Changes in Carbonyl Compounds in Chardonnay and Cabernet Sauvignon Wines As a Consequence of Malolactic Fermentation

Total Page:16

File Type:pdf, Size:1020Kb

Changes in Carbonyl Compounds in Chardonnay and Cabernet Sauvignon Wines As a Consequence of Malolactic Fermentation Vitis 41 (2), 107112 (2002) Changes in carbonyl compounds in Chardonnay and Cabernet Sauvignon wines as a consequence of malolactic fermentation R. F LAMINI 1) , G. D E L UCA and R. D I S TEFANO 2) 1) Istituto Sperimentale per la Viticoltura, Conegliano (TV), Italia 2) Istituto Sperimentale per lEnologia, Asti, Italia Summary attack on berries. The three above mentioned compounds are probably very important for wine flavor, because of their To study changes in carbonyl compounds in Chardonnay very low odor threshold. Moreover, dicarbonyl compounds and Cabernet Sauvignon wines as a consequence of malol- are associated with browning processes due to their reac- actic fermentation (MLF), wines were fermented by inocu- tions with amino acids; they are more toxic than their reduc- lation of commercial strains of Oenococcus oeni , and com- tion products ( DE R EVEL and B ERTRAND 1993 a, G UILLOU et al . pared with unfermented (control) wines. Carbonyl com- 1997). pounds were determined by GC/MS analysis on the basis of In this work, we studied changes in carbonyl compounds their O-(2,3,4,5,6-pentafluorobenzyl)-hydroxylamine deriva- as a consequence of MLF in Chardonnay and Cabernet tives after sample preparation on an ion exchange column Sauvignon wines. We performed fermentation by inocula- to remove pyruvic acid. With MLF, marked changes were tion of two commercial Oenococcus oeni strains; the carbo- revealed, particularly with regard to diacetyl, acetoin and nyl compounds of the wines were compared with those of aliphatic saturated aldehydes; the presence of unsaturated unfermented controls. Compounds were determined by GC/ aldehydes was also revealed. A significant increase in MS analysis of their O-(2,3,4,5,6-pentafluorobenzyl)-hy- glycoladehyde was observed, which is presumed to be part droxylamine (PFBOA) derivatives ( DE R EVEL and B ERTRAND of a reduction system with glyoxal. Higher acetoin/diacetyl 1993 b). ratios were found in Chardonnay and higher glycolalde- hyde/glyoxal ratios in Cabernet Sauvignon. Material and Methods K e y w o r d s : carbonyl compounds, glycolaldehyde, malolactic fermentation, wine, PFBOA ( O-(2,3,4,5,6- W i n e s : Cabernet Sauvignon and Chardonnay wines pentafluorobenzyl)-hydroxylamine), GC/MS. were produced from grapes cultivated in Conegliano (Veneto, Italy) and harvested in 2000. Must was fermented at the Istituto Sperimentale per la Viticoltura of Conegliano. At the Introduction end of fermentation, sugar residues in wine were less than 2 g ×l-1 . In order to limit carbonyl/bisulfite adduct formation During malolactic fermentation (MLF) also carbonyl and to eliminate the basic hydrolysis step in sample prepa- compounds undergo profound changes, by which the orga- ration, no SO 2 was added during or after alcoholic fermenta- noleptic characteristics of the wine can be improved tion. This also favored bacterial growth (N IELSEN and (S AUVAGEOT and V IVIER 1997). Changes in the herbaceous RICHELIEU 1999). odor of wine were observed with MLF, associated with M a l o l a c t i c f e r m e n t a t i o n : MLF was performed methoxypyrazines, some C6 alcohols, and some aliphatic by membrane-resistant (MBR) Uvaferm ALPHA (strain A) aldehydes such as hexanal, ( E)-2-hexanal, ( E)-2-eptenal, and MLD (strain B) (Esseco spa, Trecate, Italy) according to octanal, ( E)-2-octanal ( DE R EVEL and B ERTRAND 1993 