Post Common Envelope Binary Stars Prof

Total Page:16

File Type:pdf, Size:1020Kb

Post Common Envelope Binary Stars� � Prof Post Common Envelope Binary Stars! ! Prof. Todd Hillwig! Summer 2019 1. The Common Envelope Phase A. When a star on the Red Giant Branch (RGB) or Asymptotic Giant Branch (AGB) “swallows” a nearby companion star B. The envelope is expelled after the two cores spiral together into a tighter orbit C. Produces all close binary stars involving a compact object (white dwarf, neutron star, black hole) Bulik, T. 2007, Nature 449, 799 2. Central Stars of Planetary Nebulae A. The close binary immediately after the CE phase a) No time for further evolution or changes to the binary b) The surrounding PN is the ejected envelope, so we can study both Hen Abell 39 M57 -3-401 Ring Nebula 2. Central Stars of Planetary Nebulae B. Studying the properties of these binary stars can tell us i. about the common envelope phase ii. how it effects the stars individually (masses, radii, and evolutionary states of the two stars) iii. the resulting distribution of orbital periods 3. Finding Binary Central Stars A. Brightness Variations a) Generally we find new close binaries through photometric variability – periodic, consistent changes in their brightness b) Searches with multiple telescopes are underway, as are follow-up studies. PHR 1040-5417 PC 12 3. Finding Binary Central Stars B. Understanding Binarity a) We can work out physical parameters of the system (like masses, radii, and temperatures of the stars) if we also have a radial velocity curve. HaTr 7 3. Finding Binary Central Stars D. Jones et al.: The post-common envelopeA&A central 539, stars A47 o (2012)ftheplanetarynebulaeHenize2-155andHenize2-161 +20 JHK’ Broader+10 Goals • Relationship between0 close binary central stars and− 10other close binaries like CataclysmicRelative declination (arcsec) −20 Variables, Type Ia supernova progenitors,+20 +10 symbiotic0−10 −20 +20 +10 0 −10 −20 +20 +10 0 −10 −20 stars, et? Relative right ascension (arcsec) Fig. 2. Gray-scale representation of the near-IR broad-band J, H,andK′ images of NGC 6778. The gray levels are linear. The coordinate’s origin corresponds to the position of the central star of the nebula detected in the three filters and marked by an arrow in the J image. • What are the relative fractions of Fig. 2. HST images of Hen 2-161 (left,seealso Sahai et al. 2011)andtheNecklace(right; Corradi et al. 2011)highlightingtheirremarkablysimilar PA = 15o +40 o [N II] appearances (elongatedPA = 24 with knotty waists). The image of Hen 2-161 is in the light of Hα+[N II] λ6584 Å, measuring roughly 20′′ 20′′,while different binary types (main sequence × the Necklace image is a colour composite (Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA)) measuring roughly 39′′ 35′′. Northern linear jet × Note that theo central star of Hen 2-161 is offset to the northeast from the geometric centre of the nebular ring (in both images, north is up and east PA = 47 companions, whiteis to the dwarf left). companions)Northern knot Cometary knots +20 Table 2. Excerpt of the log of the Hβ-continuum photometric observations and measurements of the central star of Hen 2-155. Northern curved jet • Mass distribution of central starsJulian date Exposure time Hβ-continuum magnitude Uncertainty on (s) Hβ-continuum magnitude Cometary knots 2455985.7989840 90 15.0020 0.0304 0 o 2455985.8008033 150 15.0008 0.0211 PA = 100 2455985.8029363Equatorial 150 wisps 15.0086 0.0213 2455985.8050782 150 15.0051 0.0211 Relative declination (arcsec) 2455985.8517651 150 14.8521 0.0193 −20 Notes. Full table available in machine-readable format at the CDS. Equatorial wisps Table 3. Excerpt of theSouthern log ofknot the I-band photometric observations and measurements of the central star of Hen 2-161. Southern curved jet Southern linear jet Julian date Exposure time I-band magnitude Uncertainty on −40 (s) I-band magnitude 2455987.7904517 45 15.2006 0.0120 +40 +20 0 −20 −40 2455987.7913786 45 15.1932 0.0121 Relative right ascension (arcsec) Fig. 4. NOT composite color picture of NGC 6778 in the [O III](blue), 2455987.7923043 45Hα (green), 15.2113 and [N II](red)emissionlines. 