Myosin-Driven Intracellular Transport

Total Page:16

File Type:pdf, Size:1020Kb

Myosin-Driven Intracellular Transport Downloaded from http://cshperspectives.cshlp.org/ on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Myosin-Driven Intracellular Transport Margaret A. Titus Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455 Correspondence: [email protected] SUMMARY The delivery of intracellular material within cells is crucial for maintaining normal function. Myosins transport awide varietyof cargo, ranging from vesicles to ribonuclear protein particles (RNPs), in plants, fungi, and metazoa. The properties of a given myosin transporter are adapted to move on different actin filament tracks, either on the disordered actin networks at the cell cortex or along highly organized actin bundles to distribute their cargo in a localized manner or move it across long distances in the cell. Transport is controlled by selective recruitment of the myosin to its cargo that also plays a role in activation of the motor. Outline 1 Introduction 6 Movement along actin bundles 2 The transport myosins—Basic features 7 Long-distance transport 3 Intracellular transport of secretory and 8 Cytoplasmic streaming in plants endocytic vesicles 9 Conclusion 4 Diseases caused by defects in actin-based References organelle transport 5 RNA trafficking Editors: Thomas D. Pollard and Robert D. Goldman Additional Perspectives on The Cytoskeleton available at www.cshperspectives.org Copyright # 2018 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a021972 Cite this article as Cold Spring Harb Perspect Biol 2018;10:a021972 1 Downloaded from http://cshperspectives.cshlp.org/ on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press M.A. Titus 1 INTRODUCTION yet well understood. It certainly requires that the appropri- ate motors are activated in the regions of the cell in which A remarkable feature of cells is the dynamic and often the microtubules and actin filaments overlap at the site of robust movement of their internal contents. Intracellular cargo transfer, and/or else already active motors might en- motility is used to position organelles where they are need- gage in atug-of-warand the greater poweror numberof one ed, such as targeting secretion to the apical regions of cells motor type might win over the other. It should be noted lining a lumen. The major cytoskeletal filament systems— that, in addition to translocation via motor-driven motility actin and microtubules—serve as the tracks for movement along filaments, actin polymerization can also power the of cellular cargo that is largely driven by their associated intracellular movement of vesicles, typically endocytic ves- cytoskeletal motors, kinesins, dynein, and myosins. Avari- icles, and even pathogenic bacteria, and that this occurs ety of cellularcontent is transported, including intracellular independently of microtubule motors. The focus of this vesicles such as endosomes and exosomes, organelles such review is on myosin-dependent movement of cargo along as melanosomes or mitochondria, and particles such as actin filaments. Selected examples will be presented to high- ribonucleoproteins (RNPs). In metazoan cells, transport light the diversity and shared features of motor-driven can be divided into two parts—long-distance movement transport along actin filaments in different cell types. along microtubules (reviewed by Barlan and Gelfand 2016) and relatively short-range transit along actin filaments. The 2 THE TRANSPORT MYOSINS—BASIC FEATURES polarized organization of the microtubule system, with many slow-growing ends embedded in the centrosome A variety of different myosins transport cargo within cells and the fast-growing ends extending all the way out to (reviewed by Sweeney and Holzbaur 2016). One key fea- the periphery, provides tracks for movement to the cellular ture of these motors is their distinctive carboxy-terminal periphery and back into the center of the cell. Although tail regions that bind to specific partner proteins to target these provide efficient highways for cargo, a local distribu- the myosin to a particular cellular location or organelle. tion system is needed, and that is provided by the actin Another property of transporters is their ability to move cytoskeleton. continuously along actin filaments, typically on dimeriza- The cytoskeletal actin network is generally not polar- tion or multimerization. The myosin V family of myosins ized and, instead, filaments are randomly oriented in the (reviewed in Hammer and Sellers 2011) are among the cell, allowing for the movement of cargo all throughout the most widely used motors for actin-based transport and region in which filaments are found (for review, see Svitki- they are found in a diverse set of organisms ranging na 2016). However, there are select regions of the cell in from amoebae to yeast to human, suggesting that they which actin is arranged in a more orderly manner. The are among the most ancient of actin-dependent translo- actin filaments in