a, A LLEN the manufacturers guidelines. Lyophilized bacteria (50 mg) 1995). Changes in decanal and ( E)-2-nonenal contents, as- were hydrated in 2 ml of distilled water at 25 °C for 15 min. sociated with sawdust or plank odor (C HATONNET and The bacterial suspension was added to 200 ml of wine, stirred DUBOURDIEU 1996, 1998), may also occur. for 1 h and kept at 25 °C for about 10 d. Fermentation was During MLF, the butter-like fat note increases, due to followed by organic acid screening (until the disappearance 2,3-butanedione (diacetyl) and its reduced form, 3-hydroxy- of malic acid) by HPLC analysis (F LAMINI and D ALLA V EDOVA 2-butanone (acetoin). The second reduced form, 2,3-butane- 1999). Organic acids, pH and titratable acidity of samples diol, is linked to the cooked note (D AVIS et al . 1985, DE R EVEL before and at the end of MLF are listed in Tab. 1. and B ERTRAND 1993 a, L AURENT et al . 1994). The HPLC system consisted of a chromatograph Varian Carbonyl compounds glyoxal, methylglyoxal and 9010 (Varian Instrument, Walnut Creek, CA, USA) equipped hydroxypropandial are also present in wine. They are pro- with a 20 µl loop, connected to a Varian 2550 UV-vis detector duced by microorganisms such as Saccharomyces (wavelength 210 nm). Column: LiChrospher 100 RP-18 cerevisiae and Leuconostoc oenos , and by Botrytis cinerea (250 mm x 4.6 mm i.d., 5 µm) with LiChrocart guard column Correspondence to: Dr. R. F LAMINI , Istituto Sperimentale per la Viticoltura, Viale XXVIII Aprile 26, I-31015 Conegliano (TV), Italy. Fax: +39-438-450773. E-mail: [email protected] 108 R. F LAMINI , G. D E L UCA and R. D I S TEFANO T a b l e 1 Organic acids, titratable acidity and pH of wines before MLF (control) and after MLF by two Oenococcus oeni strains Cabernet Sauvignon Chardonnay control strain A strain B control strain A strain B malic acid (g·l -1 ) 1.81 trace trace 2.53 trace trace lactic acid (g·l -1 ) 0.54 1.94 1.94 0.10 1.71 1.72 pyruvic acid (g·l -1 ) 0.14 0.01 0.01 0.08 0.05 0.05 acetic acid (g·l -1 ) 0.25 0.43 0.47 0.44 0.47 0.48 titratable acidity (g·l -1 ) 7.90 6.80 6.80 7.60 5.15 5.15 pH 3.55 3.70 3.70 3.24 3.50 3.50 (4 mm x 4 mm, 5 µm) (E. Merck, Darmstadt, Germany). A Varian ethanol. The first was prepared by diluting 0.5 ml of stand- 4400 integrator connected with WOW Chemstation software ard solution in 50 ml ethanol/water (12 % v/v, pH 3), fol- (Thermo Separation Products, Riviera Beach, FL, USA) was lowed by addition of 10 ml ethanol and 200 ml internal stand- used. Fermentations were carried out in duplicate. ard. Reaction and analysis were performed as reported above. R e a g e n t s a n d s t a n d a r d s : O -(2,3,4,5,6- The second sample was prepared by diluting 0.5 ml of stand- penta-fluorobenzyl)-hydroxylamine hydrochloride ard solution in 50 ml ethanol/water (12 % v/v, pH 7.5) and (PFBOA), decanal, ( E)-2-hexenal, ( E)-2-nonenal, nonanal, then passing it through a preconditioned ion exchange col- diacetyl, ( E,E )-2,6-nonadienal, ( E,Z )-2,6-nonadienal, ( E)- umn (Amberlite IRA 400 10 g). The column was washed with 2-pentenal, ( E)-2-octenal, ( E)-2-heptenal and glycoladehyde 10 ml ethanol, the organic phase combined with the aque- were purchased from Sigma-Aldrich (Milan, Italy). Vanil- ous one, and pH was adjusted to 3. Internal standard was lin, acetoin, pentanal and glyoxal were purchased from Fluka added to the solution; reaction and analysis were performed (Milan, Italy); ( E)-crotonaldehyde and heptanal from Carlo as reported above. The recovery of each compound from Erba Reagenti (Milan, Italy); hexanal from Merck (Milan, the column was estimated on the basis of the difference