Virus–Virus Interactions Impact the Population Dynamics of Influenza and the Common Cold

Total Page:16

File Type:pdf, Size:1020Kb

Virus–Virus Interactions Impact the Population Dynamics of Influenza and the Common Cold Virus–virus interactions impact the population dynamics of influenza and the common cold Sema Nickbakhsha, Colette Maira,b, Louise Matthewsc,1, Richard Reevec, Paul C. D. Johnsonc, Fiona Thorburnd, Beatrix von Wissmanne, Arlene Reynoldsf, James McMenaminf, Rory N. Gunsong, and Pablo R. Murciaa,1 aMRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, G61 1QH Glasgow, United Kingdom; bSchool of Mathematics and Statistics, College of Science and Engineering, University of Glasgow, G12 8QQ Glasgow, United Kingdom; cBoyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ Glasgow, United Kingdom; dThe Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, G51 4TF Glasgow, United Kingdom; ePublic Health, NHS Greater Glasgow and Clyde, G12 0XH Glasgow, United Kingdom; fHealth Protection Scotland, NHS National Services Scotland, G2 6QE Glasgow, United Kingdom; and gWest of Scotland Specialist Virology Centre, NHS Greater Glasgow and Clyde, G31 2ER Glasgow, United Kingdom Edited by Burton H. Singer, University of Florida, Gainesville, FL, and approved November 12, 2019 (received for review June 27, 2019) The human respiratory tract hosts a diverse community of cocirculating influenza A virus (IAV) pandemic of 2009 further galvanized viruses that are responsible for acute respiratory infections. This interest in the epidemiological interactions among respiratory shared niche provides the opportunity for virus–virus interac- viruses. It was postulated that rhinovirus (RV) may have delayed tions which have the potential to affect individual infection risks the introduction of the pandemic virus into Europe (12, 13), and in turn influence dynamics of infection at population scales. while the pandemic virus may have, in turn, interfered with ep- However, quantitative evidence for interactions has lacked suit- idemics of respiratory syncytial virus (RSV) (14, 15). Clinical able data and appropriate analytical tools. Here, we expose and studies utilizing coinfection data from diagnostic tests have also quantify interactions among respiratory viruses using bespoke suggested virus–virus interference at the host scale (13, 16, 17). analyses of infection time series at the population scale and coin- The role of adaptive immunity in driving virus interferences fections at the individual host scale. We analyzed diagnostic data that alter the population dynamics of antigenically similar virus from 44,230 cases of respiratory illness that were tested for 11 tax- strains is well known (18, 19). For example, antibody-driven onomically broad groups of respiratory viruses over 9 y. Key to our cross-immunity is believed to restrict influenza virus strain di- analyses was accounting for alternative drivers of correlated infec- versity, leading to sequential strain replacement over time (20). POPULATION BIOLOGY tion frequency, such as age and seasonal dependencies in infection Such antibody-driven virus interactions might even shape the risk, allowing us to obtain strong support for the existence of neg- temporal patterns of RSV, human parainfluenza virus (PIV), ative interactions between influenza and noninfluenza viruses and and human metapneumovirus (MPV) infections, which are tax- positive interactions among noninfluenza viruses. In mathematical onomically grouped into the same virus family (21). However, simulations that mimic 2-pathogen dynamics, we show that tran- where antigenically distant virus groups are concerned, the mech- sient immune-mediated interference can cause a relatively ubiqui- anisms are obscure, although the variety of possibilities in- tous common cold-like virus to diminish during peak activity of a cludes innate immunity, resource competition, and other cellular seasonal virus, supporting the potential role of innate immunity in driving the asynchronous circulation of influenza A and rhinovirus. Significance These findings have important implications for understanding the linked epidemiological dynamics of viral respiratory infections, an When multiple pathogens cocirculate this can lead to compet- important step towards improved accuracy of disease forecasting itive or cooperative forms of pathogen–pathogen