Oxygen Toxicity During Artificial Ventilation R

Total Page:16

File Type:pdf, Size:1020Kb

Oxygen Toxicity During Artificial Ventilation R Thorax: first published as 10.1136/thx.24.6.656 on 1 November 1969. Downloaded from Thorax (1969), 24, 656. Oxygen toxicity during artificial ventilation R. A. L. BREWIS From the Department of Medicine, University of Manchester Repeated pulmonary collapse and changes suggestive of a severe alveolar-capillary diffusion defect were observed over a period of 20 days in a patient who was receiving artificial ventilation because of status epilepticus. Profound cyanosis followed attempts to discontinue assisted ventila- tion. The Bird Mark 8 respirator employed was found to be delivering approximately 90% oxygen on the air-mix setting and pulmonary oxygen toxicity was suspected. Radiological improvement and progressive resolution of the alveolar-capillary block followed gradual reduction of the inspired concentration over nine days. The management and prevention of this complica- tion are discussed. The inspired oxygen concentration should be routinely monitored in patients receiving intermittent positive pressure ventilation, and the concentration should not be higher than that required to maintain adequate oxygenation. The Bird Mark 8 respirator has an inherent tendency to develop high oxygen concentrations on the air-mix setting, and the machine should therefore be driven from a compressed air source unless high concentrations of oxygen are essential. The toxic properties of oxygen have been most many factors probably influence their develop- widely studied in the context of hyperbaric oxy- ment (Lancet, 1967), attention has been increas-copyright. genation, and the tendency to produce convulsions ingly directed towards the role of the inspired at partial pressures in excess of 2 atmospheres has oxygen concentration. Indirect evidence of toxic been well documented (Bean, 1945, 1965; Donald, effects of oxygen has been provided by post- 1947). Between this pressure and about two-thirds mortem studies (Pratt, 1958 ; Cederberg, Hellsten, of an atmosphere partial pressure of oxygen, and Mi6rner, 1965; Nash, Blennerhassett, and tolerance is limited by the effects upon the lung. Pontoppidan, 1967). In 75 patients who hadhttp://thorax.bmj.com/ Laboratory animals may die with severe pul- received artificial ventilation Nash and his col- monary congestion with intra-alveolar exudation leagues demonstrated a clear link between the and haemorrhage during exposure after an interval inspired oxygen concentration and the finding of which is variable between species and is dependent post-mortem histological changes in the lungs upon the partial pressure of oxygen inspired and resembling those seen in experimental animals upon a number of environmental and metabolic dying of oxygen toxicity. Similar changes were factors (Paine, Lynn, and Keys, 1941 ; Bean, 1945, reported in the lungs of a case presented at a conference at the Massachu- 1965). Information concerning the tolerance by clinico-pathological on September 23, 2021 by guest. Protected man of sub-convulsive inspired oxygen tensions setts General Hospital (Castleman and McNeely, is scarce. Normal subjects exposed to pure oxygen 1967). This patient had multiple injuries and died at atmospheric pressure develop severe substernal with recurrent pulmonary congestion whilst distress which usually leads to termination of the receiving 85% oxygen by I.P.P.V. exposure after between 48 and 72 hours (Clamann The purpose of the present communication is and Becker-Freyseng, 1939; Ohlsson, 1947; to report the development and suibsequent reversal Dolezal, 1962; Lee, Caldwell, and Schildkraut, of recurrent massive collapse and an apparent 1963). Objectively, a reduction in vital capacity block in alveolar-capillary diffusion in a patient and changes suggestive of impaired alveolar- receiving I.P.P.V. from a respirator which was capillary diffusion have been reported (Comroe, found to be delivering an unexpectedly high con- Dripps, Dumke, and Deming, 1945; Ernsting, centration of oxygen. 1961); normality is usually restored within 48 hours of the end of the exposure. METHODS Pulmonary collapse and congestion have come to be recognized as complications of intermittent Until 20 May 1967 (day 20) blood gas analyses were positive pressure ventilation (I.P.P.V.) and, whilst performed on arterialized capillary blood and Pco2 656 Thorax: first published as 10.1136/thx.24.6.656 on 1 November 1969. Downloaded from Oxygen toxicity during artificial ventilation 657 was derived using the Astrup technique. Subsequently a new opacity in the right lower lobe. Brochoscopy all blood gas analyses were performed on arterial was performed again on the evening of the fifth day, blood drawn from an indwelling catheter. Arterial but no obstruction was seen. A chest radiograph was oxygen tension (Pao2) was estimated wiith a Clark taken on the following morning and showed partial platinum electrode and Pco2 with a Severinghaus elec- re-aeration of the left upper lobe and patchy aeration trode (both Radiometer, Copenhagen). Gaseous of the right upper lobe with partial