Italy) and acetaldehyde from BDH. between peak areas in the chromatograms of the two sam- S a m p l e p r e p a r a t i o n f o r c a r b o n y l ples. Experiments were repeated three times. c o m p o u n d a n a l y s i s : The ion exchange column was S a m p l e p r e p a r a t i o n f o r 2 , 3 - b u t a n e d i o l prepared with 10 g of Amberlite IRA 400 resin (Fluka, Milan, a n a l y s i s : Samples were prepared with Isolute ENV(+) Italy), preconditioned with 20 ml of HCl 1 % (v/v), 100 ml 500 mg cartridges (International Sorbent Technology Ltd., NaF 0.5 mol and rinsed with water. The pH of 50 ml of wine UK), preconditioned by the passage of 10 ml methyl chlo- was raised to 7.5 by the addition of 1 ml NaOH (4 mol). This ride and 10 ml methanol, rinsed with 20 ml water. 15 ml of solution was passed through the column. The stationary wine was adjusted to 45 ml with water, and 250 ml of a phase was washed with 10 ml ethanol and both fractions 1-heptanol (1.53 mmol) solution were added as internal stand- passed through the column were combined. After the addi- ard. The solution was loaded on the cartridge, the station- tion of 200 ml o-chlorobenzaldehyde (0.105 mmol) as internal ary phase raised with 20 ml water, and the organic fraction standard, the solution was adjusted to pH 3.0; after the ad- eluted with 8 ml of methyl chloride. The organic phase was dition of 20 mg PFBOA, it was stirred for 1 h at room tem- dried over Na 2SO 4 and filtered. The volume was reduced to perature. O-pentafluorobenzyl oximes ( O-PFB-oximes) were 0.4 ml before performing GC/MS analysis (SCAN mode).
Recommended publications
  • Acetoin Acetate Natural
    aurochemicals.com Safety Data Sheet HEALTH 0 FLAMMABILITY 2 REACTIVITY 0 Section 1: PRODUCT AND COMPANY IDENTIFICATION 1.1 Product identifiers Product Name Acetoin Acetate, Natural Product Number 0352600 CAS-No. 4906-24-5 1.2 Product Recommended Use Flavorings 1.3 Preparation Information Company Aurochemicals 7 Nicoll Street Washingtonville, NY 10992- USA Telephone 845-496-6065 Fax 845-496-6248 1.4 Emergency Telephone Number 1-800-535-5053 International - 1-352-323-3500 collect Section 2: HAZARD(s) IDENTIFICATION 2.1 Classification of substance or mixture GHS Classification in accordance with 29 CFR 1910 (OSHA HCS) Combustible Liquid (Category 4) H227 Skin irritation (Category 2) H315 Eye Irritation (Category 2A) H319 Specific Target Organ Toxicity -Single Exposure -Respiratory irritation H335 2.2 GHS Label Elements, Including precautionary statements Pictogram Signal Statement Warning Hazard Statement(s) H227 Combustible liquid H315 Causes skin irritation H319 Causes serious eye irritation H335 May cause respiratory irritation Precautionary Statement(s) PREVENTION P210 Keep away from flames and hot surfaces - No smoking P216 Avoid breathing dust/fumes/gas/mist/vapors/spray P280 Wear protective gloves/protective clothing/face protection 3526 ACETOIN ACETATE Nat sds.doc Printed: April 17, 2019 Page 1 of 7 aurochemicals.com Safety Data Sheet RESPONSE P305+351+338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses if present and easy to do. Continue rinsing. STORAGE P405 Store locked up DISPOSAL P501 Dispose of contents/container to an approved waste disposal plant 2.3 HNOC (Hazards not otherwise None classified or not covered by GHS Section 3: COMPOSITION / INFORMATION ON INGREDIENTS 3.1 Substances Synonym 2-Acetoxy-3-Butanone Formula C6H10O3 Molecular Weight 130.14 g/mol CAS-No 4906-24-5 EC-No 200-580-7 Hazardous Components Does not contain any hazardous substances Section 4: FIRST AID MEASURES 4.1 Description of first aid measures General Advice Consult a physician.
