An Example of a Computable Absolutely Normal Number
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Calcium: Computing in Exact Real and Complex Fields Fredrik Johansson
Calcium: computing in exact real and complex fields Fredrik Johansson To cite this version: Fredrik Johansson. Calcium: computing in exact real and complex fields. ISSAC ’21, Jul 2021, Virtual Event, Russia. 10.1145/3452143.3465513. hal-02986375v2 HAL Id: hal-02986375 https://hal.inria.fr/hal-02986375v2 Submitted on 15 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Calcium: computing in exact real and complex fields Fredrik Johansson [email protected] Inria Bordeaux and Institut Math. Bordeaux 33400 Talence, France ABSTRACT This paper presents Calcium,1 a C library for exact computa- Calcium is a C library for real and complex numbers in a form tion in R and C. Numbers are represented as elements of fields suitable for exact algebraic and symbolic computation. Numbers Q¹a1;:::; anº where the extension numbers ak are defined symbol- ically. The system constructs fields and discovers algebraic relations are represented as elements of fields Q¹a1;:::; anº where the exten- automatically, handling algebraic and transcendental number fields sion numbers ak may be algebraic or transcendental. The system combines efficient field operations with automatic discovery and in a unified way. -
Zero-One Laws
1 THE LOGIC IN COMPUTER SCIENCE COLUMN by 2 Yuri GUREVICH Electrical Engineering and Computer Science UniversityofMichigan, Ann Arb or, MI 48109-2122, USA [email protected] Zero-One Laws Quisani: I heard you talking on nite mo del theory the other day.Itisinteresting indeed that all those famous theorems ab out rst-order logic fail in the case when only nite structures are allowed. I can understand that for those, likeyou, educated in the tradition of mathematical logic it seems very imp ortantto ndoutwhichof the classical theorems can b e rescued. But nite structures are to o imp ortant all by themselves. There's got to b e deep nite mo del theory that has nothing to do with in nite structures. Author: \Nothing to do" sounds a little extremist to me. Sometimes in nite ob jects are go o d approximations of nite ob jects. Q: I do not understand this. Usually, nite ob jects approximate in nite ones. A: It may happ en that the in nite case is cleaner and easier to deal with. For example, a long nite sum may b e replaced with a simpler integral. Returning to your question, there is indeed meaningful, inherently nite, mo del theory. One exciting issue is zero- one laws. Consider, say, undirected graphs and let be a propertyofsuch graphs. For example, may b e connectivity. What fraction of n-vertex graphs have the prop erty ? It turns out that, for many natural prop erties , this fraction converges to 0 or 1asn grows to in nity. If the fraction converges to 1, the prop erty is called almost sure. -
On the Normality of Numbers
ON THE NORMALITY OF NUMBERS Adrian Belshaw B. Sc., University of British Columbia, 1973 M. A., Princeton University, 1976 A THESIS SUBMITTED 'IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in the Department of Mathematics @ Adrian Belshaw 2005 SIMON FRASER UNIVERSITY Fall 2005 All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. APPROVAL Name: Adrian Belshaw Degree: Master of Science Title of Thesis: On the Normality of Numbers Examining Committee: Dr. Ladislav Stacho Chair Dr. Peter Borwein Senior Supervisor Professor of Mathematics Simon Fraser University Dr. Stephen Choi Supervisor Assistant Professor of Mathematics Simon Fraser University Dr. Jason Bell Internal Examiner Assistant Professor of Mathematics Simon Fraser University Date Approved: December 5. 2005 SIMON FRASER ' u~~~snrllbrary DECLARATION OF PARTIAL COPYRIGHT LICENCE The author, whose copyright is declared on the title page of this work, has granted to Simon Fraser University the right to lend this thesis, project or extended essay to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. The author has further granted permission to Simon Fraser University to keep or make a digital copy for use in its circulating collection, and, without changing the content, to translate the thesislproject or extended essays, if technically possible, to any medium or format for the purpose of preservation of the digital work. -
Diophantine Approximation and Transcendental Numbers