interactions. models and evaluation of disease control interventions. It is believed that such interactions occur among cold and flu viruses, perhaps through broad-acting immunity, resulting in epidemiology | virology | ecology interlinked epidemiological patterns of infection. However, to date, quantitative evidence has been limited. We analyzed a he human respiratory tract hosts a community of viruses that large collection of diagnostic reports collected over multiple Tcocirculate in time and space, and as such it forms an eco- years for 11 respiratory viruses. Our analyses provide strong logical niche. Shared niches are expected to facilitate interspecific statistical support for the existence of interactions among re- interactions which may lead to linked population dynamics among spiratory viruses. Using computer simulations, we found that distinct pathogen species (1, 2). In the context of respiratory in- very short-lived interferences may explain why common cold fections, a well-known example is the coseasonality of influenza infections are less frequent during flu seasons. Improved un- and pneumococcus, driven by an enhanced susceptibility to sec- derstanding of how the epidemiology of viral infections is ondary bacterial colonization subsequent to influenza infection (3, interlinked can help improve disease forecasting and evalua- 4). Indeed, respiratory bacteria–bacteria and bacteria–virus inter- tion of disease control interventions. actions, and the underlying mechanisms by which they arise, are extensively studied (5–8). In contrast, evidence for the occurrence Author contributions: S.N., L.M., R.R., P.C.D.J., R.N.G., and P.R.M. designed research; S.N., of virus–virus interactions remains scarce and the potential C.M., and P.C.D.J. performed research; F.T., A.R., J.M., and R.N.G. contributed new re- agents/analytic tools; S.N., C.M., and P.C.D.J. analyzed data; and S.N., C.M., L.M., R.R., mechanisms are elusive, demanding greater research attention. P.C.D.J., F.T., B.v.W., A.R., J.M., R.N.G., and P.R.M. wrote the paper. The occurrence of such interactions may have profound economic The authors declare no competing interest. implications, if the circulation of one pathogen enhances or di- This article is a PNAS Direct Submission. minishes the infection incidence of another, through impacts on This open access article is distributed under Creative Commons Attribution License 4.0 the healthcare burden, public health planning, and the clinical (CC BY). management of respiratory illness. 1To whom correspondence may be addressed. Email: [email protected] or Early interest in the potential for interference among taxo- [email protected]. nomically distinct groups of respiratory viruses stemmed from This article contains supporting information online at https://www.pnas.org/lookup/suppl/ epidemiological observations of the temporal patterns of infec- doi:10.1073/pnas.1911083116/-/DCSupplemental. tion in respiratory virus outbreaks (9–11). More recently, the www.pnas.org/cgi/doi/10.1073/pnas.1911083116 PNAS Latest Articles | 1of9 Downloaded by guest on September 26, 2021 processes (22–25). Recent experimental models of respiratory vi- A100 rus coinfections have demonstrated several interaction-induced effects, from enhanced (26) or reduced (22, 23) viral growth to 75 the attenuation of disease (23, 24). It has also been shown that cell fusion induced by certain viruses may enhance the replication of 50 others in coinfections (26). However, despite epidemiological, clinical, and experimental indications of interactions among respiratory viruses, quantita- 25 tively robust evidence is lacking. Such evidence has been hard to Infection status (%) 0 acquire, due to a paucity of consistently derived epidemiological Jan Jul JanJulJulJan JanJul Jan JulJan JulJan Jul Jan Jul Jan Jul time-series data over a sufficient time frame to provide well- 05 06 07 08 09 10 11 12 13 powered analyses, and the lack of analytical approaches to dif- 100 B RV ferentiate true virus–virus interactions from other drivers of IAV IBV coseasonality, such as age-dependent host mixing patterns (27, 75 RSV 28) and environmental factors associated with virus survival and CoV – – AdV transmission (29 31). As a result, studies evaluating virus virus 50 MPV interactions from epidemiological time series have thus far not PIV3 PIV1 accounted for such alternative drivers of