    [Show full text]
  • Retention Indices for Frequently Reported Compounds of Plant Essential Oils
    Retention Indices for Frequently Reported Compounds of Plant Essential Oils V. I. Babushok,a) P. J. Linstrom, and I. G. Zenkevichb) National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA (Received 1 August 2011; accepted 27 September 2011; published online 29 November 2011) Gas chromatographic retention indices were evaluated for 505 frequently reported plant essential oil components using a large retention index database. Retention data are presented for three types of commonly used stationary phases: dimethyl silicone (nonpolar), dimethyl sili- cone with 5% phenyl groups (slightly polar), and polyethylene glycol (polar) stationary phases. The evaluations are based on the treatment of multiple measurements with the number of data records ranging from about 5 to 800 per compound. Data analysis was limited to temperature programmed conditions. The data reported include the average and median values of retention index with standard deviations and confidence intervals. VC 2011 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. [doi:10.1063/1.3653552] Key words: essential oils; gas chromatography; Kova´ts indices; linear indices; retention indices; identification; flavor; olfaction. CONTENTS 1. Introduction The practical applications of plant essential oils are very 1. Introduction................................ 1 diverse. They are used for the production of food, drugs, per- fumes, aromatherapy, and many other applications.1–4 The 2. Retention Indices ........................... 2 need for identification of essential oil components ranges 3. Retention Data Presentation and Discussion . 2 from product quality control to basic research. The identifi- 4. Summary.................................. 45 cation of unknown compounds remains a complex problem, in spite of great progress made in analytical techniques over 5.
    [Show full text]
  • Oenological Impact of the Hanseniaspora/Kloeckera Yeast Genus on Wines—A Review
    fermentation Review Oenological Impact of the Hanseniaspora/Kloeckera Yeast Genus on Wines—A Review Valentina Martin, Maria Jose Valera , Karina Medina, Eduardo Boido and Francisco Carrau * Enology and Fermentation Biotechnology Area, Food Science and Technology Department, Facultad de Quimica, Universidad de la Republica, Montevideo 11800, Uruguay; [email protected] (V.M.); [email protected] (M.J.V.); [email protected] (K.M.); [email protected] (E.B.) * Correspondence: [email protected]; Tel.: +598-292-481-94 Received: 7 August 2018; Accepted: 5 September 2018; Published: 10 September 2018 Abstract: Apiculate yeasts of the genus Hanseniaspora/Kloeckera are the main species present on mature grapes and play a significant role at the beginning of fermentation, producing enzymes and aroma compounds that expand the diversity of wine color and flavor. Ten species of the genus Hanseniaspora have been recovered from grapes and are associated in two groups: H. valbyensis, H. guilliermondii, H. uvarum, H. opuntiae, H. thailandica, H. meyeri, and H. clermontiae; and H. vineae, H. osmophila, and H. occidentalis. This review focuses on the application of some strains belonging to this genus in co-fermentation with Saccharomyces cerevisiae that demonstrates their positive contribution to winemaking. Some consistent results have shown more intense flavors and complex, full-bodied wines, compared with wines produced by the use of S. cerevisiae alone. Recent genetic and physiologic studies have improved the knowledge of the Hanseniaspora/Kloeckera species. Significant increases in acetyl esters, benzenoids, and sesquiterpene flavor compounds, and relative decreases in alcohols and acids have been reported, due to different fermentation pathways compared to conventional wine yeasts.