0.0120 Fig. 3. [N II]imageofNGC6778overlaidwiththepositionsoftheslits2455987.8456948 45 15.1422 0.0117 used for the acquisition of the high-dispersion2455987.8466095 echelle spectroscopic 45 ob- 15.1478 0.0116 servations at CTIO (slit width not to scale). Nebular features are also Notes. Full table available in machine-readable format at the CDS. [O III]emissionisenclosedbybright[NII]emission,resulting labeled in the figure. in the highest values of the [N II]/[O III]ratio.This[NII]-bright aperture of the ESO-NTT and the bright nature of the centralstructureon an encompasses absolute scale a using spheroidal catalogue region photometry in the innermost from DENIS sec- star of Hen 2-155, photometric monitoring was possible in Hβtion- (Epchtein of NGC 6778 et al. with 1999 the)andthemethodologydescribedin lowest values in the Hα/[O III]ratioBoffin along acontinuum line close with to the high east-west signal-to-noise direction. ratio Although and with minimal Hα and neb-(theet bluish al. (2012a central), with region an approximate in the composite-color precision of picture). 0.05 mag This (de- [O III]emissionisalsofoundintheseinnermostregions,theular contamination. [O IIIrived]-bright from inner the dispersion region is of tipped detector by zerotwo regionspoints calculated of enhanced from spatial distributionEven with of the the use emission of filters from excluding these the lines majority is much of theHα/each[O III field]ratiosalongthemajoraxisofthebipolarlobes(seen star). The Hβ-continuum observations of Hen 2-155 smoothernebular than emission, that of [N someII].remains, Note also as that such the photometry values of was the ex-in greenishwere also colors placed in onthe an composite-color approximate absolute picture). scale These using chang- stan- [N II]/[OtractedIII]and[N from bothII]/H targetsα ratios with peak an ataperture the location tailored of this to aring. diame-ingdard ratios stars seem observed to imply during that the the observing nebula is runs highly (this ionization- can only be By contrast,ter of roughly the emission 3 the in maximum the Hα and seeing [O III during]linesisbrighter the observationsboundedconsidered along approximate the equatorial due ring, to the while variable the nature bipolar of lobes extinction are along an axis at PA × 20 ,openinginbipolarlobesthatspan density-bounded,during each night although and each some run, shortage however ofas theionizing value photonsof each data at (5′′,thusminimisingthevariablecontaminationintheaperture;∼ ◦ 17′′.AssuggestedinPaperI,theoverallstructureofthecen-Jones 2011). Photometry was performed using the SEXTRAC-theirpoint tips is determined suggested by by the relative enhanced brightness Hα/[O toIII field]ratio. stars no spuri- ∼ tral regionTOR ofsoftware NGC 6778 (Bertin can & be Arnouts described 1996 as), and a bipolar the diff PNerential with mag-a ousThe variability emission can in the have near-IR been introdu imagesced of as NGC part of 6778 this (Fig. process).2) low-ionizationnitude of ring-like the central structure stars measured embedded against within non-variable higher exci- fieldis mostlyAll photometric limited to measurements the innermost and ring-like their uncertainties structure and are to shown the tation bipolarstars. The lobes.I-band observations of Hen 2-161 were then placed[N IIin]-bright Tables 2 regionsand 3 available at the tips at ofthe this CDS. ring. The emission from The composite-color picture in Fig. 4 and the ratio maps in the bipolar lobes of NGC 6778 is hinted at the J image and, to Fig. 5 reveal clear excitation variations within the inner regions alesserextent,attheH image. Given the similaritiesA19, page between 3 of 14 of NGC 6778. At the tips of the equatorial ring, the Hα and the Hα and near-IR images of NGC 6778, we suspect that the A47, page 4 of 9 4. Student Involvement A. Ongoing variability survey to discover more binaries a) SARA North b) SARA South c) CTIO 1.3m (queue) d) Kitt Peak 2.1-m (June) e) Kepler spacecraft 4. Student Involvement B. Observations of new and known but poorly studied systems a) Only about 13 of the 37 catalogued systems are well studied. b) We are collecting photometry of additional systems. c) Spectra from Gemini South & North 4. Student Involvement D. Student Research positions – Prof. Hillwig a) Plan ten weeks, starting and ending dates negotiable b) On-campus housing provided (pending approval) c) Data reduction & analysis – photometry & spectroscopy d) Potentially some binary star modeling e) Two positions • Applications through the department • Travel • Possibly a Kitt Peak trip (early June) • Maybe: American Astronomical Society Meeting, Maryland (January) 4. Student Involvement E. Student Research positions – Prof. Hrivnak a) Proto-planetary nebulae b) Plan ten weeks, starting and ending dates negotiable c) On-campus housing provided (pending approval) d) Data reduction & analysis – primarily photometry e) Potentially two positions • Applications through the department • Travel • Possibly a Kitt Peak trip (early June) • Maybe: American Astronomical Society Meeting, Maryland (January) .