cortical regions immediately beneath cators. Myosin Vs have roles in the actin-based motility of the plasma membrane are generally arranged with their organelles, vesicles, and RNPs, and a wide range of studies barbed (or fast-growing) ends oriented toward the plasma of the intracellular transport of these cargos have revealed membrane, providing a path for myosin-dependent move- several fundamental aspects of myosin-dependent move- ment of cargo either to or from the plasma membrane, ment along actin within a cell. based on the directionality of the associated motor. Spe- All known myosins with the exception of one, myosin cialized protrusive structures comprising parallel bundles VI, move in the same direction on the actin filament— of actin with their barbed ends at the membrane and point- toward the barbed end. Given that actin filaments within ed ends at the base, such as filopodia, stereocilia, and mi- the cell are generally organized in a random fashion, the crovilli, also serve as cellular “superhighways” for cargo that barbed end motors are all perfectly well-suited for distrib- is targeted for delivery within these structures, anchored at uting cargo throughout a network of filaments. However, their tip or targeted for secretion. in those regions of the cell in which actin filaments have a The ability of cargo to move along either filament sys- defined orientation, such as at the periphery where they are tem means that intracellular transport is coordinated in a oriented with their barbed ends toward the membrane, general sense. Intracellular vesicles or organelles have been barbed end–directed myosins, such as myosin V, will shown to move along one filament system and then switch move cargo toward the plasma membrane, whereas the over to the other (for examples, see Rodionov et al. 1998; pointed end–directed myosin VI would work in opposi- Rogers and Gelfand, 1998; Schuster et al. 2011; Schroeder tion to transport vesicles away from the plasma membrane et al. 2012). The mechanism by which an organelle can and into the interior of the cell. The same would be true for move along one filament type and then switch to another the movement of myosins along the parallel actin bundles or change directionality when moving on a filament is not found in filopodia, microvilli, and stereocilia. 2 Cite this article as Cold Spring Harb Perspect Biol 2018;10:a021972 Downloaded from http://cshperspectives.cshlp.org/ on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Myosin Transport The actin filaments themselves can also have an impact et al. 2011). Another mechanism for activating myosins + on translocation. For example, myosin Ic plays a role in the could be through Ca2 binding to calmodulin light chains transport of vesicles containing GLUT4 in adipocytes, but bound to the lever arm region that unfolds the myosin (see it is unable to bind to actin filaments with the tropomyosin below). Tpm3.1 bound. Thus, this myosin tends to selectively drive Transport by myosins can also be activated, or signifi- cargo transport along filaments without tropomyosin (Kee cantly enhanced, by converting a monomer to a dimer by et al. 2015). Regulating the levels of Tpm3.1 in the cortex its binding partner(s), enabling the motor to move proc- might provide the cell with a mechanism to control the essively along actin. Cytosolic myosin VI is a monomer; transit of GLUT4 vesicles in that region. The nucleotide however, binding of its partners optineurin or Dab2 to state of an actin filament can also play a role in regulating the tail dimerizes the motor, which is then able to move myosin movement. Myosin Va takes more steps on a grow- long distances along actin (Phichith et al. 2009; Yu et al. ing actin filament (the actin monomer has ADP.Pi bound) 2009). Similarly, myosin VIIA is a monomer and, when than on older filaments (ADP actin) (Zimmermann et al. expressed in COS7 cells, it is largely cytosolic. Coexpression 2015). In contrast, myosin VI prefers “older” ADP actin with its binding partner MyRIP dimerizes the motor, filaments. These differences in run length correlate with which can then translocate along actin filaments of a filo- the directionality of each motor and could play a role in podium to the tip (Sakai et al. 2011). favoring the movement of one motor or another in regions Another mode of modulating transport is through the of the cell with more stable, older filament networks versus ability of myosins to sense and respond to forces. High load regions in which the actin filaments turn over rapidly. can significantly slow the mechanochemical cycles of some The activity of transport myosins is tightly regulated to myosins, converting them to an anchor. For example, just prevent the cargo-attached motor from interacting with 1 picoNewton (pN) of force significantly slows ADP release actin filaments until it is at the correct location and to avoid from myosin Ib, increasing the time it remains bound to unproductive interactions with actin filaments when the actin (Laakso et al.
