Population and Community Ecology RK Kohli, DR Batish and HP Singh
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Priority Actions to Improve Provenance Decision-Making
Forum Priority Actions to Improve Provenance Decision-Making MARTIN F. BREED, PETER A. HARRISON, ARMIN BISCHOFF, PAULA DURRUTY, NICK J. C. GELLIE, EMILY K. GONZALES, KAYRI HAVENS, MARION KARMANN, FRANCIS F. KILKENNY, SIEGFRIED L. KRAUSS, ANDREW J. LOWE, PEDRO MARQUES, PAUL G. NEVILL, PATI L. VITT, AND ANNA BUCHAROVA Selecting the geographic origin—the provenance—of seed is a key decision in restoration. The last decade has seen a vigorous debate on whether to use local or nonlocal seed. The use of local seed has been the preferred approach because it is expected to maintain local adaptation and avoid deleterious population effects (e.g., maladaptation and outbreeding depression). However, the impacts of habitat fragmentation and climate change on plant populations have driven the debate on whether the local-is-best standard needs changing. This debate has largely been theoretical in nature, which hampers provenance decision-making. Here, we detail cross-sector priority actions to improve provenance decision-making, including embedding provenance trials into restoration projects; developing dynamic, evidence-based provenance policies; and establishing stronger research–practitioner collaborations to facilitate the adoption of research outcomes. We discuss how to tackle these priority actions in order to help satisfy the restoration sector’s requirement for appropriately provenanced seed. Keywords: assisted migration, ecological restoration, local adaptation, restoration genetics he restoration sector’s demand for seed is Williams et al. 2014, Havens et al. 2015, Prober et al. 2015, Tenormous and is rapidly increasing with the growth Breed et al. 2016b, Christmas et al. 2016b). in the global restoration effort (Verdone and Seidl 2017). -
Ecotone Properties and Influences on Fish Distributions Along Habitat Gradients of Complex Aquatic Systems
ECOTONE PROPERTIES AND INFLUENCES ON FISH DISTRIBUTIONS ALONG HABITAT GRADIENTS OF COMPLEX AQUATIC SYSTEMS A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Nuanchan Singkran May 2007 © 2007 Nuanchan Singkran ECOTONE PROPERTIES AND INFLUENCES ON FISH DISTRIBUTIONS ALONG HABITAT GRADIENTS OF COMPLEX AQUATIC SYSTEMS Nuanchan Singkran, Ph. D. Cornell University 2007 Ecotone properties (formation and function) were studied in complex aquatic systems in New York State. Ecotone formations were detected on two embayment- stream gradients associated with Lake Ontario during June–August 2002, using abrupt changes in habitat variables and fish species compositions. The study was repeated at a finer scale along the second gradient during June–August 2004. Abrupt changes in the habitat variables (water depth, current velocity, substrates, and covers) and peak species turnover rate showed strong congruence at the same location on one gradient. The repeated study on the second gradient in the summer of 2004 confirmed the same ecotone orientation as that detected in the summer of 2002 and revealed the ecotone width covering the lentic-lotic transitions. The ecotone on the second gradient acted as a hard barrier for most of the fish species. Ecotone properties were determined along the Hudson River estuary gradient during 1974–2001 using the same methods employed in the freshwater system. The Hudson ecotones showed both changes in location and structural formation over time. Influences of tide, freshwater flow, salinity, dissolved oxygen, and water temperature tended to govern ecotone properties. One ecotone detected in the lower-middle gradient portion appeared to be the optimal zone for fish assemblages, but the other ecotones acted as barriers for most fish species. -
Journal of Ecology, 109 (1)