    [Show full text]
  • Herbicide Assays for Predicting Or Determining Plant Responses in Aquatic Systems
    J. Aquat. Plant Manage. 56s: 67–73 Herbicide assays for predicting or determining plant responses in aquatic systems GREG MACDONALD AND MICHAEL NETHERLAND* INTRODUCTION GROWTH RESPONSE STUDIES Herbicides are an important component of aquatic plant Growth studies can provide useful information, particu- management, but represent a relatively small sector of larly as it relates to activity on a whole plant basis. In herbicide use compared to agriculture and other commer- addition to visual assessment, differential response to a cial production systems. There are over 150 active herbicide herbicide can be measured through stem length, leaf ingredients registered for use in cropping systems, but only number, plant biomass, growth rates, reproductive devel- 13 are registered in aquatic systems in the United States. opment (propagule number and viability), etc. Regression There is a considerable amount of information regarding analysis to model the response can be used to generate the activity and responses of terrestrial plant species (both inhibition (I50,I90 values) to a particular parameter as a weeds and crops) to herbicides, but comparatively little for function of herbicide rate. These studies are useful to aquatic plants and aquatic herbicides. With this in mind, the evaluate the response of different populations of the same purpose of this article is to provide a framework for species to assess changes or differences in herbicide researchers and practitioners who seek to better understand response. such as the development of resistance (Puri et and evaluate the response of both invasive and native al. 2007). Growth experiments are also useful in determining aquatic plants to herbicides. the level, as function of herbicide rate, of off-target damage We will focus on herbicides registered for use in aquatic to desirable species.
    [Show full text]
  • Thermophilic Fermentation of Acetoin and 2, 3-Butanediol by a Novel
    Xiao et al. Biotechnology for Biofuels 2012, 5:88 http://www.biotechnologyforbiofuels.com/content/5/1/88 RESEARCH Open Access Thermophilic fermentation of acetoin and 2, 3-butanediol by a novel Geobacillus strain Zijun Xiao1*, Xiangming Wang1, Yunling Huang1, Fangfang Huo1, Xiankun Zhu1, Lijun Xi1 and Jian R Lu2* Abstract Background: Acetoin and 2,3-butanediol are two important biorefinery platform chemicals. They are currently fermented below 40°C using mesophilic strains, but the processes often suffer from bacterial contamination. Results: This work reports the isolation and identification of a novel aerobic Geobacillus strain XT15 capable of producing both of these chemicals under elevated temperatures, thus reducing the risk of bacterial contamination. The optimum growth temperature was found to be between 45 and 55°C and the medium initial pH to be 8.0. In addition to glucose, galactose, mannitol, arabionose, and xylose were all acceptable substrates, enabling the potential use of cellulosic biomass as the feedstock. XT15 preferred organic nitrogen sources including corn steep liquor powder, a cheap by-product from corn wet-milling. At 55°C, 7.7 g/L of acetoin and 14.5 g/L of 2,3-butanediol could be obtained using corn steep liquor powder as a nitrogen source. Thirteen volatile products from the cultivation broth of XT15 were identified by gas chromatography–mass spectrometry. Acetoin, 2,3-butanediol, and their derivatives including a novel metabolite 2,3-dihydroxy-3-methylheptan-4-one, accounted for a total of about 96% of all the volatile products. In contrast, organic acids and other products were minor by-products.
    [Show full text]
  • Accelerated Electro-Fermentation of Acetoin in Escherichia Coli by Identifying Physiological Limitations of the Electron Transfer Kinetics and the Central Metabolism
    microorganisms Article Accelerated Electro-Fermentation of Acetoin in Escherichia coli by Identifying Physiological Limitations of the Electron Transfer Kinetics and the Central Metabolism 1, 1 1,2, Sebastian Beblawy y, Laura-Alina Philipp and Johannes Gescher * 1 Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany; [email protected] (S.B.); [email protected] (L.-A.P.) 2 Institute for Biological Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany * Correspondence: [email protected] Current affiliation: Environmental Biotechnology, Centre for Applied Geosciences, University of Tübingen, y Schnarrenbergstr. 94-96, 72074 Tübingen, Germany. Received: 25 September 2020; Accepted: 21 November 2020; Published: 23 November 2020 Abstract: Anode-assisted fermentations offer the benefit of an anoxic fermentation routine that can be applied to produce end-products with an oxidation state independent from the substrate. The whole cell biocatalyst transfers the surplus of electrons to an electrode that can be used as a non-depletable electron acceptor. So far, anode-assisted fermentations were shown to provide high carbon efficiencies but low space-time yields. This study aimed at increasing space-time yields of an Escherichia coli-based anode-assisted fermentation of glucose to acetoin. The experiments build on an obligate respiratory strain, that was advanced using selective adaptation and targeted strain development. Several transfers under respiratory conditions led to point mutations in the pfl, aceF and rpoC gene. These mutations increased anoxic growth by three-fold. Furthermore, overexpression of genes encoding a synthetic electron transport chain to methylene blue increased the electron transfer rate by 2.45-fold.