Recommended publications
  • Intracellular Transport of Influenza Virus Hemagglutinin to the Apical Surface of Madin-Darby Canine Kidney Cells
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Intracellular Transport of Influenza Virus Hemagglutinin to the Apical Surface of Madin-Darby Canine Kidney Cells ENRIQUE RODRIGUEZ-BOULAN, KEVIN T . PASKIET, PEDRO J. I . SALAS, and ENZO BARD Department of Pathology, Downstate Medical Center, State University of New York, Brooklyn, New York 11203 ABSTRACT The intracellular pathway followed by the influenza virus hemagglutinin (HA) to the apical surface of Madin-Darby canine kidney cells was studied by radioimmunoassay, immunofluorescence, and immunoelectron microscopy. To synchronize the migration, we used a temperature-sensitive mutant of influenza WSN, ts61, which, at the nonpermissive temperature, 39.5°C, exhibits a defect in the HA that prevents its exit from the endoplasmic reticulum . Upon transfer to permissive temperature, 32°C, the HA appeared in the Golgi apparatus after 10 min, and on the apical surface after 30-40 min. In the presence of cycloheximide, the expression was not inhibited, indicating that the is defect is reversible; a wave of HA migrated to the cell surface, where it accumulated with a half time of 60 min . After passage through the Golgi apparatus the HA was detected in a population of smooth vesicles, about twice the size of coated vesicles, located in the apical half of the cytoplasm . These HA-containing vesicles did not react with anti-clathrin antibodies . Monensin (10 'UM) delayed the surface appearance of HA by 2 h, but not the transport to the Golgi apparatus. Incubation at 20°C retarded the migration to the Golgi apparatus by ^-30 min and blocked the surface appearance by acting at a late stage in the intracellular pathway, presumably at the level of the post-Golgi vesicles.
    [Show full text]
  • The Mechanics of Intracellular Transport
    Developmental Cell Previews Cutting through the Noise: The Mechanics of Intracellular Transport Samantha Stam1,2 and Margaret L. Gardel2,3,* 1Biophysical Sciences Graduate Program, University of Chicago, Chicago, IL 60637, USA 2James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA 3Department of Physics, University of Chicago, Chicago, IL 60637, USA *Correspondence: [email protected] http://dx.doi.org/10.1016/j.devcel.2014.08.013 Intracellular transport of organelles and proteins is driven by multiple ATP-dependent processes. Recently in Cell, Guo et al. (2014) developed a technique, force-spectrum microscopy, to measure intracellular forces and demonstrate that large motion of cellular components can be produced by random ATP-dependent fluc- tuations within the cytoplasm. Intracellular transport is crucial to diverse mechanisms, and they overcome the Here, Guo et al. (2014) provide the physiological tasks. The cell employs limitations of diffusive transport in at first measurements to directly charac- multiple mechanisms to meet the de- least two distinct ways. One well-appre- terize these ATP-dependent yet random mands of rapidly transporting cell con- ciated mechanism is that molecular forces within the cytoplasm. The authors tents of varying size over large distances, motor proteins drive directed transport measured the mechanics of the cyto- ranging from microns to up to a meter, to of attached cargo along filament tracks plasm using optical tweezers to apply support specific physiological tasks (Figure 1C, blue and black) (Howard, forces to inert particles microinjected (Figure 1A). In a recent issue of Cell, Guo 2001). Motors transport cargo along into the cytoplasm.