Article (refereed) - postprint This is the peer reviewed version of the following article: Formenti, Ludovico; Caggìa, Veronica; Puissant, Jeremy; Goodall, Tim; Glauser, Gaétan; Griffiths, Robert; Rasmann, Sergio. 2021. The effect of root‐associated microbes on plant growth and chemical defence traits across two contrasted elevations. Journal of Ecology, 109 (1). 38-50, which has been published in final form at https://doi.org/10.1111/1365-2745.13440 This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. © 2020 British Ecological Society This version is available at https://nora.nerc.ac.uk/id/eprint/528184/ Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at https://nora.nerc.ac.uk/policies.html#access. This document is the authors’ final manuscript version of the journal article, incorporating any revisions agreed during the peer review process. There may be differences between this and the publisher’s version. You are advised to consult the publisher’s version if you wish to cite from this article. The definitive version is available at https://onlinelibrary.wiley.com/ Contact UKCEH NORA team at [email protected] The NERC and UKCEH trademarks and logos (‘the Trademarks’) are registered trademarks of NERC and UKCEH in the UK and other countries, and may not be used without the prior written consent of the Trademark owner. Journal of Ecology DR SERGIO RASMANN -
Effects of Beaver Dams on Benthic Macroinvertebrates
Effects ofbeaver dams onbenthic macroinvertebrates Andreas Johansson Degree project inbiology, Master ofscience (2years), 2014 Examensarbete ibiologi 45 hp tillmasterexamen, 2014 Biology Education Centre, Uppsala University, and Department ofAquatic Sciences and Assessment, SLU Supervisor: Frauke Ecke External opponent: Peter Halvarsson ABSTRACT In the 1870's the beaver (Castor fiber), population in Sweden had been exterminated. The beaver was reintroduced to Sweden from the Norwegian population between 1922 and 1939. Today the population has recovered and it is estimated that the population of C. fiber in all of Europe today ranges around 639,000 individuals. The main aim with this study was to investigate if there was any difference in species diversity between sites located upstream and downstream of beaver ponds. I found no significant difference in species diversity between these sites and the geographical location of the streams did not affect the species diversity. This means that in future studies it is possible to consider all streams to be replicates despite of geographical location. The pond age and size did on the other hand affect the species diversity. Young ponds had a significantly higher diversity compared to medium-aged ponds. Small ponds had a significantly higher diversity compared to medium-sized and large ponds. The upstream and downstream reaches did not differ in terms of CPOM amount but some water chemistry variables did differ between them. For the functional feeding groups I only found a difference between the sites for predators, which were more abundant downstream of the ponds. SAMMANFATTNING Under 1870-talet utrotades den svenska populationen av bäver (Castor fiber). -
Implications for Biogeographical Theory and the Conservation of Nature
Journal of Biogeography (J. Biogeogr.) (2004) 31, 177–197 GUEST The mismeasure of islands: implications EDITORIAL for biogeographical theory and the conservation of nature Hartmut S. Walter Department of Geography, University of ABSTRACT California, Los Angeles, CA, USA The focus on place rather than space provides geography with a powerful raison d’eˆtre. As in human geography, the functional role of place is integral to the understanding of evolution, persistence and extinction of biotic taxa. This paper re-examines concepts and biogeographical evidence from a geographical rather than ecological or evolutionary perspective. Functional areography provides convincing arguments for a postmodern deconstruction of major principles of the dynamic Equilibrium Theory of Island Biogeography (ETIB). Endemic oceanic island taxa are functionally insular as a result of long-term island stability, con- finement, isolation, and protection from continental invasion and disturbance. Most continental taxa persist in different, more complex and open spatial systems; their geographical place is therefore fundamentally distinct from the functional insularity of oceanic island taxa. This creates an insular-continental polarity in biogeography that is currently not reflected in conservation theory. The focus on the biogeographical place leads to the development of the eigenplace concept de- fined as the functional spatial complex of existence. The application of still popular ETIB concepts in conservation biology is discouraged. The author calls for the Correspondence: Hartmut S. Walter, integration of functional areography into modern conservation science. Department of Geography, University of Keywords California, Los Angeles, P. O. Box 951524, CA 90095-1524, USA. Functional areography, geographical place, eigenplace concept, island biogeog- E-mail: [email protected] raphy, insularity, continentality, conservation biology, nature conservation. -
What Are Plant Ecotypes?
