in sea temperature and salinity have been reported. Concurrently, pronounced Ulf Lindstrøm, Institute of Marine Research, Norway changes have occurred in the distribution of several fish species and euphausiids. The J. Lawson, Department of Fisheries distribution and abundance of cetaceans in the Central and Eastern North Atlantic have and Oceans, Canada been monitored regularly since 1987.Significant changes in the distribution and abundance *Correspondence: of several cetacean species have occurred in this time period.
    [Show full text]
  • Conservation
    Offshore Energy SEA 3: Appendix 1 Environmental Baseline Appendix 1J: Conservation A1j.1 Introduction and purpose There is a wide range of international treaties and conventions, European and national legislation and other measures which have application in relation to the protection and conservation of species and habitats in the UK. These are summarised below as a context and introduction to the site listings which follow. This Appendix provides an overview of the various types of sites relevant to the SEA which have been designated for their international or national conservation importance as well as sites designated for their wider cultural relevance such as World Heritage Sites and sites designated for landscape reasons etc. Other non-statutory sites potentially relevant to the SEA are also included. Using a Geographic Information System (GIS), coastal, marine and offshore sites were identified relevant to each of the regional sea areas and mapped. Terrestrial sites which are wholly or in part within a landward 10km coastal buffer and selected other sites are also mapped. Terrestrial sites outside the buffer are not included here with the exception of summaries for sites whose interest features might be affected by activities offshore e.g. sites designated for breeding red throated divers which may feed offshore. Maps are grouped for each Regional Sea with a brief introduction followed by an outline of the sites and species of nature conservation importance within that Regional Sea. Regional Sea areas 9, 10 and 11 have no contiguous coastline and contain only offshore conservation sites and are grouped with Regional Sea 8. Regional Sea 5 also has no contiguous coastline; it is grouped with Regional Sea 4.
    [Show full text]