    [Show full text]
  • Fluorescence Microscopy Applied to Intracellular Transport by Microtubule Motors
    J Biosci Vol. 43, No. 3, July 2018, pp. 437–445 Ó Indian Academy of Sciences DOI: 10.1007/s12038-018-9765-2 Fluorescence microscopy applied to intracellular transport by microtubule motors 1 2 1 DIVYA PATHAK ,SHREYASI THAKUR and ROOP MALLIK * 1Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India 2Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA *Corresponding author (Email, [email protected]) Published online: 25 May 2018 Long-distance transport of many organelles inside eukaryotic cells is driven by the dynein and kinesin motors on microtubule filaments. More than 30 years since the discovery of these motors, unanswered questions include motor– organelle selectivity, structural determinants of processivity, collective behaviour of motors and track selection within the complex cytoskeletal architecture, to name a few. Fluorescence microscopy has been invaluable in addressing some of these questions. Here we present a review of some efforts to understand these sub-microscopic machines using fluorescence. Keywords. Dynein; fluorescence; kinesin; motor proteins; myosin 1. Background observe motors navigating the complex cytoskeleton. Fluo- rescent labelling also shows that both dynein and kinesin are Intracellular transport of vesicles was first inferred from present on the cargo, but how do these antagonistic motors ligatures of sciatic nerve where swelling was observed on work together is a matter of much debate (Hancock 2014). either sides of the ligature (Grafstein
    [Show full text]
  • Intracellular Transport in Eukaryotes
    Intracellular transport in eukaryotes Overview Compartmentalization and inner membranes enables eukaryotic cells • to be 1000-10000 times larger than prokaryotes • to isolate specialized chemical processes in specific parts of the cell • to produce “packages” (vesicles) of chemical components that can be shuttled around the cell actively Membrane-enclosed organelles take up ~50% of the volume of eukaryotic cells: • nucleus – genomic function • endoplasmic reticulum – synthesis of lipids; on the border with the cytosol, synthesis of proteins destined for many organelles and the plasma membrane • Golgi apparatus – modification, sorting, and packaging of proteins and lipids for specific intracellular destination (akin to a mail sort facility) • lysosomes – degradation • endosomes – sorting of endocytosed (engulfed) material by the cell • peroxisomes – oxidation of toxic species • mitochondria , chloroplasts – energy conversion Cells contain ͥͤ ͥͦ protein molecules that are constantly being synthesized and 10 Ǝ 10 degraded Proteins are synthesized in the cytosol , but not all proteins remain there and many must be transported to the appropriate compartment For comparison: transport by diffusion Even without active transport requiring free energy transduction, movement of molecules in the cell is rapid by diffusive motion © M. S. Shell 2009 1/11 last modified 10/27/2010 Consider a sea of molecules. Pinpoint one molecule and note its starting position at time 0. Due to thermal motion, the particle on average makes a random jump of length every units ͠ of time. The jump is random in the radial direction. This is called a random walk . Repeat this process for many jumps n and interrogate the final distance of the particle from its starting point ͦ ͠ We could imagine doing many such experiments.
    [Show full text]
  • Profile of Peter Novick
    PROFILE PROFILE Profile of Peter Novick Sandeep Ravindran Science Writer There was a time in graduate school when a combination of yeast genetics and cell Peter Novick wasn’tsureifhisresearch biology, he has spent his career investigating wouldleadanywhere.Asagraduatestudent the tightly regulated mechanisms involved in in cell biologist Randy Schekman’s laboratory intracellular transport. For his contributions at the University of California at Berkeley, to our understanding of this fundamental Novick had been using a genetic approach physiological process, Novick was elected to to understand the yeast secretory pathway, the National Academy of Sciences in 2013. responsible for moving proteins out of the “In his own lab, first at Yale and now at cell. Now a professor at the University of UC San Diego, Peter launched a brilliant in- California, San Diego, Novick says it was only dependent career with the discovery that a when he identified a mutant in which vesicles protein called Sec4 encodes a small GTP- piledupinsidethecell,showingthatithad binding protein, the first of three dozen so- a defective secretory pathway, that he knew called Rab proteins that we now know con- he had made a breakthrough. “That con- trol the targeting of transport vesicles to all vinced me. Before then I wasn’tsureifI the many destinations in the cell,” says had a thesis project, afterwards it was pretty Schekman. “On the strength of this work clear I did,” he says. and much more in subsequent years, he It turned out that Novick had a lot more was elected to the National Academy of Sci- than a thesis project.