coseasonality. PIV4 Here, we apply a series of statistical approaches and provide 25 PIV2 robust statistical evidence for the existence of interactions among prevalence Relative 0 respiratory viruses. We examined virological diagnostic data 05 06 07 08 09 10 11 12 13 from 44,230 episodes of respiratory illness accrued over a 9-y Year time frame in a study made possible by the implementation of multiplex-PCR methods in routine diagnostics that allow the Fig. 1. Temporal patterns of viral respiratory infections detected among simultaneous detection of multiple viruses from a single respi- patients in Glasgow, United Kingdom, 2005 to 2013. (A) Percentage of pa- ratory specimen. Each patient was
Recommended publications
  • Increased Interseasonal Respiratory Syncytial Virus (RSV) Activity in Parts of the Southern United States
    This is an official CDC Health Advisory Distributed via Health Alert Network June 10, 2021 3:00 PM 10490-CAD-06-10-2021-RSV Increased Interseasonal Respiratory Syncytial Virus (RSV) Activity in Parts of the Southern United States Summary The Centers for Disease Control and Prevention (CDC) is issuing this health advisory to notify clinicians and caregivers about increased interseasonal respiratory syncytial virus (RSV) activity across parts of the Southern United States. Due to this increased activity, CDC encourages broader testing for RSV among patients presenting with acute respiratory illness who test negative for SARS-CoV-2, the virus that causes COVID-19. RSV can be associated with severe disease in young children and older adults. This health advisory also serves as a reminder to healthcare personnel, childcare providers, and staff of long-term care facilities to avoid reporting to work while acutely ill – even if they test negative for SARS-CoV-2. Background RSV is an RNA virus of the genus Orthopneumovirus, family Pneumoviridae, primarily spread via respiratory droplets when a person coughs or sneezes, and through direct contact with a contaminated surface. RSV is the most common cause of bronchiolitis and pneumonia in children under one year of age in the United States. Infants, young children, and older adults with chronic medical conditions are at risk of severe disease from RSV infection. Each year in the United States, RSV leads to on average approximately 58,000 hospitalizations1 with 100-500 deaths among children younger than 5 years old2 and 177,000 hospitalizations with 14,000 deaths among adults aged 65 years or older.3 In the United States, RSV infections occur primarily during the fall and winter cold and flu season.
    [Show full text]
  • Isolation and Characterization of Clinical RSV Isolates in Belgium During the Winters of 2016–2018
    viruses Article Isolation and Characterization of Clinical RSV Isolates in Belgium during the Winters of 2016–2018 Winke Van der Gucht 1, Kim Stobbelaar 1,2, Matthias Govaerts 1 , Thomas Mangodt 2, Cyril Barbezange 3 , Annelies Leemans 1, Benedicte De Winter 4, Steven Van Gucht 3 , Guy Caljon 1, Louis Maes 1 , Jozef De Dooy 4,5, Philippe Jorens 4,5, Annemieke Smet 4 , Paul Cos 1, Stijn Verhulst 2,4 and Peter L. Delputte 1,* 1 Laboratory of Microbiology, Parasitology and Hygiene, and Infla-Med Centre of Excellence, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; [email protected] (W.V.d.G.); [email protected] (K.S.); [email protected] (M.G.); [email protected] (A.L.); [email protected] (G.C.); [email protected] (L.M.); [email protected] (P.C.) 2 Pediatrics Department, Antwerp University Hospital (UZA), Wilrijkstraat 10, 2650 Edegem, Belgium; [email protected] (T.M.); [email protected] (S.V.) 3 Sciensano, Rue Juliette Wytsmanstraat 14, 1050 Brussels, Belgium; [email protected] (C.B.); [email protected] (S.V.G.) 4 Laboratory of Experimental Medicine and Pediatrics, University of Antwerp (UA), Univeristeitsplein 1 T.3, 2610 Antwerp, Belgium; [email protected] (B.D.W.); [email protected] (J.D.D.); [email protected] (P.J.); [email protected] (A.S.) 5 Pediatric intensive care unit, Antwerp University Hospital (UZA), Wilrijkstraat 10, 2650 Edegem, Belgium * Correspondence: [email protected]; Tel.: +32-3-265-26-25 Received: 29 July 2019; Accepted: 4 November 2019; Published: 6 November 2019 Abstract: Respiratory Syncytial Virus (RSV) is a very important viral pathogen in children, immunocompromised and cardiopulmonary diseased patients and the elderly.
