Supplementary Table I
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Antibody-Dependent Cellular Cytotoxicity in HIV Infection
CE: Namrta; QAD/AIDS-D-18-00733; Total nos of Pages: 13; AIDS-D-18-00733 EDITORIAL REVIEW Antibody-dependent cellular cytotoxicity in HIV infection Donald N. Forthala,b and Andres Finzic,d Interactions between the Fc segment of IgG and its receptors (FcgRs) found on cells such as natural killer cells, monocytes, macrophages and neutrophils can potentially mediate antiviral effects in the setting of HIV and related infections. We review the potential role of Fc-FcR interactions in HIV, SIV and SHIV infections, with an emphasis on antibody- dependent cellular cytotoxicity (ADCC). Notably, these viruses employ various strate- gies, including CD4 down-regulation and BST-2/tetherin antagonism to limit the effect of ADCC. Although correlative data suggest that ADCC participates in both protection and control of established infection, there is little direct evidence in support of either role. Direct evidence does, however, implicate an FcgR-dependent function in aug- menting the beneficial in-vivo activity of neutralizing antibodies. Copyright ß 2018 Wolters Kluwer Health, Inc. All rights reserved. AIDS 2018, 32:000–000 Keywords: antibody-dependent cellular cytotoxicity, CD4, Fc receptor, HIV, natural killer cell, phagocytosis, simian immunodeficiency virus, simian/human immunodeficiency virus Introduction antibody-dependent enhancement, the interested reader is directed elsewhere [1,2]. In addition, detailed Much of the antiviral activity of antibody is mediated by treatments of FcR biology can be found in recent interactions between the Fc segment of immunoglobulin reviews [3,4]. and Fc receptors (FcRs) present on many different cell types. Such interactions could have a beneficial impact on ADCC occurs when antibody forms a bridge between a viral infection through, for example, antibody-dependent target cell bearing foreign antigens on its surface and an cellular cytotoxicity (ADCC), phagocytosis, or trogocy- effector cell, typically a natural killer cell expressing FcRs. -
(12) Patent Application Publication (10) Pub. No.: US 2016/0237501 A1 SHARP Et Al
US 2016O23750 1A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0237501 A1 SHARP et al. (43) Pub. Date: Aug. 18, 2016 (54) BIOMARKERS FOR DIAGNOSIS OF Related U.S. Application Data TRANSIENT SCHEMICATTACKS (62) Division of application No. 13/182,630, filed on Jul. (71) Applicant: The Regents of the University of 14, 2011, now abandoned. California, Oakland, CA (US) (60) Provisional application No. 61/364.334, filed on Jul. 14, 2010. (72) Inventors: Frank SHARP, Davis, CA (US); Xinhua ZHAN. Vacaville, CA (US); Publication Classification Glen C. JICKLING, Sacramento, CA (US): S. Claiborne JOHNSTON, San (51) Int. Cl. Francisco, CA (US) CI2O I/68 (2006.01) (52) U.S. Cl. (73) Assignee: The Regents of the University of CPC ........ CI2O 1688 (2013.0); CI2O 2600/158 California, Oakland, CA (US) (2013.01); C12O 2600/1 18 (2013.01) (57) ABSTRACT (21) Appl. No.: 15/043,577 The present invention provides methods and compositions for diagnosing and predicting the risk and cause of transient (22) Filed: Feb. 14, 2016 ischemic attacks (TIA). Patent Application Publication Aug. 18, 2016 Sheet 1 of 4 US 2016/0237SO1 A1 Standardized intensity s sis: iagnosis Controls xIA Figure IA-B Patent Application Publication Aug. 18, 2016 Sheet 2 of 4 US 2016/0237SO1 A1 & TA Cross-validated Probabilities (Thresholds 0.89) * Controls Controls TA ----------------------------------------------------------------------------------------------------------------------------------------- ... 0.9 O.8 O O 20 Subjects30 40 SO 50 Figure 2 Patent Application Publication Aug. 18, 2016 Sheet 3 of 4 US 2016/0237SO1 A1 Cross-validated Probabilities (Threshold=3.97) & TIA1 & A2 TIA1 T1A2 . -
Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only. -
Further Delineation of Chromosomal Consensus Regions in Primary
Leukemia (2007) 21, 2463–2469 & 2007 Nature Publishing Group All rights reserved 0887-6924/07 $30.00 www.nature.com/leu ORIGINAL ARTICLE Further delineation of chromosomal consensus regions in primary mediastinal B-cell lymphomas: an analysis of 37 tumor samples using high-resolution genomic profiling (array-CGH) S Wessendorf1,6, TFE Barth2,6, A Viardot1, A Mueller3, HA Kestler3, H Kohlhammer1, P Lichter4, M Bentz5,HDo¨hner1,PMo¨ller2 and C Schwaenen1 1Klinik fu¨r Innere Medizin III, Zentrum fu¨r Innere Medizin der Universita¨t Ulm, Ulm, Germany; 2Institut fu¨r Pathologie, Universita¨t Ulm, Ulm, Germany; 3Forschungsdozentur Bioinformatik, Universita¨t Ulm, Ulm, Germany; 4Abt. Molekulare Genetik, Deutsches Krebsforschungszentrum, Heidelberg, Germany and 5Sta¨dtisches Klinikum Karlsruhe, Karlsruhe, Germany Primary mediastinal B-cell lymphoma (PMBL) is an aggressive the expression of BSAP, BOB1, OCT2, PAX5 and PU1 was extranodal B-cell non-Hodgkin’s lymphoma with specific clin- added to the spectrum typical of PMBL features.9 ical, histopathological and genomic features. To characterize Genetically, a pattern of highly recurrent karyotype alterations further the genotype of PMBL, we analyzed 37 tumor samples and PMBL cell lines Med-B1 and Karpas1106P using array- with the hallmark of chromosomal gains of the subtelomeric based comparative genomic hybridization (matrix- or array- region of chromosome 9 supported the concept of a unique CGH) to a 2.8k genomic microarray. Due to a higher genomic disease entity that distinguishes PMBL from other B-cell non- resolution, we identified altered chromosomal regions in much Hodgkin’s lymphomas.10,11 Together with less specific gains on higher frequencies compared with standard CGH: for example, 2p15 and frequent mutations of the SOCS1 gene, a notable þ 9p24 (68%), þ 2p15 (51%), þ 7q22 (32%), þ 9q34 (32%), genomic similarity to classical Hodgkin’s lymphoma was þ 11q23 (18%), þ 12q (30%) and þ 18q21 (24%). -
Table 2. Significant
Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S. -
The Expression of the Human Apolipoprotein Genes and Their Regulation by Ppars
CORE Metadata, citation and similar papers at core.ac.uk Provided by UEF Electronic Publications The expression of the human apolipoprotein genes and their regulation by PPARs Juuso Uski M.Sc. Thesis Biochemistry Department of Biosciences University of Kuopio June 2008 Abstract The expression of the human apolipoprotein genes and their regulation by PPARs. UNIVERSITY OF KUOPIO, the Faculty of Natural and Environmental Sciences, Curriculum of Biochemistry USKI Juuso Oskari Thesis for Master of Science degree Supervisors Prof. Carsten Carlberg, Ph.D. Merja Heinäniemi, Ph.D. June 2008 Keywords: nuclear receptors; peroxisome proliferator-activated receptor; PPAR response element; apolipoprotein; lipid metabolism; high density lipoprotein; low density lipoprotein. Lipids are any fat-soluble, naturally-occurring molecules and one of their main biological functions is energy storage. Lipoproteins carry hydrophobic lipids in the water and salt-based blood environment for processing and energy supply in liver and other organs. In this study, the genomic area around the apolipoprotein genes was scanned in silico for PPAR response elements (PPREs) using the in vitro data-based computer program. Several new putative REs were found in surroundings of multiple lipoprotein genes. The responsiveness of those apolipoprotein genes to the PPAR ligands GW501516, rosiglitazone and GW7647 in the HepG2, HEK293 and THP-1 cell lines were tested with real-time PCR. The APOA1, APOA2, APOB, APOD, APOE, APOF, APOL1, APOL3, APOL5 and APOL6 genes were found to be regulated by PPARs in direct or secondary manners. Those results provide new insights in the understanding of lipid metabolism and so many lifestyle diseases like atherosclerosis, type 2 diabetes, heart disease and stroke. -