    [Show full text]
  • Diacetyl by Wine Making Lactic Acid Bacteria
    Agric. Biol. Chem., 49 (7), 2147-2157, 1985 2147 Transformation of Citric Acid to Acetic Acid, Acetoin and Diacetyl by Wine Making Lactic Acid Bacteria Yoshimi Shimazu, Mikio Uehara and Masazumi Watanabe Food Research Laboratory, KikkomanCorporation, 399 Noda, Noda-shi, Chiba 278, Japan Received January 18, 1985 Adecrease in citric acid and increases in acetic acid, acetoin and diacetyl were found in the test red wine after inoculation of intact cells of Leuconostoc mesenteroides subsp. lactosum ATCC27307, a malo-lactic bacterium, grownon the malate plus citrate-medium. Citric acid in the buffer solution was transformed to acetic acid, acetoin and diacetyl in the pH range of 2 to 6 after inoculation with intact cells of this bacterial species. It was concluded that citric acid in wine making involving malo- lactic fermentation, at first, was converted by citrate lyase to acetic and oxaloacetic acids, and the latter was successively transformed by decarboxylation to pyruvic acid which was subsequently converted to acetoin, diacetyl and acetic acid. Both the activities of citrate lyase and acetoin formation from pyruvic acid in the dialyzed cell- free extract were optimal at pH 6.0. Divalent cations such as Mn2+ , Mg2+ , Co2 + and Zn2 + activated the citrate lyase. The citrate lyase was completely inhibited by EDTA,Hg2+ and Ag2 +. The acetoin formation from pyruvic acid was significantly stimulated by thiamine pyrophosphate and CoCl2, and inhibited by oxaloacetic acid. Specific activities of the citrate lyase and acetoin formation were considerably variable amongthe six strains of malo-lactic bacteria examined. Someactivities of irreversible reduction of diacetyl to acetoin were foundin the cell-free extracts of four of the malo- lactic bacteria strains and the optimal pH was 6.0 for this activity of Leu.
    [Show full text]
  • Acetal Acetaldehyde Acetic Acid Acetone Acetonitrile Acetylcholine
    Acetal Butanedione Acetaldehyde Butanone Acetic acid Butenone Acetone Butyraldehyde Acetonitrile Caffeine Acetylcholine Calcium carbonate Acids Caramel Acrolein Carbon, Activated Acrylonitrile Carbon dioxide Acetoin Carbon disulfide Acetophenone Carbon monoxide Acetylpropionyl Cardamom Acetylpyrazine Carob Alanine Catechol Alcohol Catecholamines Aldehydes Catechols Alfalfa extract Cedrol Alkaloids Cellulose Allspice Cherry Amides Chocolate liquor Aminoapthalene Cinnamaldehyde Aminobiphenyl Cinnamic acid Ammonia Cinnamon Ammonium bicarbonate Ammonium Cinnamyl isovalerate carbonate Ammonium chloride Citronella Ammonium hydroxide Citronellol Ammonium sulfide Clove Anethole Cocoa (Chocolate) Anise Cocoa derivatives Asbestos Coconut Ascorbic acid Coffee Asparagine Cognac Aspartic acid Coriander Benzaldehyde Corn syrup Benzene Cresol Benzo(a)pyrene Crotonaldehyde Benzodiazepines Cyclopentene one Benzyl benzoate Dextrose Benzyl cinnamate Diacetyl Benzyl isovalerate Diammonium phosphate Birch Diethylene glycol Butanone Dimethylfuran Butyric acid Dimethylpyrazine Butadiene Esters Ethanolamine Lead Ethyl acetate Lemon Ethyl alcohol Lemongrass Ethyl isobutyrate Levulinic acid Ethyl maltol Licorice Ethyl palmitate Lime Ethyl phenylacetate Limonene Ethyl proprionate Linalool Ethyl vanillin Locust gum Ethylbenzene Limonene Ethylpyridine Magnesium carbonate Eugenol Malic acid Fig Maltol Formaldehyde Maple Fructose Mate Furan Menthol Furfural Mercury Gas phase constituents Metals Gas phase nicotine Methanol Gas phase organics Methoprene Gelatin Methyl