    [Show full text]
  • Organelle Transport: Dynamic Actin Tracks for Myosin Motors
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Current Biology Vol 18 No 22 R1066 5. McMahon, T.A., and Cheng, G.C. (1990). The 9. Full, R.J., and Koditschek, D.E. (1999). implications for energy cost. J. Appl. Physiol. mechanics of running: How does stiffness Templates and Anchors: Neuromechanical 97, 2266–2274. couple with speed? J. Biomech. 23, 65–78. hypotheses of legged locomotion on land. 14. McGeer, T. (1993). Dynamics and control of 6. Raibert, M.H., Chepponis, M., and Brown, H. J. Exp. Biol. 202, 3325–3332. bipedal locomotion. J. Theor. Biol. 163, (1986). Running on four legs as though they 10. Seyfarth, A., Geyer, H., and Herr, H. (2003). 277–314. were one. IEEE J. Robotics Automation 2, Swing-leg retraction: a simple control model 15. Muybridge, E. (1887). Muybridge’s Complete 70–82. for stable running. J. Exp. Biol. 206, 2547–2555. Human and Animal Locomotion (Courier Dover 7. Altendorfer, R., Moore, N., Komsuolu, H., 11. Daley, M.A., and Biewener, A.A. (2006). Running Publications). Buehler, M., Brown, H.B., McMordie, D., over rough terrain reveals limb control for Saranli, U., Full, R., and Koditschek, D.E. intrinsic stability. Proc. Natl. Acad. Sci. USA (2001). RHex: A biologically inspired 103, 15681–15686. The Royal Veterinary College, Hawkshead hexapod runner. Autonomous Robots 11, 12. Moritz, C.T., and Farley, C.T. (2004). Passive Lane, North Mymms, Hatfield, Hertfordshire 207–213. dynamics change leg mechanics for an AL9 7TA, UK. 8. Pollock, C.M., and Shadwick, R.E.
    [Show full text]
  • Disrupted Neuronal Trafficking in Amyotrophic Lateral Sclerosis
    Acta Neuropathologica (2019) 137:859–877 https://doi.org/10.1007/s00401-019-01964-7 REVIEW Disrupted neuronal trafcking in amyotrophic lateral sclerosis Katja Burk1,2 · R. Jeroen Pasterkamp3 Received: 12 October 2018 / Revised: 19 January 2019 / Accepted: 19 January 2019 / Published online: 5 February 2019 © The Author(s) 2019 Abstract Amyotrophic lateral sclerosis (ALS) is a progressive, adult-onset neurodegenerative disease caused by degeneration of motor neurons in the brain and spinal cord leading to muscle weakness. Median survival after symptom onset in patients is 3–5 years and no efective therapies are available to treat or cure ALS. Therefore, further insight is needed into the molecular and cellular mechanisms that cause motor neuron degeneration and ALS. Diferent ALS disease mechanisms have been identi- fed and recent evidence supports a prominent role for defects in intracellular transport. Several diferent ALS-causing gene mutations (e.g., in FUS, TDP-43, or C9ORF72) have been linked to defects in neuronal trafcking and a picture is emerging on how these defects may trigger disease. This review summarizes and discusses these recent fndings. An overview of how endosomal and receptor trafcking are afected in ALS is followed by a description on dysregulated autophagy and ER/ Golgi trafcking. Finally, changes in axonal transport and nucleocytoplasmic transport are discussed. Further insight into intracellular trafcking defects in ALS will deepen our understanding of ALS pathogenesis and will provide novel avenues for therapeutic intervention. Keywords Amyotrophic lateral sclerosis · Motor neuron · Trafcking · Cytoskeleton · Rab Introduction onset is about 10 years earlier [44]. As disease progresses, corticospinal motor neurons, projecting from the motor cor- Amyotrophic lateral sclerosis (ALS) is a fatal disease char- tex to the brainstem and spinal cord, and bulbar and spinal acterized by the degeneration of upper and lower motor motor neurons, projecting to skeletal muscles, degenerate.