AK3L1 (AK4) Mouse Monoclonal Antibody [Clone ID: OTI3A9] Product Data
OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TA503371 AK3L1 (AK4) Mouse Monoclonal Antibody [Clone ID: OTI3A9] Product data: Product Type: Primary Antibodies Clone Name: OTI3A9 Applications: FC, WB Recommended Dilution: WB 1:2000, FLOW 1:100 Reactivity: Human, Mouse, Rat Host: Mouse Isotype: IgG2b Clonality: Monoclonal Immunogen: Full length human recombinant protein of human AK4(NP_037542) produced in HEK293T cell. Formulation: PBS (PH 7.3) containing 1% BSA, 50% glycerol and 0.02% sodium azide. Concentration: 1 mg/ml Purification: Purified from mouse ascites fluids or tissue culture supernatant by affinity chromatography (protein A/G) Conjugation: Unconjugated Storage: Store at -20°C as received. Stability: Stable for 12 months from date of receipt. Predicted Protein Size: 25.1 kDa Gene Name: adenylate kinase 4 Database Link: NP_037542 Entrez Gene 11639 MouseEntrez Gene 29223 RatEntrez Gene 205 Human P27144 This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 3 AK3L1 (AK4) Mouse Monoclonal Antibody [Clone ID: OTI3A9] – TA503371 Background: This gene encodes a member of the adenylate kinase family of enzymes. The encoded protein is localized to the mitochondrial matrix. Adenylate kinases regulate the adenine and guanine nucleotide compositions within a cell by catalyzing the reversible transfer of phosphate group among these nucleotides. Five isozymes of adenylate kinase have been identified in vertebrates. -
Location Analysis of Estrogen Receptor Target Promoters Reveals That
Location analysis of estrogen receptor ␣ target promoters reveals that FOXA1 defines a domain of the estrogen response Jose´ e Laganie` re*†, Genevie` ve Deblois*, Ce´ line Lefebvre*, Alain R. Bataille‡, Franc¸ois Robert‡, and Vincent Gigue` re*†§ *Molecular Oncology Group, Departments of Medicine and Oncology, McGill University Health Centre, Montreal, QC, Canada H3A 1A1; †Department of Biochemistry, McGill University, Montreal, QC, Canada H3G 1Y6; and ‡Laboratory of Chromatin and Genomic Expression, Institut de Recherches Cliniques de Montre´al, Montreal, QC, Canada H2W 1R7 Communicated by Ronald M. Evans, The Salk Institute for Biological Studies, La Jolla, CA, July 1, 2005 (received for review June 3, 2005) Nuclear receptors can activate diverse biological pathways within general absence of large scale functional data linking these putative a target cell in response to their cognate ligands, but how this binding sites with gene expression in specific cell types. compartmentalization is achieved at the level of gene regulation is Recently, chromatin immunoprecipitation (ChIP) has been used poorly understood. We used a genome-wide analysis of promoter in combination with promoter or genomic DNA microarrays to occupancy by the estrogen receptor ␣ (ER␣) in MCF-7 cells to identify loci recognized by transcription factors in a genome-wide investigate the molecular mechanisms underlying the action of manner in mammalian cells (20–24). This technology, termed 17-estradiol (E2) in controlling the growth of breast cancer cells. ChIP-on-chip or location analysis, can therefore be used to deter- We identified 153 promoters bound by ER␣ in the presence of E2. mine the global gene expression program that characterize the Motif-finding algorithms demonstrated that the estrogen re- action of a nuclear receptor in response to its natural ligand. -