Recommended publications
  • Opening PANDORA's Box: APEX Observations of CO In
    Astronomy & Astrophysics manuscript no. APEX_CO_ArXiv c ESO 2018 November 8, 2018 Opening PANDORA’s box: APEX observations of CO in PNe L. Guzman-Ramirez1; 2, A. I. Gómez-Ruíz3, H. M. J. Boffin4, D. Jones5; 6, R. Wesson7, A. A. Zijlstra8; 9, C. L. Smith10, and Lars-Ake˚ Nyman2; 10 1 Leiden Observatory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands e-mail: [email protected] 2 European Southern Observatory, Alonso de Córdova 3107, Santiago, Chile 3 CONACYT Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis E. Erro 1, 72840 Tonantzintla, Puebla, México 4 European Southern Observatory, Karl-Schwarzschild-str. 2, D-85748 Garching, Germany 5 Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife, Spain 6 Departamento de Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain 7 Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK 8 Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester, UK 9 Department of Physics & Laboratory for Space Research, University of Hong Kong, Pok Fu Lam Road, Hong Kong 10 Centre for Research in Earth and Space Sciences, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada 11 Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura, Santiago, Chile Received xx, 2018; accepted xx, 2018 ABSTRACT Context. Observations of molecular gas have played a key role in developing the current understanding of the late stages of stellar evolution. Aims. The survey Planetary nebulae AND their cO Reservoir with APEX (PANDORA) was designed to study the circumstellar shells of evolved stars with the aim to estimate their physical parameters.
    [Show full text]
  • Planetary Nebulae
    Planetary Nebulae A planetary nebula is a kind of emission nebula consisting of an expanding, glowing shell of ionized gas ejected from old red giant stars late in their lives. The term "planetary nebula" is a misnomer that originated in the 1780s with astronomer William Herschel because when viewed through his telescope, these objects appeared to him to resemble the rounded shapes of planets. Herschel's name for these objects was popularly adopted and has not been changed. They are a relatively short-lived phenomenon, lasting a few tens of thousands of years, compared to a typical stellar lifetime of several billion years. The mechanism for formation of most planetary nebulae is thought to be the following: at the end of the star's life, during the red giant phase, the outer layers of the star are expelled by strong stellar winds. Eventually, after most of the red giant's atmosphere is dissipated, the exposed hot, luminous core emits ultraviolet radiation to ionize the ejected outer layers of the star. Absorbed ultraviolet light energizes the shell of nebulous gas around the central star, appearing as a bright colored planetary nebula at several discrete visible wavelengths. Planetary nebulae may play a crucial role in the chemical evolution of the Milky Way, returning material to the interstellar medium from stars where elements, the products of nucleosynthesis (such as carbon, nitrogen, oxygen and neon), have been created. Planetary nebulae are also observed in more distant galaxies, yielding useful information about their chemical abundances. In recent years, Hubble Space Telescope images have revealed many planetary nebulae to have extremely complex and varied morphologies.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • International Astronomical Union Commission 42 BIBLIOGRAPHY of CLOSE BINARIES No. 93
    International Astronomical Union Commission 42 BIBLIOGRAPHY OF CLOSE BINARIES No. 93 Editor-in-Chief: C.D. Scarfe Editors: H. Drechsel D.R. Faulkner E. Kilpio E. Lapasset Y. Nakamura P.G. Niarchos R.G. Samec E. Tamajo W. Van Hamme M. Wolf Material published by September 15, 2011 BCB issues are available via URL: http://www.konkoly.hu/IAUC42/bcb.html, http://www.sternwarte.uni-erlangen.de/pub/bcb or http://www.astro.uvic.ca/∼robb/bcb/comm42bcb.html The bibliographical entries for Individual Stars and Collections of Data, as well as a few General entries, are categorized according to the following coding scheme. Data from archives or databases, or previously published, are identified with an asterisk. The observation codes in the first four groups may be followed by one of the following wavelength codes. g. γ-ray. i. infrared. m. microwave. o. optical r. radio u. ultraviolet x. x-ray 1. Photometric data a. CCD b. Photoelectric c. Photographic d. Visual 2. Spectroscopic data a. Radial velocities b. Spectral classification c. Line identification d. Spectrophotometry 3. Polarimetry a. Broad-band b. Spectropolarimetry 4. Astrometry a. Positions and proper motions b. Relative positions only c. Interferometry 5. Derived results a. Times of minima b. New or improved ephemeris, period variations c. Parameters derivable from light curves d. Elements derivable from velocity curves e. Absolute dimensions, masses f. Apsidal motion and structure constants g. Physical properties of stellar atmospheres h. Chemical abundances i. Accretion disks and accretion phenomena j. Mass loss and mass exchange k. Rotational velocities 6. Catalogues, discoveries, charts a.