Diophantine Approximation and Transcendental Numbers Connor Goldstick June 6, 2017 Contents 1 Introduction 1 2 Continued Fractions 2 3 Rational Approximations 3 4 Transcendental Numbers 6 5 Irrationality Measure 7 6 The continued fraction for e 8 6.1 e's Irrationality measure . 10 7 Conclusion 11 A The Lambert Continued Fraction 11 1 Introduction Suppose we have an irrational number, α, that we want to approximate with a rational number, p=q. This question of approximating an irrational number is the primary concern of Diophantine approximation. In other words, we want jα−p=qj < . However, this method of trying to approximate α is boring, as it is possible to get an arbitrary amount of precision by making q large. To remedy this problem, it makes sense to vary with q. The problem we are really trying to solve is finding p and q such that p 1 1 jα − j < which is equivalent to jqα − pj < (1) q q2 q Solutions to this problem have applications in both number theory and in more applied fields. For example, in signal processing many of the quickest approximation algorithms are given by solutions to Diophantine approximation problems. Diophantine approximations also give many important results like the continued fraction expansion of e. One of the most interesting aspects of Diophantine approximations are its relationship with transcendental 1 numbers (a number that cannot be expressed of the root of a polynomial with rational coefficients). One of the key characteristics of a transcendental number is that it is easy to approximate with rational numbers. This paper is separated into two categories. -
Network Intrusion Detection with Xgboost and Deep Learning Algorithms: an Evaluation Study
2020 International Conference on Computational Science and Computational Intelligence (CSCI) Network Intrusion Detection with XGBoost and Deep Learning Algorithms: An Evaluation Study Amr Attia Miad Faezipour Abdelshakour Abuzneid Computer Science & Engineering Computer Science & Engineering Computer Science & Engineering University of Bridgeport, CT 06604, USA University of Bridgeport, CT 06604, USA University of Bridgeport, CT 06604, USA [email protected] [email protected] [email protected] Abstract— This paper introduces an effective Network Intrusion In the KitNET model introduced in [2], an unsupervised Detection Systems (NIDS) framework that deploys incremental technique is introduced for anomaly-based intrusion statistical damping features of the packets along with state-of- detection. Incremental statistical feature extraction of the the-art machine/deep learning algorithms to detect malicious packets is passed through ensembles of autoencoders with a patterns. A comprehensive evaluation study is conducted predefined threshold. The model calculates the Root Mean between eXtreme Gradient Boosting (XGBoost) and Artificial Neural Networks (ANN) where feature selection and/or feature Square (RMS) error to detect anomaly behavior. The higher dimensionality reduction techniques such as Principal the calculated RMS at the output, the higher probability of Component Analysis (PCA) and Linear Discriminant Analysis suspicious activity. (LDA) are also integrated into the models to decrease the system Supervised learning has achieved very decent results with complexity for achieving fast responses. Several experimental algorithms such as Random Forest, ZeroR, J48, AdaBoost, runs confirm how powerful machine/deep learning algorithms Logit Boost, and Multilayer Perceptron [3]. Machine/deep are for intrusion detection on known attacks when combined learning-based algorithms for NIDS have been extensively with the appropriate features extracted. -
The Prime Number Theorem a PRIMES Exposition
The Prime Number Theorem A PRIMES Exposition Ishita Goluguri, Toyesh Jayaswal, Andrew Lee Mentor: Chengyang Shao TABLE OF CONTENTS 1 Introduction 2 Tools from Complex Analysis 3 Entire Functions 4 Hadamard Factorization Theorem 5 Riemann Zeta Function 6 Chebyshev Functions 7 Perron Formula 8 Prime Number Theorem © Ishita Goluguri, Toyesh Jayaswal, Andrew Lee, Mentor: Chengyang Shao 2 Introduction • Euclid (300 BC): There are infinitely many primes • Legendre (1808): for primes less than 1,000,000: x π(x) ' log x © Ishita Goluguri, Toyesh Jayaswal, Andrew Lee, Mentor: Chengyang Shao 3 Progress on the Distribution of Prime Numbers • Euler: The product formula 1 X 1 Y 1 ζ(s) := = ns 1 − p−s n=1 p so (heuristically) Y 1 = log 1 1 − p−1 p • Chebyshev (1848-1850): if the ratio of π(x) and x= log x has a limit, it must be 1 • Riemann (1859): On the Number of Primes Less Than a Given Magnitude, related π(x) to the zeros of ζ(s) using complex analysis • Hadamard, de la Vallée Poussin (1896): Proved independently the prime number theorem by showing ζ(s) has no zeros of the form 1 + it, hence the celebrated prime number theorem © Ishita Goluguri, Toyesh Jayaswal, Andrew Lee, Mentor: Chengyang Shao 4 Tools from Complex Analysis Theorem (Maximum Principle) Let Ω be a domain, and let f be holomorphic on Ω. (A) jf(z)j cannot attain its maximum inside Ω unless f is constant. (B) The real part of f cannot attain its maximum inside Ω unless f is a constant. Theorem (Jensen’s Inequality) Suppose f is holomorphic on the whole complex plane and f(0) = 1. -