    [Show full text]
  • Immunoelectron-Microscopic Studies of Endoplasmic Reticulum-Golgi Relationships in the Intracellular Transport Process of Lipoprotein Particles in Rat Hepatocytes
    J. Cell Sci. 39, 273-290 (1979) 273 Printed in Great Britain © Company of Biologists Limited IMMUNOELECTRON-MICROSCOPIC STUDIES OF ENDOPLASMIC RETICULUM-GOLGI RELATIONSHIPS IN THE INTRACELLULAR TRANSPORT PROCESS OF LIPOPROTEIN PARTICLES IN RAT HEPATOCYTES SHIRO MATSUURA AND YUTAKA TASHIRO* Department of Pliysiology, Kansai Medical University, 1 Fumizonocho, Moriguchi-shi, Osaka 570, Japan SUMMARY Endoplasmic reticulum (ER)-Golgi relationships in the intracellular transport process of secretory proteins in rat hepatocytes have been studied using lipoprotein particles as a marker for the secretory protein and cytochrome P-450 as a marker enzyme for the ER membranes. Ferritin immunoelectron-microscopic observation revealed that, while almot-t all the micro- somal vesicles derived from ER membranes are heavily labelled with ferritin anti-cytochrome P-450 antibody conjugates, labelling of the small peripheral vesicles containing lipoprotein particles, the stacks of Golgi saccules, especially the outermost saccule which is sometimes fenestrated, condensing vacuoles in the trans-Golgi region and the secretion droplets of lipo- protein were scanty and at the control level. Such a characteristic pattern of labelling was especially evident when these structures were prepared from phenobarbital-treated rats. These findings indicate that the membranes of the small peripheral vesicles do not contain cytochrome P-450 and that the cytochrome is probably not transferred to Golgi saccules in the transport process of lipoprotein from ER to Golgi. It is suggested, therefore, that the small peripheral vesicles are formed by budding of the special regions of ER membrane where micro- somal marker proteins such as cytochrome P-450 are excluded and the membrane proteins destined to the Golgi complexes are clustered.
    [Show full text]
  • Cytoskeletal Network Morphology Regulates Intracellular Transport Dynamics
    Cytoskeletal network morphology regulates intracellular transport dynamics Authors: David Ando1, Nickolay Korabel1,2, Kerwyn Casey Huang3,4,*, Ajay Gopinathan1,* Affiliations: 1Department of Physics, University of California at Merced, Merced, CA, USA 2School of Mathematics, University of Manchester, Manchester, UK 3Department of Bioengineering, Stanford University, Stanford, CA, USA 4Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA Running title: Cellular transport along filamentous networks Keywords: molecular motors, mean first passage time, actin filaments, microtubules *Correspondence to: [email protected], [email protected] ABSTRACT Intracellular transport is essential for maintaining proper cellular function in most eukaryotic cells, with perturbations in active transport resulting in several types of disease. Efficient delivery of critical cargos to specific locations is accomplished through a combination of passive diffusion and active transport by molecular motors that ballistically move along a network of cytoskeletal filaments. Although motor-based transport is known to be necessary to overcome cytoplasmic crowding and the limited range of diffusion within reasonable time scales, the topological features of the cytoskeletal network that regulate transport efficiency and robustness have not been established. Using a continuum diffusion model, we observed that the time required for cellular transport was minimized when the network was localized near the nucleus. In simulations that explicitly incorporated network spatial architectures, total filament mass was the primary driver of network transit times. However, filament ‘traps’ that redirect cargo back to the nucleus caused large variations in network transport. Filament polarity was more important than filament orientation in reducing average transit times, and transport properties were optimized in networks with intermediate motor on and off rates.
    [Show full text]
  • Intracellular Transport
    Transport in cells Intracellular transport • introduction: transport in cells, molecular players etc. • cooperation of motors, forces good and bad • transport regulation, traffic issues, … Stefan Klumpp image source: wikipedia Smith, Gross, Enquist, PNAS 98: 3466 (2001) Transport physics on different length scales macroscopic microscopic intracellular objects: cm – m objects: µm – mm objects: nm – µm transport over. m – km transport over: mm – cm transport over µm-cm inertia friction, viscosity fluctuations, turbulent flow Stokes flow Brownian motion image source: wikipedia Transport physics on different length scales diffusion vs. directed transport x ≈ Dt x ≈ vt typical values in cells: v ~ 1 µm/s D ~ 1 µm2/s (for proteins, less for larger cargoes, more for small molecules) over 10 µm: diffusion takes 100 s, directed transport 10 s Transport in cells microtubules actin filaments nucleus myosins kinesins, dyneins image source: wikipedia Cytoskeletal motors • fuel: ATP • forces: few pN • speeds: ~µm/s • motor moves in defined direction [Vale & Milligan 2000] – kinesin + on microtubules – dynein - - + – myosin V + – myosin VI - on actin [J. Beeg] Transport by motor teams • Transport along filaments of the cytoskeleton well characterized at single-molecule level (forces, speeds, chemomechanical coupling) • In cells, large cargoes often transported by several motors • Bidirectional transport: different types of [Ashkin et al. Nature (1990)] motors [Hendricks et al. Curr. Biol. (2010)] Transport by motor teams • Transport along filaments of the cytoskeleton well characterized at single-molecule level (forces, speeds, chemomechanical coupling) • In cells, large cargoes often transported by several motors • Bidirectional transport: different types of [Ashkin et al. Nature (1990)] motors → how are the motors coordinated ? (tug-of-war vs.