AK3L1 Antibody - Middle Region Rabbit Polyclonal Antibody Catalog # AI12098
10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 AK3L1 antibody - middle region Rabbit Polyclonal Antibody Catalog # AI12098 Specification AK3L1 antibody - middle region - Product Information Application WB Primary Accession P27144 Other Accession NM_001005353, NP_001005353 Reactivity Human, Mouse, Rat, Rabbit, Zebrafish, Pig, Horse, Bovine, Guinea Pig, Dog Predicted Pig, Dog WB Suggested Anti-AK3L1 Antibody Titration: Host Rabbit 2.5μg/ml Clonality Polyclonal Positive Control: Jurkat cell lysate Calculated MW 25kDa KDa AK3L1 antibody - middle region - Additional Information AK3L1 antibody - middle region - References Gene ID 205 Noma,T.,Biochem.J.358(PT1),225-232(2001)Re Alias Symbol AK3, AK4, AK3L1, constitutionandStorage:Forshorttermuse,storea AK3L2 t2-8Cupto1week.Forlongtermstorage,storeat-2 Other Names 0Cinsmallaliquotstopreventfreeze-thawcycles. Adenylate kinase 4, mitochondrial {ECO:0000255|HAMAP-Rule:MF_03170}, AK 4 {ECO:0000255|HAMAP-Rule:MF_03170}, 2.7.4.10 {ECO:0000255|HAMAP-Rule:MF_03170}, 2.7.4.6 {ECO:0000255|HAMAP-Rule:MF_03170}, Adenylate kinase 3-like {ECO:0000255|HAMAP-Rule:MF_03170}, GTP:AMP phosphotransferase AK4 {ECO:0000255|HAMAP-Rule:MF_03170}, AK4 {ECO:0000255|HAMAP-Rule:MF_03170} Format Liquid. Purified antibody supplied in 1x PBS buffer with 0.09% (w/v) sodium azide and 2% sucrose. Reconstitution & Storage Add 100 ul of distilled water. Final anti-AK3L1 antibody concentration is 1 Page 1/3 10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 mg/ml in PBS buffer with 2% sucrose. For longer periods of storage, store at 20°C. Avoid repeat freeze-thaw cycles. Precautions AK3L1 antibody - middle region is for research use only and not for use in diagnostic or therapeutic procedures. -
A Genomic Approach to Study Down Syndrome and Cancer Inverse Comorbidity: Untangling the Chromosome 21
PERSPECTIVE ARTICLE published: 04 February 2015 doi: 10.3389/fphys.2015.00010 A genomic approach to study down syndrome and cancer inverse comorbidity: untangling the chromosome 21 Jaume Forés-Martos , Raimundo Cervera-Vidal , Enrique Chirivella , Alberto Ramos-Jarero and Joan Climent* Genomics and Systems Biology (InGSB) Lab, Oncology and Hematology Department, Biomedical Research Institute INCLIVA, Valencia, Spain Edited by: Down syndrome (DS), one of the most common birth defects and the most widespread Anaïs Baudot, Centre National de la genetic cause of intellectual disabilities, is caused by extra genetic material on Recherche Scientifique, France chromosome 21 (HSA21). The increased genomic dosage of trisomy 21 is thought to Reviewed by: be responsible for the distinct DS phenotypes, including an increased risk of developing Cristian Bellodi, Lund University, Sweden some types of childhood leukemia and germ cell tumors. Patients with DS, however, have Jian-Hua Mao, Lawrence Berkeley a strikingly lower incidence of many other solid tumors. We hypothesized that the third National Laboratory, USA copy of genes located in HSA21 may have an important role on the protective effect *Correspondence: that DS patients show against most types of solid tumors. Focusing on Copy Number Joan Climent, Genomics and Variation (CNV) array data, we have generated frequencies of deleted regions in HSA21 in Systems Biology (InGSB) Lab, Oncology and Hematology four different tumor types from which DS patients have been reported to be protected. Department, Biomedical Research We describe three different regions of deletion pointing to a set of candidate genes Institute INCLIVA, Avda Blasco that could explain the inverse comorbidity phenomenon between DS and solid tumors. -