Computability on the Real Numbers
4. Computability on the Real Numbers Real numbers are the basic objects in analysis. For most non-mathematicians a real number is an infinite decimal fraction, for example π = 3•14159 ... Mathematicians prefer to define the real numbers axiomatically as follows: · (R, +, , 0, 1,<) is, up to isomorphism, the only Archimedean ordered field satisfying the axiom of continuity [Die60]. The set of real numbers can also be constructed in various ways, for example by means of Dedekind cuts or by completion of the (metric space of) rational numbers. We will neglect all foundational problems and assume that the real numbers form a well-defined set R with all the properties which are proved in analysis. We will denote the R real line topology, that is, the set of all open subsets of ,byτR. In Sect. 4.1 we introduce several representations of the real numbers, three of which (and the equivalent ones) will survive as useful. We introduce a rep- n n resentation ρ of R by generalizing the definition of the main representation ρ of the set R of real numbers. In Sect. 4.2 we discuss the computable real numbers. Sect. 4.3 is devoted to computable real functions. We show that many well known functions are computable, and we show that partial sum- mation of sequences is computable and that limit operator on sequences of real numbers is computable, if a modulus of convergence is given. We also prove a computability theorem for power series. Convention 4.0.1. We still assume that Σ is a fixed finite alphabet con- taining all the symbols we will need. -
Computability and Analysis: the Legacy of Alan Turing
Computability and analysis: the legacy of Alan Turing Jeremy Avigad Departments of Philosophy and Mathematical Sciences Carnegie Mellon University, Pittsburgh, USA [email protected] Vasco Brattka Faculty of Computer Science Universit¨at der Bundeswehr M¨unchen, Germany and Department of Mathematics and Applied Mathematics University of Cape Town, South Africa and Isaac Newton Institute for Mathematical Sciences Cambridge, United Kingdom [email protected] October 31, 2012 1 Introduction For most of its history, mathematics was algorithmic in nature. The geometric claims in Euclid’s Elements fall into two distinct categories: “problems,” which assert that a construction can be carried out to meet a given specification, and “theorems,” which assert that some property holds of a particular geometric configuration. For example, Proposition 10 of Book I reads “To bisect a given straight line.” Euclid’s “proof” gives the construction, and ends with the (Greek equivalent of) Q.E.F., for quod erat faciendum, or “that which was to be done.” arXiv:1206.3431v2 [math.LO] 30 Oct 2012 Proofs of theorems, in contrast, end with Q.E.D., for quod erat demonstran- dum, or “that which was to be shown”; but even these typically involve the construction of auxiliary geometric objects in order to verify the claim. Similarly, algebra was devoted to developing algorithms for solving equa- tions. This outlook characterized the subject from its origins in ancient Egypt and Babylon, through the ninth century work of al-Khwarizmi, to the solutions to the quadratic and cubic equations in Cardano’s Ars Magna of 1545, and to Lagrange’s study of the quintic in his R´eflexions sur la r´esolution alg´ebrique des ´equations of 1770. -
Network Topology Generators: Degree-Based Vs
Network Topology Generators: Degree-Based vs. Structural Hongsuda Tangmunarunkit Ramesh Govindan Sugih Jamin USC-ISI ICSI Univ. of Michigan [email protected] [email protected] [email protected] Scott Shenker Walter Willinger ICSI AT&T Research [email protected] [email protected] ABSTRACT in the Internet more closely; we find that degree-based generators Following the long-held belief that the Internet is hierarchical, the produce a form of hierarchy that closely resembles the loosely hi- network topology generators most widely used by the Internet re- erarchical nature of the Internet. search community, Transit-Stub and Tiers, create networks with a deliberately hierarchical structure. However, in 1999 a seminal Categories and Subject Descriptors paper by Faloutsos et al. revealed that the Internet’s degree distri- bution is a power-law. Because the degree distributions produced C.2.1 [Computer-Communication Networks]: Network Archi- by the Transit-Stub and Tiers generators are not power-laws, the tecture and Design—Network topology; I.6.4 [Simulation and Mod- research community has largely dismissed them as inadequate and eling]: Model Validation and Analysis proposed new network generators that attempt to generate graphs with power-law degree distributions. General Terms Contrary to much of the current literature on network topology generators, this paper starts with the assumption that it is more im- Performance, Measurement portant for network generators to accurately model the large-scale structure of the Internet (such as its hierarchical structure) than to Keywords faithfully imitate its local properties (such as the degree distribu- tion). The purpose of this paper is to determine, using various Network topology, hierarchy, topology characterization, topology topology metrics, which network generators better represent this generators, structural generators, degree-based generators, topol- large-scale structure. -