    [Show full text]
  • Catalogue of Excitation Classes P for 750 Galactic Planetary Nebulae
    Catalogue of Excitation Classes p for 750 Galactic Planetary Nebulae Name p Name p Name p Name p NeC 40 1 Nee 6072 9 NeC 6881 10 IC 4663 11 NeC 246 12+ Nee 6153 3 NeC 6884 7 IC 4673 10 NeC 650-1 10 Nee 6210 4 NeC 6886 9 IC 4699 9 NeC 1360 12 Nee 6302 10 Nee 6891 4 IC 4732 5 NeC 1501 10 Nee 6309 10 NeC 6894 10 IC 4776 2 NeC 1514 8 NeC 6326 9 Nee 6905 11 IC 4846 3 NeC 1535 8 Nee 6337 11 Nee 7008 11 IC 4997 8 NeC 2022 12 Nee 6369 4 NeC 7009 7 IC 5117 6 NeC 2242 12+ NeC 6439 8 NeC 7026 9 IC 5148-50 6 NeC 2346 9 NeC 6445 10 Nee 7027 11 IC 5217 6 NeC 2371-2 12 Nee 6537 11 Nee 7048 11 Al 1 NeC 2392 10 NeC 6543 5 Nee 7094 12 A2 10 NeC 2438 10 NeC 6563 8 NeC 7139 9 A4 10 NeC 2440 10 NeC 6565 7 NeC 7293 7 A 12 4 NeC 2452 10 NeC 6567 4 Nee 7354 10 A 15 12+ NeC 2610 12 NeC 6572 7 NeC 7662 10 A 20 12+ NeC 2792 11 NeC 6578 2 Ie 289 12 A 21 1 NeC 2818 11 NeC 6620 8 IC 351 10 A 23 4 NeC 2867 9 NeC 6629 5 Ie 418 1 A 24 1 NeC 2899 10 Nee 6644 7 IC 972 10 A 30 12+ NeC 3132 9 NeC 6720 10 IC 1295 10 A 33 11 NeC 3195 9 NeC 6741 9 IC 1297 9 A 35 1 NeC 3211 10 NeC 6751 9 Ie 1454 10 A 36 12+ NeC 3242 9 Nee 6765 10 IC1747 9 A 40 2 NeC 3587 8 NeC 6772 9 IC 2003 10 A 41 1 NeC 3699 9 NeC 6778 9 IC 2149 2 A 43 2 NeC 3918 9 NeC 6781 8 IC 2165 10 A 46 2 NeC 4071 11 NeC 6790 4 IC 2448 9 A 49 4 NeC 4361 12+ NeC 6803 5 IC 2501 3 A 50 10 NeC 5189 10 NeC 6804 12 IC 2553 8 A 51 12 NeC 5307 9 NeC 6807 4 IC 2621 9 A 54 12 NeC 5315 2 NeC 6818 10 Ie 3568 3 A 55 4 NeC 5873 10 NeC 6826 11 Ie 4191 6 A 57 3 NeC 5882 6 NeC 6833 2 Ie 4406 4 A 60 2 NeC 5879 12 NeC 6842 2 IC 4593 6 A
    [Show full text]
  • Study of Electron Density in Planetary Nebulae
    A&A 382, 282–290 (2002) Astronomy DOI: 10.1051/0004-6361:20011621 & c ESO 2002 Astrophysics Study of electron density in planetary nebulae A comparison of different density indicators M. V. F. Copetti1,2 and B. C. Writzl1 1 Laborat´orio de An´alise Num´erica e Astrof´ısica, Departamento de Matem´atica, Universidade Federal de Santa Maria, 97119-900 Santa Maria, RS, Brazil 2 Physics Department, University of Cincinnati, Cincinnati OH 45221-0011, USA Received 29 August 2001 / Accepted 7 November 2001 Abstract. We present a comparison of electron density estimates for planetary nebulae based on different emission- line ratios. We have considered the density indicators [O ii]λ3729/λ3726, [S ii]λ6716/λ6731, [Cl iii]λ5517/λ5537, [Ar iv]λ4711/λ4740, C iii]λ1906/λ1909 and [N i]λ5202/λ5199. The observational data were extracted from the literature. We have found systematic deviations from the density homogeneous models, in the sense that: Ne(N i) ∼< Ne(O ii) <Ne(S ii, C iii, Cl iii or Ar iv)andNe(S ii) ≈ Ne(C iii) ≈ Ne(Cl iii) ≈ Ne(Ar iv). We argue that the lower [O ii] density estimates are likely due to errors in the atomic parameters used. Key words. ISM: planetary nebulae 1. Introduction have found the opposite, i.e., [O ii] densities systemati- cally higher than [S ii] ones. More recently, Keenan et al. The electron density, Ne, is one of the key physical pa- (1996, 1997, 1999), based on data from the series of high rameters needed to characterise a planetary nebula. Some spectral resolution observations of planetary nebulae by density assessment is necessary to confidently derive the Hyung, Aller and collaborators (see references in Sect.
    [Show full text]
  • Annual Report Astronomy Australia Limited