    [Show full text]
  • Phylogenetic Evidence of a Novel Lineage of Canine Pneumovirus And
    Piewbang and Techangamsuwan BMC Veterinary Research (2019) 15:300 https://doi.org/10.1186/s12917-019-2035-1 RESEARCH ARTICLE Open Access Phylogenetic evidence of a novel lineage of canine pneumovirus and a naturally recombinant strain isolated from dogs with respiratory illness in Thailand Chutchai Piewbang1 and Somporn Techangamsuwan1,2* Abstract Background: Canine pneumovirus (CPV) is a pathogen that causes respiratory disease in dogs, and recent outbreaks in shelters in America and Europe have been reported. However, based on published data and documents, the identification of CPV and its variant in clinically symptomatic individual dogs in Thailand through Asia is limited. Therefore, the aims of this study were to determine the emergence of CPV and to consequently establish the genetic characterization and phylogenetic analysis of the CPV strains from 209 dogs showing respiratory distress in Thailand. Results: This study identified and described the full-length CPV genome from three strains, designated herein as CPV_ CP13 TH/2015, CPV_CP82 TH/2016 and CPV_SR1 TH/2016, that were isolated from six dogs out of 209 dogs (2.9%) with respiratory illness in Thailand. Phylogenetic analysis suggested that these three Thai CPV strains (CPV TH strains) belong to the CPV subgroup A and form a novel lineage; proposed as the Asian prototype. Specific mutations in the deduced amino acids of these CPV TH strains were found in the G/glycoprotein sequence, suggesting potential substitution sites for subtype classification. Results of intragenic recombination analysis revealed that CPV_CP82 TH/2016 is a recombinant strain, where the recombination event occurred in the L gene with the Italian prototype CPV Bari/100–12 as the putative major parent.
    [Show full text]
  • Respiratory Infections and Coinfections: Geographical and Population Patterns Norvell Perezbusta-Lara, Rocío Tirado-Mendoza* and Javier R
    GACETA MÉDICA DE MÉXICO ORIGINAL ARTICLE Respiratory infections and coinfections: geographical and population patterns Norvell Perezbusta-Lara, Rocío Tirado-Mendoza* and Javier R. Ambrosio-Hernández Universidad Nacional Autónoma de México, Faculty of Medicine, Department of Microbiology y Parasitology, Mexico City, Mexico Abstract Introduction: Acute respiratory infections are the second cause of mortality in children younger than five years, with 150.7 million episodes per year. Human orthopneumovirus (hOPV) and metapneumovirus (hMPV) are the first and second causes of bronchiolitis; type 2 human orthorubulavirus (hORUV) has been associated with pneumonia in immunocompromised patients. Objective: To define hOPV, hMPV and hORUV geographical distribution and circulation patterns. Method: An observational, prospective cross-sectional pilot study was carried out. Two-hundred viral strains obtained from pediatric patients were genotyped by endpoint reverse transcription polymerase chain reaction (RT-PCR). Results: One-hundred and eighty-six positive samples were typed: 84 hOPV, 43 hMPV, two hORUV and 57 co-infection specimens. Geographical distribution was plotted. hMPV, hOPV, and hORUV cumulative incidences were 0.215, 0.42, and 0.01, respectively. Cumulative incidence of hMPV-hORUV and hMPV-hOPV coinfection was 0.015 and 0.23; for hOPV-hMPV-hORUV, 0.035; and for hORUV-hOPV, 0.005. The largest num- ber of positive cases of circulating or co-circulating viruses occurred between January and March. Conclusions: This study successfully identified circulation and geographical distribution patterns of the different viruses, as well as of viral co-infections. KEY WORDS: Acute respiratory infections. Human respiratory viruses. Viral coinfections. Circulation patterns. Infecciones y coinfecciones respiratorias: patrón geográfico y de circulación poblacional Resumen Introducción: Las infecciones respiratorias agudas constituyen la segunda causa de mortalidad en los niños menores de cinco años, con 150.7 millones de episodios anuales.