Some of Erdös' Unconventional Problems in Number Theory, Thirty
Some of Erdös’ unconventional problems in number theory, thirty-four years later Gérald Tenenbaum To cite this version: Gérald Tenenbaum. Some of Erdös’ unconventional problems in number theory, thirty-four years later. Erdös centennial, János Bolyai Math. Soc., pp.651-681, 2013. hal-01281530 HAL Id: hal-01281530 https://hal.archives-ouvertes.fr/hal-01281530 Submitted on 2 Mar 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. (26/5/2014, 16h36) Some of Erd˝os’ unconventional problems in number theory, thirty-four years later G´erald Tenenbaum There are many ways to recall Paul Erd˝os’ memory and his special way of doing mathematics. Ernst Straus described him as “the prince of problem solvers and the absolute monarch of problem posers”. Indeed, those mathematicians who are old enough to have attended some of his lectures will remember that, after his talks, chairmen used to slightly depart from standard conduct, not asking if there were any questions but if there were any answers. In the address that he forwarded to Mikl´os Simonovits for Erd˝os’ funeral, Claude Berge mentions a conversation he had with Paul in the gardens of the Luminy Campus, near Marseilles, in September 1995. -
On the Computational Complexity of Algebraic Numbers: the Hartmanis–Stearns Problem Revisited
On the computational complexity of algebraic numbers : the Hartmanis-Stearns problem revisited Boris Adamczewski, Julien Cassaigne, Marion Le Gonidec To cite this version: Boris Adamczewski, Julien Cassaigne, Marion Le Gonidec. On the computational complexity of alge- braic numbers : the Hartmanis-Stearns problem revisited. Transactions of the American Mathematical Society, American Mathematical Society, 2020, pp.3085-3115. 10.1090/tran/7915. hal-01254293 HAL Id: hal-01254293 https://hal.archives-ouvertes.fr/hal-01254293 Submitted on 12 Jan 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ON THE COMPUTATIONAL COMPLEXITY OF ALGEBRAIC NUMBERS: THE HARTMANIS–STEARNS PROBLEM REVISITED by Boris Adamczewski, Julien Cassaigne & Marion Le Gonidec Abstract. — We consider the complexity of integer base expansions of alge- braic irrational numbers from a computational point of view. We show that the Hartmanis–Stearns problem can be solved in a satisfactory way for the class of multistack machines. In this direction, our main result is that the base-b expansion of an algebraic irrational real number cannot be generated by a deterministic pushdown automaton. We also confirm an old claim of Cobham proving that such numbers cannot be generated by a tag machine with dilation factor larger than one. -
An Elementary Proof That Almost All Real Numbers Are Normal
Acta Univ. Sapientiae, Mathematica, 2, 1 (2010) 99–110 An elementary proof that almost all real numbers are normal Ferdin´and Filip Jan Sustekˇ Department of Mathematics, Department of Mathematics and Faculty of Education, Institute for Research and J. Selye University, Applications of Fuzzy Modeling, Roln´ıckej ˇskoly 1519, Faculty of Science, 945 01, Kom´arno, Slovakia University of Ostrava, email: [email protected] 30. dubna 22, 701 03 Ostrava 1, Czech Republic email: [email protected] Abstract. A real number is called normal if every block of digits in its expansion occurs with the same frequency. A famous result of Borel is that almost every number is normal. Our paper presents an elementary proof of that fact using properties of a special class of functions. 1 Introduction The concept of normal number was introduced by Borel. A number is called normal if in its base b expansion every block of digits occurs with the same frequency. More exact definition is Definition 1 A real number x ∈ (0,1) is called simply normal to base b ≥ 2 if its base b expansion is 0.c1c2c3 ... and #{n ≤ N | c = a} 1 lim n = for every a ∈ {0,...,b − 1} . N N b 2010 Mathematics→∞ Subject Classification: 11K16, 26A30 Key words and phrases: normal number, measure 99 100 F. Filip, J. Sustekˇ A number is called normal to base b if for every block of digits a1 ...aL, L ≥ 1 #{n ≤ N − L | c = a ,...,c = a } 1 lim n+1 1 n+L L = . N N bL A number is called→∞ absolutely normal if it is normal to every base b ≥ 2.