United States Department of Agriculture Natural Resources Conservation Service Technical Note No: TX-PM-10-5 August 2010 What Are Plant Ecotypes? Plant Materials Technical Note Variation in early greenup of switchgrass collections in a common garden plot, Shelly Maher, E. “Kika” de la Garza PMC Range scientists and agronomists have shown that individual species having a large geographical distribution vary considerably in such characteristics as plant height, growth habits, maturation dates, leaf appearance, and reproductive habits. These characteristics are not distributed randomly throughout the range of the species but are clustered into ecological regions (ecoregions) or seed transfer zones. Plants within these ecological regions are known as ecotypes. Ecotypes were first recognized by scientists as far back as the 1920’s. Grass ecotypes assembled in common garden studies revealed that northern ecotypes of sideoats grama flower earlier than more southern ecotypes, resulting in shorter plants. Ecotypes of little bluestem originating from either sandy or clay soils did not do well when placed on soils of the opposite texture. More recently Dr. Danny Gustafson found that genetic, morphological and phenological differences existed between ecoregional sources of big bluestem, Indiangrass and purple prairie clover. Locally adapted plant materials are widely recommended because of their increased chances of establishment success and genetic compatibility with surrounding populations. However, it is important to consider the isolation and thus the potential genetic inbreeding of limiting oneself solely to localized remnant populations. Frequently people try to simplify what an ecotype is by stating that it is a plant that is within 100-200 miles of its center of origin. -
Emergent Biogeography of Microbial Communities in a Model Ocean
REPORTS germ insects not only uncovers those features es- mRNA localization indeed appears to be an sential to this developmental mode but also sheds important component of long-germ embryogene- light on how the bcd-dependent anterior patterning sis, perhaps even playing a role in the transition program might have evolved. Through analysis of from the ancestral short-germ to the derived long- the regulation of the trunk gap gene Kr in Dro- germ fate. sophila and Nasonia,wehavebeenabletodem- onstrate that anterior repression of Kr is essential References and Notes for head and thorax formation and is a common 1. G. K. Davis, N. H. Patel, Annu. Rev. Entomol. 47, 669 (2002). feature of long-germ patterning. Both insects 2. T. Berleth et al., EMBO J. 7, 1749 (1988). accomplish this task through maternal, anteriorly 3. W. Driever, C. Nusslein-Volhard, Cell 54, 83 (1988). localized factors that either indirectly (Drosophila) 4. J. Lynch, C. Desplan, Curr. Biol. 13, R557 (2003). or directly (Nasonia) repress Kr and, hence, trunk 5. J. A. Lynch, A. E. Brent, D. S. Leaf, M. A. Pultz, C. Desplan, Nature 439, 728 (2006). fates. In Drosophila, the terminal system and bcd 6. J. Savard et al., Genome Res. 16, 1334 (2006). regulate expression of gap genes, including Dm-gt, 7. G. Struhl, P. Johnston, P. A. Lawrence, Cell 69, 237 (1992). that repress Dm-Kr. Nasonia’s bcd-independent 8. A. Preiss, U. B. Rosenberg, A. Kienlin, E. Seifert, long-germ embryos must solve the same problem, H. Jackle, Nature 313, 27 (1985). Fig. 4. -
A Review of Caribou Population Dynamics in Alaska Emphasizing Limiting Factors, Theory, and Management Implications
DAVIS A REVIEW OF CARIBOU POPULATION DYNAMICS IN ALASKA EMPHASIZING LIMITING FACTORS, THEORY, AND MANAGEMENT IMPLICATIONS James L. Davis, Alaska Department of Fish and Game, 1300 College Road, Fairbanks, AK 99701 U.S.A. Patrick Valkenburg, Alaska Department of Fish and Ga;me, 1300 College Road, Fairbanks, AK 99701 USA 1 Abstract: Alaska's 29 recognized caribou (Rangifer tarandus granti) herds are classified to identify those that are both migratory and inhabit areas where moose (Alces alces) (or other ungulates) are important alternate prey. During the time that detailed demographic data have been obtained (i.e., 1960s-1980s), natural mortality and human-induced mortality have varied more and have more influenced Alaska's caribou herd demographics than have natality changes. Dispersal has not