    2011 / 12 Annual Report Astronomy Australia Limited Vision Astronomers in Australia will have access to the best astronomical research infrastructure. Mission AAL will achieve its vision by: 1. Engaging with Australian astronomers to advance the national research infrastructure priorities of the Australian astronomy decadal plan. 2. Advising the Australian Government on future investments in national astronomical research infrastructure. 3. Managing investments in national astronomical research infrastructure as required. Principles 1. Access to major astronomical research infrastructure should be available to any Australian-based astronomer purely on scientific merit. 2. The concept of national astronomical research infrastructure includes Australian participation in international facilities. 3. The AAO and CSIRO are empowered by the Australian Government to provide a component of the national astronomical research infrastructure and there is no need for AAL to directly manage investments to upgrade or operate the AAT and ATNF. Front cover image Gemini Legacy image of the complex planetary nebula Sh2-71 as imaged by the Gemini Multi-Object Spectrograph on Gemini North on Mauna Kea in Hawai‘i. A research team, led by Australian astronomers David Frew and Quentin Parker (Macquarie University, Sydney) are studying the dimmer, bluer star to understand its nature. The long-assumed central star is the brightest star near the centre, but the much dimmer and bluer star (just to the right and down a little) might be the parent of this beautiful object. The image is composed of three narrow- band images, and each is assigned a colour as follows: H-alpha (orange), HeII (blue) and [OIII] (cyan). Image credit: Gemini Observatory/AURA Background image Dipoles on one “tile” of the Murchison Widefield Array; one of the first telescopes with no moving parts.
    [Show full text]
  • Making a Sky Atlas
    Appendix A Making a Sky Atlas Although a number of very advanced sky atlases are now available in print, none is likely to be ideal for any given task. Published atlases will probably have too few or too many guide stars, too few or too many deep-sky objects plotted in them, wrong- size charts, etc. I found that with MegaStar I could design and make, specifically for my survey, a “just right” personalized atlas. My atlas consists of 108 charts, each about twenty square degrees in size, with guide stars down to magnitude 8.9. I used only the northernmost 78 charts, since I observed the sky only down to –35°. On the charts I plotted only the objects I wanted to observe. In addition I made enlargements of small, overcrowded areas (“quad charts”) as well as separate large-scale charts for the Virgo Galaxy Cluster, the latter with guide stars down to magnitude 11.4. I put the charts in plastic sheet protectors in a three-ring binder, taking them out and plac- ing them on my telescope mount’s clipboard as needed. To find an object I would use the 35 mm finder (except in the Virgo Cluster, where I used the 60 mm as the finder) to point the ensemble of telescopes at the indicated spot among the guide stars. If the object was not seen in the 35 mm, as it usually was not, I would then look in the larger telescopes. If the object was not immediately visible even in the primary telescope – a not uncommon occur- rence due to inexact initial pointing – I would then scan around for it.