    [Show full text]
  • Synergism and Antagonism of Bacterial-Viral Co-Infection in the Upper Respiratory Tract
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.11.378794; this version posted November 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Synergism and antagonism of bacterial-viral co-infection in the upper respiratory tract Sam Manna1,2,3, Julie McAuley3, Jonathan Jacobson1, Cattram D. Nguyen1,2, Md Ashik Ullah4, Victoria Williamson1, E. Kim Mulholland1,2,5, Odilia Wijburg3, Simon Phipps4 and Catherine Satzke1,2,3,* 1 Infection and Immunity, Murdoch Children’s Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia; 2 Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia; 3 Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia 4 Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; 5 Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom *Correspondence: [email protected] Keywords: Streptococcus pneumoniae, pneumococcus, Respiratory Syncytial Virus, Pneumonia Virus of Mice, Murine Pneumonia Virus, Influenza, co-infection ABSTRACT Streptococcus pneumoniae (the pneumococcus) is a leading cause of pneumonia in children under five years old. Co-infection by pneumococci and respiratory viruses enhances disease severity. Little is known about pneumococcal co-infections with Respiratory Syncytial Virus (RSV). Here, we developed a novel infant mouse model of co-infection using Pneumonia Virus of Mice (PVM), a murine analogue of RSV, to examine the dynamics of co-infection in the upper respiratory tract, an anatomical niche that is essential for host-to-host transmission and progression to disease.
    [Show full text]
  • Two RSV Platforms for G, F, Or G+F Proteins Vlps
    viruses Article Two RSV Platforms for G, F, or G+F Proteins VLPs Binh Ha 1, Jie E. Yang 2, Xuemin Chen 1, Samadhan J. Jadhao 1, Elizabeth R. Wright 2,3,4,* and Larry J. Anderson 1,* 1 Division of Pediatric Infectious Diseases, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; [email protected] (B.H.); [email protected] (X.C.); [email protected] (S.J.J.) 2 Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA; [email protected] 3 Cryo-Electron Microscopy Research Center, Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA 4 Morgridge Institute for Research, Madison, WI 53715, USA * Correspondence: [email protected] (E.R.W.); [email protected] (L.J.A.); Tel.: +1-608-265-0666 (E.R.W.); +1-404-712-6604 (L.J.A.); Fax: +1-608-265-4693 (E.R.W.); +1-404-727-9223 (L.J.A.) Received: 22 June 2020; Accepted: 17 August 2020; Published: 19 August 2020 Abstract: Respiratory syncytial virus (RSV) causes substantial lower respiratory tract disease in children and at-risk adults. Though there are no effective anti-viral drugs for acute disease or licensed vaccines for RSV, palivizumab prophylaxis is available for some high risk infants. To support anti-viral and vaccine development efforts, we developed an RSV virus-like particle (VLP) platform to explore the role RSV F and G protein interactions in disease pathogenesis. Since VLPs are immunogenic and a proven platform for licensed human vaccines, we also considered these VLPs as potential vaccine candidates.