    [Show full text]
  • Myosin II Is Associated with Golgi Membranes: Identification of P200 As Nonmuscle Myosin II on Golgi-Derived Vesicles
    Journal of Cell Science 110, 2155-2164 (1997) 2155 Printed in Great Britain © The Company of Biologists Limited 1997 JCS9578 Myosin II is associated with Golgi membranes: identification of p200 as nonmuscle myosin II on Golgi-derived vesicles Elina Ikonen1, J. Bruno de Almeid2, Karl R. Fath3, David R. Burgess3, Keith Ashman1, Kai Simons1 and Jennifer L. Stow2,4,* 1European Molecular Biology Laboratory, D-69012, Heidelberg, Germany 2Renal Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA 3Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA 4Centre for Molecular and Cellular Biology, University of Queensland, Brisbane, QLD 4072, Australia *Author for correspondence at address 4 (e-mail: [email protected]) SUMMARY A variety of peripheral membrane proteins associate was found to be enhanced following activation of G dynamically with Golgi membranes during the budding proteins. Myosin II staining of Golgi membranes was also and trafficking of transport vesicles in eukaryotic cells. A disrupted by brefeldin A (BFA). Colocalization of the AD7 monoclonal antibody (AD7) raised against Golgi and myosin II antibodies at the light and electron membranes recognizes a peripheral membrane protein, microscopy levels led us to investigate the nature of the 200 p200, which associates with vesicles budding off the trans- kDa protein recognized by both antibodies. The 200 kDa Golgi network (TGN). Based on preliminary findings, a protein immunoprecipiated by the AD7 antibody was potential association between p200 and myosin on Golgi isolated from MDCK cells and used for microsequencing. membranes was investigated. Immunofluorescence staining Amino acid sequence data enabled us to identify p200 as of cultured cells under a variety of fixation conditions was the heavy chain of nonmuscle myosin IIA.
    [Show full text]
  • Membrane Trafficking and Vesicle Fusion Post-Palade Eraresearchers Winthenobel Prize
    GENERAL ARTICLE Membrane Trafficking and Vesicle Fusion Post-Palade EraResearchers WintheNobel Prize Riddhi Atul Jani and Subba Rao Gangi Setty The functions of the eukaryotic cell rely on membrane- bound compartments called organelles. Each of these possesses dis- tinct membrane composition and unique function. In the 1970’s, during George Palade’s time, it was unclear how these organelles communicate with each other and perform their biological functions. The elegant research work of James E (left) Riddhi Atul Jani is a Rothman, Randy W Schekman and Thomas C Südhof identi- graduate student in Subba fied the molecular machinery required for membrane traf- Rao’s Lab at MCB, IISc. She is interested in ficking, vesicle fusion and cargo delivery. Further, they also studying the SNARE showed the importance of these processes for biological func- dynamics during melano- tion. Their novel findings helped to explain several biological some biogenesis. phenomena such as insulin secretion, neuron communication (right) Subba Rao Gangi and other cellular activities. In addition, their work provided Setty is an Assistant clues to cures for several neurological, immunological and Professor at the MCB, metabolic disorders. This research work laid the foundation IISc, Bangalore. He is interested in understand- to the field of molecular cell biology and these post-Palade ing the disease associated investigators were awarded the Nobel Prize in Physiology or protein trafficking Medicine in 2013. pathways in mammalian cells. Introduction Membrane Transport: In the eukaryotic cell, a majority of proteins are made in the cytosol. But the transmembrane and secretory proteins are synthesized in an organelle called the rough endoplasmic reticulum (ER).
    [Show full text]