    [Show full text]
  • OBSERVATIONS at 2700 Mhz of SELECTED PLANETARY NEBULAE
    OBSERVATIONS AT 2700 MHz OF SELECTED PLANETARY NEBULAE By L. H. ALLER* and D. K. MILNEt [Manuscrip:t received 15 July 1971] Ab8tract Observations at 2700 MHz of 74 planetary nebulae have been obtained with the Parkes 64 m radio telescope. Comparison is made with the optically determined Hfl intensity to obtain extinction coefficients in these directions. 1. INTRODUCTION Radiofrequency observations of numerous planetary nebulae have been obtained by many investigators using a variety of equipment; an excellent com­ pilation and bibliography has been given by Higgs (1971). The radio emission, which is relatively weak, is due to free-free transitions within the ionized hydrogen cloud. Consequently there is a relationship between the intrinsic luminosities at radio and optical frequencies, which can be used to determine the optical absorption to the nebula. In the present investigation the 64 m radio telescope at Parkes was used to obtain radio positions and 2700 MHz flux densities of 74 planetary nebulae south of declination +27°. These flux densities are compared with the optically determined H,8 intensities to obtain extinction coefficients for these nebulae. The preliminary results for 17 of the nebulae were given by Aller (1969a, 1969b). II. OBSERVATIONS The 2700 MHz parametric correlation receiver (Batchelor, Brooks, and Cooper 1968) has a system noise temperature of 100 K. With the 400 MHz bandwidth and an output time constant of 1 s the r.m.s. noise is equivalent to 0 ·05 f.u.t This is a considerably better sensitivity than was used in a previous Parkes survey of planetary nebulae by Slee and Orchiston (1965).
    [Show full text]
  • Planetarische Nebel Zeigt Eine Polypolare 2015 Und Auf Dessen Rückseite Den Von „Sterne Und Weltraum“ Zusammenge- Struktur
    www.vds-astro.de ISSN 1615-0880 I/2015 Nr. 52 Zeitschrift der Vereinigung der Sternfreunde e.V. Schwerpunktthema Planetarische Universal-Newton Sternbedeckungen Beobachterforum Seite 70 Seite 117 Seite 134 Nebel Editorial 1 Liebe Mitglieder, liebe Sternfreunde, das neue Jahr hat begonnen, und es ist nicht übertrieben, wenn wir es als astro- nomisch besonders spannend ankündigen. Doch vor den Freuden der Himmels- beobachtung erlauben wir uns, Sie mit einer jährlichen Pflicht zu belästigen: Diesem Heft liegt die Beitragsrechnung für das Jahr 2015 bei. Bitte kommen Sie Ihrer Zahlungspflicht so bald wie möglich nach, denn die unbezahlten Mit- Unser Titelbild: gliedsbeiträge haben sich mittlerweile zu einem stattlichen Betrag summiert. Am Skinakas-Observatorium auf Kreta/ Lesen Sie dazu auch die Informationen auf Seite 4. Griechenland entstand im August 2012 in verschiedenen Nächten diese tiefe Auf- Doch zurück zum Himmelsgeschehen: Die wichtigsten Ereignisse haben wir für nahme des Helixnebels NGC 7293. Was Sie wieder in der beiliegenden Broschüre „Astronomie 2015“ zusammenge- den meisten Lesern neu sein dürfte: Der fasst. Als weitere Beilage enthält diese Sendung das Plakat zum Astronomietag Planetarische Nebel zeigt eine polypolare 2015 und auf dessen Rückseite den von „Sterne und Weltraum“ zusammenge- Struktur. Bipolare Auswürfe unterlagen im stellten „Astro-Planer“. Nur für den wolkenlosen Himmel war in der Versand- Laufe der Zeit einer Rotation wie bei KjPn 8 tasche leider kein Platz mehr. Wir bitten, das zu entschuldigen. (siehe Bericht von Hartmut Bornemann in dieser Ausgabe). Teleskop war eine Das erste Quartal 2015 bietet uns einen echten „Hingucker“: die partielle Son- 300-mm-Flatfieldkamera (Lichtenknecker) nenfinsternis am 20. März. Auch aus diesem Grund lautet das Motto zum dies- mit 940 mm Brennweite, als Kamera wur- jährigen Astronomietag „Schattenspiele im All“.