    [Show full text]
  • Increased Interseasonal Respiratory Syncytial Virus (RSV)
    Montana Health Alert Network DPHHS HAN INFO SERVICE Cover Sheet DATE For LOCAL HEALTH June 11, 2021 DEPARTMENT reference only DPHHS Subject Matter Resource for SUBJECT more information regarding this HAN, contact: Increased Interseasonal Respiratory Syncytial Virus (RSV) Activity in Parts of the Southern United States Epidemiology Section 1-406-444-0273 INSTRUCTIONS For technical issues related to the HAN message contact the Emergency DISTRIBUTE AT YOUR DISCRETION. Share this information Preparedness Section with relevant SMEs or contacts (internal and external) as you at 1-406-444-0919 see fit. DPHHS Health Alert Hotline: 1-800-701-5769 DPHHS HAN Website: www.han.mt.gov REMOVE THIS COVER SHEET BEFORE REDISTRIBUTING AND REPLACE IT WITH YOUR OWN Please ensure that DPHHS is included on your HAN distribution list. [email protected] Categories of Health Alert Messages: Health Alert: conveys the highest level of importance; warrants immediate action or attention. Health Advisory: provides important information for a specific incident or situation; may not require immediate action. Health Update: provides updated information regarding an incident or situation; unlikely to require immediate action. Information Service: passes along low level priority messages that do not fit other HAN categories and are for informational purposes only. Please update your HAN contact information on the Montana Public Health Directory Montana Health Alert Network DPHHS HAN Information Sheet DATE June 11, 2021 SUBJECT Increased Interseasonal Respiratory Syncytial Virus (RSV) Activity in Parts of the Southern United States BACKGROUND RSV is an RNA virus of the genus Orthopneumovirus, family Pneumoviridae, primarily spread via respiratory droplets when a person coughs or sneezes, and through direct contact with a contaminated surface.
    [Show full text]
  • Respiratory Syncytial Virus-Specific Immunoglobulin G (Igg)
    medRxiv preprint doi: https://doi.org/10.1101/2021.08.17.21262198; this version posted August 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license . 1 2 Respiratory syncytial virus-specific immunoglobulin G (IgG) 3 concentrations associate with environmental and genetic factors: the 4 Factors Influencing Pediatric Asthma Study. 5 6 Esther Erdei1¶, Dara Torgerson2,3¶, Rae O'Leary4, Melissa Spear2,3, Matias Shedden1, 7 Marcia O’Leary4, Kendra Enright4, Lyle Best4, 5 8 9 1 University oF New Mexico Health Sciences Center College oF PharMacy, AlbuQuerQue, 10 NM, USA 11 2 DepartMent oF EpideMiology and Biostatistics, University oF CaliFornia San Francisco, 12 San Francisco, CA, USA 13 3 DepartMent oF HuMan Genetics, McGill University, Montreal, QC, Canada 14 4 Missouri Breaks Industries Research Inc, Eagle Butte, SD, USA 15 5 Turtle Mountain CoMMunity College, Belcourt, ND, USA 16 17 18 * Corresponding author 19 E-mail: [email protected] (LGB) 20 21 ¶These authors contributed eQually to this work. 22 1 NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2021.08.17.21262198; this version posted August 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Taxonomy of the Order Mononegavirales: Update 2019