significantly influenced population dynamics during this time and has not been consistent with theory in the caribou literature. Detailed demographic data have been obtained primarily during low and increasing phases of populations. Recent conclusions regarding limiting and regulating factors are compared and contrasted with past reviews of Alaskan caribou population dynamics. INTRODUCTION For discussion at the 4th North American Caribou Workshop, caribou in North America were envisioned as comprising 3 ecotypes (F. Messier, pers. commun.): ecotype 1- woodland caribou (B-~ caribou) - 184 -- ---------~-------------------- living in association with alternate ungulate prey (e.g., British Columbia caribou); ecotype 2- migratory caribou herds that inhabit areas also used by alternate ungulate prey (particularly moose) (e.g. , Alaska caribou) ; and ecotype 3 - migratory caribou herds having limited contact with alternate ungulate prey (e.g., the George River Herd in Quebec/Labrador). This paper discusses population dynamics in the Alaskan caribou ecotype. -
On the Nature and Nomenclature of Ecology's Fourth Level
Biol. Rev. (2008), 83, pp. 71–78. 71 doi:10.1111/j.1469-185X.2007.00032.x Levels of organization in biology: on the nature and nomenclature of ecology’s fourth level William Z. Lidicker, Jr.* Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA (Received 30 May 2007; revised 15 October 2007; accepted 22 October 2007) ABSTRACT Viewing the universe as being composed of hierarchically arranged systems is widely accepted as a useful model of reality. In ecology, three levels of organization are generally recognized: organisms, populations, and communities (biocoenoses). For half a century increasing numbers of ecologists have concluded that recognition of a fourth level would facilitate increased understanding of ecological phenomena. Sometimes the word ‘‘ecosystem’’ is used for this level, but this is arguably inappropriate. Since 1986, I and others have argued that the term ‘‘landscape’’ would be a suitable term for a level of organization defined as an ecological system containing more than one community type. However, ‘‘landscape’’ and ‘‘landscape level’’ continue to be used extensively by ecologists in the popular sense of a large expanse of space. I therefore now propose that the term ‘‘ecoscape’’ be used instead for this fourth level of organization. A clearly defined fourth level for ecology would focus attention on the emergent properties of this level, and maintain the spatial and temporal scale-free nature inherent in this hierarchy of organizational levels for living entities. Key words: ecoscape, landscape, ecosystem, ecological system, spatial ecology, hierarchy theory, community ecology, emergent properties, holism, spatial and temporal scales. CONTENTS I. Introduction ......................................................................................................................................... -
Ecological Features and Processes of Lakes and Wetlands
Ecological features and processes of lakes and wetlands Lakes are complex ecosystems defined by all system components affecting surface and ground water gains and losses. This includes the atmosphere, precipitation, geomorphology, soils, plants, and animals within the entire watershed, including the uplands, tributaries, wetlands, and other lakes. Management from a whole watershed perspective is necessary to protect and maintain healthy lake systems. This concept is important for managing the Great Lakes as well as small inland lakes, even those without tributary streams. A good example of the need to manage from a whole watershed perspective is the significant ecological changes that have occurred in the Great Lakes. The Great Lakes are vast in size, and it is hard to imagine that building a small farm or home, digging a channel for shipping, fishing, or building a small dam could affect the entire system. However, the accumulation of numerous human development activities throughout the entire Great Lakes watershed resulted in significant changes to one of the largest freshwater lake systems in the world. The historic organic contamination problems, nutrient problems, and dramatic fisheries changes in our Great Lakes are examples of how cumulative factors within a watershed affect a lake. Habitat refers to an area that provides the necessary resources and conditions for an organism to survive. Because organisms often require different habitat components during various life stages (reproduction, maturation, migration), habitat for a particular species may encompass several cover types, plant communities, or water-depth zones during the organism's life cycle. Moreover, most species of fish and wildlife are part of a complex web of interactions that result in successful feeding, reproduction, and predator avoidance. -