    [Show full text]
  • Angular Dimensions of Planetary Nebulae?
    A&A 405, 627–637 (2003) Astronomy DOI: 10.1051/0004-6361:20030645 & c ESO 2003 Astrophysics Angular dimensions of planetary nebulae? R. Tylenda1,N.Si´odmiak1,S.K.G´orny1,R.L.M.Corradi2, and H. E. Schwarz3 1 N. Copernicus Astronomical Center, Department for Astrophysics, Rabia´nska 8, 87–100 Toru´n, Poland 2 Isaac Newton Group of Telescopes, Apartado de Correos 321, 38700 Sta. Cruz de La Palma, Spain 3 CTIO/NOAO, Casilla 603, La Serena, Chile Received 28 May 2002 / Accepted 23 April 2003 Abstract. We have measured angular dimensions of 312 planetary nebulae from their images obtained in Hα (or Hα + [NII]). We have applied three methods of measurements: direct measurements at the 10% level of the peak surface brightness, Gaussian deconvolution and second-moment deconvolution. The results from the three methods are compared and analysed. We propose a simple deconvolution of the 10% level measurements which significantly improves the reliability of these measurements for compact and partially resolved nebulae. Gaussian deconvolution gives consistent but somewhat underestimated diameters compared to the 10% measurements. Second-moment deconvolution gives results in poor agreement with those from the other two methods, especially for poorly resolved nebulae. From the results of measurements and using the conclusions of our analysis we derive the final nebular diameters which should be free from systematic differences between small (partially resolved) and extended (well resolved) objects in our sample. Key words. planetary nebulae: general 1. Introduction different results for many PNe. In the case of well resolved and fairly symmetric nebulae with a well defined outer rim the The angular dimensions belong to the most fundamental obser- problem is simple and different methods give consistent results.
    [Show full text]
  • Common Envelope Evolution: Where We Stand and How We Can Move Forward
    Astron Astrophys Rev (2013) 21:59 DOI 10.1007/s00159-013-0059-2 REVIEW ARTICLE Common envelope evolution: where we stand and how we can move forward N. Ivanova · S. Justham · X. Chen · O. De Marco · C.L. Fryer · E. Gaburov · H. Ge · E. Glebbeek · Z. Han · X.-D. Li · G. Lu · T. Marsh · P. Podsiadlowski · A. Potter · N. Soker · R. Taam · T.M. Tauris · E.P.J. van den Heuvel · R.F. Webbink Received: 18 July 2012 / Published online: 27 February 2013 © Springer-Verlag Berlin Heidelberg 2013 Abstract This work aims to present our current best physical understanding of common-envelope evolution (CEE). We highlight areas of consensus and disagree- Electronic supplementary material The online version of this article (doi:10.1007/s00159-013-0059-2) contains supplementary material, which is available to authorized users. N. Ivanova () Physics Department, University of Alberta, Edmonton, AB T6G 3E1, Canada e-mail: [email protected] S. Justham National Astronomical Observatories, The Chinese Academy of Sciences, Beijing, China e-mail: [email protected] S. Justham Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, China X. Chen · H. Ge · Z. Han National Astronomical Observatories/Yunnan Observatory, The Chinese Academy of Sciences, Kunming 650011, China X. Chen · H. Ge · Z. Han Key Laboratory for the Structure and Evolution of Celestial Objects, The Chinese Academy of Sciences, Kunming 650011, China O. De Marco Department of Physics & Astronomy, Macquarie University, Sydney, NSW 2109, Australia C.L. Fryer Computational Science Division, Los Alamos National Laboratory, CCS-2, MS D409, Los Alamos, NM 87545, USA E.
    [Show full text]