    [Show full text]
  • Identification of Key Volatiles Differentiating Aromatic Rice
    H OH metabolites OH Article Identification of Key Volatiles Differentiating Aromatic Rice Cultivars Using an Untargeted Metabolomics Approach Yu Jie 1,2 , Tianyu Shi 2, Zhongjei Zhang 2,* and Qiaojuan Yan 1,* 1 College of Engineering, China Agricultural University, No. 17 Qinghua East Road Haidian District, Beijing 100083, China; [email protected] 2 Academy of National Food and Strategic Reserves Administration, No. 11 Baiwanzhuang Street, Beijing 100037, China; [email protected] * Correspondence: [email protected] (Z.Z.); [email protected] (Q.Y.) Abstract: Non-aromatic rice is often sold at the price of aromatic rice to increase profits, seriously impairing consumer experience and brand credibility. The assessment of rice varieties origins in terms of their aroma traits is of great interest to protect consumers from fraud. To address this issue, the study identified differentially abundant metabolites between non-aromatic rice varieties and each of the three most popular aromatic rice varieties in the market using an untargeted metabolomics approach. The 656 metabolites of five rice grain varieties were determined by headspace solid-phase extraction gas chromatography-mass spectrometry, and the multivariate analyses were used to iden- tify differences in metabolites among rice varieties. The metabolites most differentially abundant between Daohuaxiang 2 and non-aromatic rice included 2-acetyl-1-pyrroline and acetoin; the metabo- lites most differentially abundant between Meixiangzhan 2 and non-aromatic rice included acetoin and 2-methyloctylbenzene,; and the metabolites most differentially abundant between Yexiangyoulisi Citation: Jie, Y.; Shi, T.; Zhang, Z.; and non-aromatic rice included bicyclo[4.4.0]dec,1-ene-2-isopropyl-5-methyl-9-methylene and 2- Yan, Q.
    [Show full text]
  • FCC 10, Second Supplement the Following Index Is for Convenience and Informational Use Only and Shall Not Be Used for Interpretive Purposes
    Index to FCC 10, Second Supplement The following Index is for convenience and informational use only and shall not be used for interpretive purposes. In addition to effective articles, this Index may also include items recently omitted from the FCC in the indicated Book or Supplement. The monographs and general tests and assay listed in this Index may reference other general test and assay specifications. The articles listed in this Index are not intended to be autonomous standards and should only be interpreted in the context of the entire FCC publication. For the most current version of the FCC please see the FCC Online. Second Supplement, FCC 10 Index / Allura Red AC / I-1 Index Titles of monographs are shown in the boldface type. A 2-Acetylpyrrole, 21 Alcohol, 90%, 1625 2-Acetyl Thiazole, 18 Alcohol, Absolute, 1624 Abbreviations, 7, 3779, 3827 Acetyl Valeryl, 608 Alcohol, Aldehyde-Free, 1625 Absolute Alcohol (Reagent), 5, 3777, Acetyl Value, 1510 Alcohol C-6, 626 3825 Achilleic Acid, 25 Alcohol C-8, 933 Acacia, 602 Acid (Reagent), 5, 3777, 3825 Alcohol C-9, 922 ªAccuracyº, Defined, 1641 Acid-Hydrolyzed Milk Protein, 22 Alcohol C-10, 390 Acesulfame K, 9 Acid-Hydrolyzed Proteins, 22 Alcohol C-11, 1328 Acesulfame Potassium, 9 Acid Calcium Phosphate, 240 Alcohol C-12, 738 Acetal, 10 Acid Hydrolysates of Proteins, 22 Alcohol C-16, 614 Acetaldehyde, 11 Acidic Sodium Aluminum Phosphate, Alcohol Content of Ethyl Oxyhydrate Acetaldehyde Diethyl Acetal, 10 1148 Flavor Chemicals (Other than Acetaldehyde Test Paper, 1636 Acidified Sodium Chlorite
