Making Fortran Legacy Code More Functional ∗ Using the BGS Geomagnetic Field Modelling System as an Example Hans-Nikolai Vießmann Sven-Bodo Scholz Artjoms Šinkarovs Heriot-Watt University Heriot-Watt University Heriot-Watt University
[email protected] [email protected] [email protected] Brian Bainbridge Brian Hamilton Simon Flower British Geological Survey British Geological Survey British Geological Survey
[email protected] [email protected] [email protected] ABSTRACT 1. INTRODUCTION This paper presents an application case study of the British Geo- The lambda calculus’ Church-Rosser property suggests that func- logical Survey’s (BGS) Geomagnetic Field Modelling System code. tional programming languages should offer opportunities for effi- The program consists of roughly 20 000 lines of highly-tuned FOR- cient parallel execution. Research over the last four decades has TRAN MPI code that has a runtime of about 12 hours for a signal produced excellent results that demonstrate how this conceptual execution cycle on a cluster utilising approximately 100 CPU cores. advantage can be turned into real speedups on parallel hardware [15, The program contains a sequential bottleneck that executes on a 18, 26, 27, 32, 35]. Despite these advances, functional programming single node of the cluster and takes up to 50% of the overall runtime. has not yet made it into mainstream high-performance computing We describe an experiment in which we rewrote the bottleneck FOR- (HPC). TRAN code in SAC, to make use of auto-parallelisation provided There are many reasons for this, but the key issue is that the by the SAC compiler.