    Archives of Virology (2019) 164:1967–1980 https://doi.org/10.1007/s00705-019-04247-4 VIROLOGY DIVISION NEWS Taxonomy of the order Mononegavirales: update 2019 Gaya K. Amarasinghe1 · María A. Ayllón2,3 · Yīmíng Bào4 · Christopher F. Basler5 · Sina Bavari6 · Kim R. Blasdell7 · Thomas Briese8 · Paul A. Brown9 · Alexander Bukreyev10 · Anne Balkema‑Buschmann11 · Ursula J. Buchholz12 · Camila Chabi‑Jesus13 · Kartik Chandran14 · Chiara Chiapponi15 · Ian Crozier16 · Rik L. de Swart17 · Ralf G. Dietzgen18 · Olga Dolnik19 · Jan F. Drexler20 · Ralf Dürrwald21 · William G. Dundon22 · W. Paul Duprex23 · John M. Dye6 · Andrew J. Easton24 · Anthony R. Fooks25 · Pierre B. H. Formenty26 · Ron A. M. Fouchier17 · Juliana Freitas‑Astúa27 · Anthony Grifths28 · Roger Hewson29 · Masayuki Horie31 · Timothy H. Hyndman32 · Dàohóng Jiāng33 · Elliott W. Kitajima34 · Gary P. Kobinger35 · Hideki Kondō36 · Gael Kurath37 · Ivan V. Kuzmin38 · Robert A. Lamb39,40 · Antonio Lavazza15 · Benhur Lee41 · Davide Lelli15 · Eric M. Leroy42 · Jiànróng Lǐ43 · Piet Maes44 · Shin‑Yi L. Marzano45 · Ana Moreno15 · Elke Mühlberger28 · Sergey V. Netesov46 · Norbert Nowotny47,48 · Are Nylund49 · Arnfnn L. Økland49 · Gustavo Palacios6 · Bernadett Pályi50 · Janusz T. Pawęska51 · Susan L. Payne52 · Alice Prosperi15 · Pedro Luis Ramos‑González13 · Bertus K. Rima53 · Paul Rota54 · Dennis Rubbenstroth55 · Mǎng Shī30 · Peter Simmonds56 · Sophie J. Smither57 · Enrica Sozzi15 · Kirsten Spann58 · Mark D. Stenglein59 · David M. Stone60 · Ayato Takada61 · Robert B. Tesh10 · Keizō Tomonaga62 · Noël Tordo63,64 · Jonathan S. Towner65 · Bernadette van den Hoogen17 · Nikos Vasilakis10 · Victoria Wahl66 · Peter J. Walker67 · Lin‑Fa Wang68 · Anna E. Whitfeld69 · John V. Williams23 · F. Murilo Zerbini70 · Tāo Zhāng4 · Yong‑Zhen Zhang71,72 · Jens H. Kuhn73 Published online: 14 May 2019 © This is a U.S.
    [Show full text]
  • BEI Resources Product Information Sheet Catalog No. NR-48671
    Product Information Sheet for NR-48671 Human Respiratory Syncytial Virus, Growth Conditions: Host: HEp-2 cells (ATCC® CCL-23™) A/Homo sapiens/ARG/177/2006 Growth Medium: Eagle’s Minimum Essential Medium containing Earle’s Balanced Salt Solution, non-essential Catalog No. NR-48671 amino acids, 2 mM L-glutamine, 1 mM sodium pyruvate and 1500 mg/L of sodium bicarbonate supplemented with 2% For research use only. Not for use in humans. fetal bovine serum, or equivalent Infection: Cells should be 60% to 95% confluent Contributor: Incubation: 3 to 7 days at 37°C and 5% CO2 Kelly J. Henrickson, M.D., Professor, Departments of Cytopathic Effect: Cell rounding, syncytia formation, and Pediatrics and Microbiology, Medical College of Wisconsin, detachment Milwaukee, Wisconsin, USA Citation: Manufacturer: Acknowledgment for publications should read “The following BEI Resources reagent was obtained through BEI Resources, NIAID, NIH: Human Respiratory Syncytial Virus, A/Homo Product Description: sapiens/ARG/177/2006, NR-48671.” Virus Classification: Pneumoviridae, Orthopneumovirus Species: Human respiratory syncytial virus Biosafety Level: 2 Strain/Isolate: A/Homo sapiens/ARG/177/2006 Appropriate safety procedures should always be used with this Original Source: Human respiratory syncytial virus (RSV), material. Laboratory safety is discussed in the following A/Homo sapiens/ARG/177/2006 was isolated from the publication: U.S. Department of Health and Human Services, nasal cavity of a human in Buenos Aires, Argentina on June Public Health Service, Centers for Disease Control and 6, 2006.1,2 The strain was obtained by Dr. Henrickson from Prevention, and National Institutes of Health. Biosafety in Cristina Videla of the Clinical Virology Laboratory, Centro de Microbiological and Biomedical Laboratories.