    [Show full text]
  • Acetoin Diacetyl
    Acetoin Diacetyl Method no.: 1012 Control no.: T-1012-FV-01-0811-M Target concentration: 0.05 ppm (TWA) (0.18 mg/m3) acetoin 0.05 ppm (TWA) (0.18 mg/m3) diacetyl OSHA PEL: none acetoin none diacetyl ACGIH TLV: none acetoin none diacetyl Procedure: Samples are collected by drawing workplace air through two tubes containing specially cleaned and dried silica gel connected in series. Samples are extracted and derivatized with a solution of 95:5 ethyl alcohol:water containing 2 mg/mL of O-(2, 3, 4, 5, 6-pentafluorobenzyl) hydroxylamine hydrochloride (PFBHA) and analyzed by gas chromatography using an electron capture detector (GC-ECD). Recommended sampling time 180 min at 0.05 L/min (9.0 L) (TWA) and sampling rate: 15 min at 0.2 L/min (3 L) (short term) Reliable quantitation limit: 1.49 ppb (5.37 μg/m3) acetoin 1.30 ppb (4.57 μg/m3) diacetyl Standard error of 5.06% acetoin estimate at the target 5.11% diacetyl concentration: Special requirements: Protect samplers from the light during and after sampling with aluminum foil or opaque tape. Status of method: Evaluated method. This method has been subjected to the established evaluation procedures of the OSHA Salt Lake Technical Center Methods Development Team. November 2008 Mary E. Eide Methods Development Team Industrial Hygiene Chemistry Division OSHA Salt Lake Technical Center Sandy UT 84070-6406 1 of 34 T-1012-FV-01-0811-M 1. General Discussion For assistance with accessibility problems in using figures and illustrations presented in this method, please contact Salt Lake Technical Center (SLTC) at (801) 233-4900.
    [Show full text]
  • Characterization and Regulation of the Acetolactate Synthase Genes Involved in Acetoin Biosynthesis in Acetobacter Pasteurianus
    foods Article Characterization and Regulation of the Acetolactate Synthase Genes Involved in Acetoin Biosynthesis in Acetobacter pasteurianus Jingyi Zhao , Zhe Meng, Xiaolong Ma, Shumei Zhao, Yang An and Zijun Xiao * Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao 266580, China; [email protected] (J.Z.); [email protected] (Z.M.); [email protected] (X.M.); [email protected] (S.Z.); [email protected] (Y.A.) * Correspondence: [email protected] Abstract: Acetoin is an important aroma-active chemical in cereal vinegars. Acetobacter pasteurianus was reported to make a significant contribution to acetoin generation in cereal vinegars. However, the related acetoin biosynthesis mechanism was largely unknown. Two annotated acetolactate synthase (ALS) genes of A. pasteurianus were investigated in this study to analyze their functions and regulatory mechanisms. Heterologous expression in Escherichia coli revealed that only AlsS1 exhibited ALS activity and had the optimal activity at 55 ◦C and pH 6.5. Two alsS-defective mutants of A. pasteurianus CICC 22518 were constructed, and their acetoin yields were both reduced, suggesting that two alsS genes participated in acetoin biosynthesis. A total 79.1% decrease in acetoin yield in the alsS1 alsS1 alsR -defective mutant revealed that took a major role. The regulator gene disruptant was constructed to analyze the regulation effect. The decline of the acetoin yield and down-regulation of the alsD and alsS1 gene transcriptions were detected, but the alsS2 gene transcription was not affected. Citation: Zhao, J.; Meng, Z.; Ma, X.; Zhao, S.; An, Y.; Xiao, Z.
    [Show full text]