bioRxiv preprint doi: https://doi.org/10.1101/828509; this version posted November 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Engineering tripeptidyl-peptidase 1 for improved stability Protein thermal stability does not correlate with cellular half-life: Global observations and a case study of tripeptidyl-peptidase 1 Running Title: Engineering tripeptidyl-peptidase 1 for improved stability Aaron M. Collier1, Yuliya Nemtsova1, Narendra Kuber1, Whitney Banach-Petrosky1, Anurag Modak1, David E. Sleat1,2, Vikas Nanda1,2, Peter Lobel1,2* From the 1Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854; 2Department of Biochemistry and Molecular Biology, Rutgers University, Piscataway, NJ 08854 * To whom correspondence should be addressed. Peter Lobel: Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854;
[email protected]; Tel. (848)445-9831; Fax. (732)235-4466 Acknowledgements We would like to thank Dr. Sagar Khare and Dr. Manasi Pethe for providing technical assistance with regards to using Rosetta VIP for variant design. 1 bioRxiv preprint doi: https://doi.org/10.1101/828509; this version posted November 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Engineering tripeptidyl-peptidase 1 for improved stability Abstract Late-infantile neuronal ceroid lipofuscinosis (LINCL) is a neurodegenerative lysosomal storage disorder caused by mutations in the gene encoding the protease tripeptidyl-peptidase 1 (TPP1).