    [Show full text]
  • Host Cell Restriction Factors of Paramyxoviruses and Pneumoviruses
    viruses Review Host Cell Restriction Factors of Paramyxoviruses and Pneumoviruses Rubaiyea Farrukee 1,*, Malika Ait-Goughoulte 2, Philippa M. Saunders 1 , Sarah L. Londrigan 1 and Patrick C. Reading 1,3,* 1 Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne VIC 3000, Australia; [email protected] (P.M.S.); [email protected] (S.L.L.) 2 Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland; [email protected] 3 WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory at the Peter Doherty Institute for Infection and Immunity, Melbourne VIC 3000, Australia * Correspondence: [email protected] (R.F.); [email protected] (P.C.R.) Academic Editor: Sébastien Nisole Received: 13 November 2020; Accepted: 30 November 2020; Published: 2 December 2020 Abstract: The paramyxo- and pneumovirus family includes a wide range of viruses that can cause respiratory and/or systemic infections in humans and animals. The significant disease burden of these viruses is further exacerbated by the limited therapeutics that are currently available. Host cellular proteins that can antagonize or limit virus replication are therefore a promising area of research to identify candidate molecules with the potential for host-targeted therapies. Host proteins known as host cell restriction factors are constitutively expressed and/or induced in response to virus infection and include proteins from interferon-stimulated genes (ISGs). Many ISG proteins have been identified but relatively few have been characterized in detail and most studies have focused on studying their antiviral activities against particular viruses, such as influenza A viruses and human immunodeficiency virus (HIV)-1.
    [Show full text]
  • Single-Shot Vaccines Against Bovine Respiratory Syncytial Virus
    Article Single-Shot Vaccines against Bovine Respiratory Syncytial Virus (BRSV): Comparative Evaluation of Long-Term Protection after Immunization in the Presence of BRSV-Specific Maternal Antibodies Jean François Valarcher 1,* , Sara Hägglund 1, Katarina Näslund 1, Luc Jouneau 2 , Ester Malmström 1, Olivier Boulesteix 3, Anne Pinard 3, Dany Leguéré 3, Alain Deslis 3, David Gauthier 3, Catherine Dubuquoy 2, Vincent Pietralunga 2, Aude Rémot 4 , Alexander Falk 5, Ganna Shevchenko 5, Sara Bergström Lind 5, Claudia Von Brömssen 6 , Karin Vargmar 7 , Baoshan Zhang 8, Peter D. Kwong 8, María Jose Rodriguez 9, Marga Garcia Duran 9, Isabelle Schwartz-Cornil 2, Geraldine Taylor 10 and Sabine Riffault 2 1 Department of Clinical Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden; [email protected] (S.H.); [email protected] (K.N.); [email protected] (E.M.) 2 Université Paris-Saclay, INRAE, UVSQ, VIM, 78350 Jouy-en-Josas, France; [email protected] (L.J.); [email protected] (C.D.); [email protected] (V.P.); [email protected] (I.S.-C.); [email protected] (S.R.) 3 INRAE, PFIE, 37380 Nouzilly, France; [email protected] (O.B.); [email protected] (A.P.); Citation: Valarcher, J.F.; Hägglund, [email protected] (D.L.); [email protected] (A.D.); [email protected] (D.G.) 4 INRAE, Université de Tours, ISP, 37380 Nouzilly, France; [email protected] S.; Näslund, K.; Jouneau, L.; 5 Department of Chemistry-BMC, Uppsala University, 752 37 Uppsala, Sweden; Malmström, E.; Boulesteix, O.; Pinard, [email protected] (A.F.); [email protected] (G.S.); [email protected] (S.B.L.) A.; Leguéré, D.; Deslis, A.; Gauthier, 6 Department of Energy and Technology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden; D.; et al.
    [Show full text]