Diversity and Distribution of Cold-Seep Fauna Associated With
Marine Biology Archimer June 2011, Volume 158, Issue 6, Pages 1187-1210 http://archimer.ifremer.fr http://dx.doi.org/10.1007/s00227-011-1679-6 © 2011, Springer-Verlag The original publication is available at http://www.springerlink.com ailable on the publisher Web site Diversity and distribution of cold-seep fauna associated with different geological and environmental settings at mud volcanoes and pockmarks of the Nile Deep-Sea Fan Bénédicte Ritta, *, Catherine Pierreb, Olivier Gauthiera, c, d, Frank Wenzhöfere, f, Antje Boetiuse, f and Jozée Sarrazina, * blisher-authenticated version is av aIfremer, Centre de Brest, Département Etude des Ecosystèmes Profonds/Laboratoire Environnement Profond, BP 70, 29280 Plouzané, France bLOCEAN, UMR 7159, Université Pierre et Marie Curie,75005 Paris, France cLEMAR, UMR 6539, Universiteé de Bretagne Occidentale, Place N. Copernic, 29200 Plouzaneé, France dEcole Pratique des Hautes Etudes CBAE, UMR 5059, 163 rue Auguste Broussonet, 34000 Montpellier, France eMPI, Habitat Group, Celsiusstrasse 1, 28359 Bremen, Germany fAWI, HGF MPG Research Group on Deep Sea Ecology and Technology, 27515 Bremerhaven, Germany *: Corresponding authors : Bénédicte Ritt, email address : [email protected] ; [email protected] Jozée Sarrazin, Tel.: +33 2 98 22 43 29, Fax: +33 2 98 22 47 57, email address : [email protected] Abstract : The Nile Deep-Sea Fan (NDSF) is located on the passive continental margin off Egypt and is characterized by the occurrence of active fluid seepage such as brine lakes, pockmarks and mud volcanoes. This study characterizes the structure of faunal assemblages of such active seepage systems of the NDSF. Benthic communities associated with reduced, sulphidic microhabitats such as ccepted for publication following peer review. -
An Introduction to Mid-Latitude Ecotone: Sustainability and Environmental Challenges J
СИБИРСКИЙ ЛЕСНОЙ ЖУРНАЛ. 2017. № 6. С. 41–53 UDC 630*181 AN INTRODUCTION TO MID-LATITUDE ECOTONE: SUSTAINABILITy AND ENVIRONMENTAL CHALLENGES J. Moon1, w. K. Lee1, C. Song1, S. G. Lee1, S. B. Heo1, A. Shvidenko2, 3, F. Kraxner2, M. Lamchin1, E. J. Lee4, y. Zhu1, D. Kim5, G. Cui6 1 Korea University, College of Life Sciences and Biotechnology East Building, 322, Anamro Seungbukgu, 145, Seoul, 02841 Republic of Korea 2 International Institute for Applied Systems Analysis (IIASA) Schlossplatz, 1, Laxenburg, 2361 Austria 3 Federal Research Center Krasnoyarsk Scientific Center, Russian Academy of Sciences, Siberian Branch V. N. Sukachev Institute of Forest, Russian Academy of Sciences, Siberian Branch Akademgorodok, 50/28, Krasnoyarsk, 660036 Russian Federation 4 Korea Environment Institute Bldg B, Sicheong-daero, 370, Sejong-si, 30147 Republic of Korea 5 National Research Foundation of Korea Heonreung-ro, 25, Seocho-gu, Seoul, 06792 Republic of Korea 6 Yanbian University Gongyuan Road, 977, Yanji, Jilin Province, China E-mail: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] Received 18.07.2016 The mid-latitude zone can be broadly defined as part of the hemisphere between 30°–60° latitude. This zone is home to over 50 % of the world population and encompasses about 36 countries throughout the principal region, which host most of the world’s development and poverty related problems. In reviewing some of the past and current major environmental challenges that parts of mid-latitudes are facing, this study sets the context by limiting the scope of mid- latitude region to that of Northern hemisphere, specifically between 30°–45° latitudes which is related to the warm temperate zone comprising the Mid-Latitude ecotone – a transition belt between the forest zone and southern dry land territories.