Targeted Resequencing Identifies Genes with Recurrent Variation In
www.nature.com/npjgenmed ARTICLE OPEN Targeted resequencing identifies genes with recurrent variation in cerebral palsy C. L. van Eyk 1,2, M. A. Corbett 1,2, M. S. B. Frank 1,2, D. L. Webber1,2, M. Newman3, J. G. Berry 1,2, K. Harper1,2, B. P. Haines1,2, G. McMichael1,2, J. A. Woenig1,2, A. H. MacLennan1,2 and J. Gecz 1,2,4* A growing body of evidence points to a considerable and heterogeneous genetic aetiology of cerebral palsy (CP). To identify recurrently variant CP genes, we designed a custom gene panel of 112 candidate genes. We tested 366 clinically unselected singleton cases with CP, including 271 cases not previously examined using next-generation sequencing technologies. Overall, 5.2% of the naïve cases (14/271) harboured a genetic variant of clinical significance in a known disease gene, with a further 4.8% of individuals (13/271) having a variant in a candidate gene classified as intolerant to variation. In the aggregate cohort of individuals from this study and our previous genomic investigations, six recurrently hit genes contributed at least 4% of disease burden to CP: COL4A1, TUBA1A, AGAP1, L1CAM, MAOB and KIF1A. Significance of Rare VAriants (SORVA) burden analysis identified four genes with a genome-wide significant burden of variants, AGAP1, ERLIN1, ZDHHC9 and PROC, of which we functionally assessed AGAP1 using a zebrafish model. Our investigations reinforce that CP is a heterogeneous neurodevelopmental disorder with known as well as novel genetic determinants. npj Genomic Medicine (2019) ; https://doi.org/10.1038/s41525-019-0101-z4:27 1234567890():,; INTRODUCTION is likely also due in part to the stringent criteria used to select Cerebral palsy (CP) is the most common motor disability of causative variants. -
Synthetic Lethal Screen Demonstrates That a JAK2 Inhibitor Suppresses a BCL6 Dependent IL10RA/JAK2/STAT3 Pathway in High Grade B-Cell Lymphoma
BCL6 suppresses an IL10RA/JAK2/STAT3 pathway Synthetic lethal screen demonstrates that a JAK2 inhibitor suppresses a BCL6 dependent IL10RA/JAK2/STAT3 pathway in high grade B-cell lymphoma. Daniel Beck1,6, Jenny Zobel3,6, Ruth Barber1,2,6, Sian Evans1, Larissa Lezina1, Rebecca L. Allchin1, Matthew Blades4, Richard Elliott5, Christopher J. Lord5, Alan Ashworth5, Andrew C.G. Porter3, Simon D. Wagner1 1Department of Cancer Studies, Ernest and Helen Scott Haematology Research Institute and, 2 Leicester Diagnostic and Drug Development (LD3) Centre, University of Leicester, Lancaster Road, Leicester LE1 7HB, UK, 3Department of Haematology, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK. 4Bioinformatics and Biostatistics Analysis Support Hub (B/BASH), University of Leicester, Lancaster Road, Leicester LE1 9HN and 5The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK. 6The first three authors contributed equally to this work Running title: BCL6 suppresses an IL10RA/JAK2/STAT3 pathway. To whom correspondence should be addressed: Simon D. Wagner, Department of Cancer Studies, Room 104, Hodgkin Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, UK. Tel: 0441162525584, Fax: 0441162525616, Email: [email protected] Keywords: cancer therapy, Janus kinase (JAK), lymphocyte, lymphoma, transcription factor, B-cell lymphoma 6 (BCL-6), synthetic lethal screen. ABSTRACT which shows higher levels of IL10RA, JAK2 and We demonstrate the usefulness of synthetic lethal STAT3 but lower levels of BCL6 than GC- screening of a conditionally BCL6 deficient DLBCL and might be usefully combined with Burkitt lymphoma cell line, DG75-AB7, with a novel approaches such as inhibition of IL10RA.