resolution of the oxygen concentrations were measured with a para- opacity in the right lower lobe (Fig. 3). She continued magnetic analyser (Servomex). The ventilator to have frequent convulsions whenever the infusion employed was a Bird Mark 8 respirator which was was interrupted until the seventh day, when she was powered by the hospital oxygen system (line pressure intermittently conscious between seizures which had 60 p.s.i.). It was used on the 'air-mix' setting through- become milder. out and no 'negative phase' was employed. On the seventh day further improvement in the chest radiographic appearances was noted (Fig. 4), for CASE REPORT no apparent reason, but partial collapse of the right upper and part of the left lower lobe persisted. This The patient, a woman aged 33, developed status epi- was more marked,the following day, and by the ninth lepticus after an adjustment of her anticonvulsant day the right upper lobe was once more collapsed therapy, and this persisted despite recommencement and densely opacified and there was consolidation at of the drugs and administration of paraldehyde, intra- the left base (Fig. 5). All areas of opacification had venous diazepam, and two periods of deep chloro- extended by the tenth day, and on the following form anaesthesia. She was admitted to Manchester day numerous fluffy, radially arranged oval shadows, Royal Infirmary on 1 May 1967 (day 1) after 48 0 5-1 cm. in diameter, were evident in the relatively hours of status epilepticus. The seizures were relieved well-aerated regions. Ventilation was not difficult at only temporarily by intravenous diazepam, 10 mg. this stage, the patient was fully conscious and An endotracheal tube was passed after the administra- appeared well, occasionally triggering the machine tion of thiopentone, 0-2 g., and suxamethonium, and ventilating 10 1./min. with a respiratory rate of 50 mg. i.v., and I.P.P.V. using a Bird Mark 8 17/min. and an end-inspiratory pressure setting of respirator was begun. A minute ventilation of 8-5 litres 20 cm. H2O. copyright. was maintained with an end-tidal pressure of 14 cm. I.P.P.V. was continued because severe respiratory water. distress and deep cyanosis accompanied even brief On the morning of the second day a chest radio- interruptions for toilet to the trachea. Bronchoscopy graph was seen to be entirely normal (Fig. 1). For was repeated on the eleventh day and again no 48 hours a constant infusion of thiopentone was bronchial obstruction was seen. A chest radiograph maintained at a rate of approximately 60 mg./hour. the following day showed the reappearance of pockets http://thorax.bmj.com/ The rate was increased briefly if the fits became more of air in the collapsed right upper lobe with per- frequent, and suxamethonium was infused as neces- sistence of the generalized mottling (Fig. 6). On the sary to keep the convulsions to a minimum. Pheno- following day the upper lobe was again seen to be barbitone, sodium phenytoin, and diazepam were collapsed and densely opacified. On the fifteenth day given intravenously, and primidone by nasogastric the right upper lobe was found to be almost com- tube. pletely re-expanded, but there was now patchy On the morning of the fourth day it was noted that opacification of the right lower lobe (Fig. 7). Over the minute ventilation was falling and that a higher four days there was progressive opacification of this end-tidal pressure of 24 cm. water was necessary to area (Fig. 8), and three areas of opacity, 3 to 4 cm. maintain adequate ventilation. At one point the in diameter, appeared in the left lung field. on September 23, 2021 by guest. Protected minute ventilation fell briefly to 3 1./min. and the On the fifteenth day the Pao2 was 160 mm. Hg Pco2 rose to 78 mm. Hg, having been between 39 and whilst on the ventilator. Every morning for the fol- 42 mm. Hg ever since the start of I.P.P.V. lowing three days she was left off the respirator for A chest radiograph taken on the morning of the between 15 and 40 minutes. During the interruption fourth day showed complete collapse-consolidation of the arterial Po2 fell to between 40 and 45 mm. Hg the left lung and of the right upper lobe (Fig. 2). on each occasion. The inspired oxygen concentration Later, during day 4, the pulse rate rose to 140/min. during this period is unknown (a B.O.C. humidifier and tracheostomy was performed. Profound cyanosis delivering 67% oxygen at 10 1./min. was attached to was noted whilst breathing air for short periods at the the tracheostomy tube by a T-tube with a distal limb time of this procedure. Bronchoscopy revealed no of 50 ml.). obstruction or excess of secretions. The jugular venous On day 20 the oxygen concentration of mixed ex- pulse was not elevated and there was no peripheral pired air collected whilst the patient was on the oedema.
Recommended publications
  • Hypothermia Brochure
    Visit these websites for more water safety and hypothermia prevention in- formation. What is East Pierce Fire & Rescue Hypothermia? www.eastpiercefire.org Hypothermia means “low temperature”. Washington State Drowning When your body is exposed to cold tem- Prevention Coalition Hypothermia www.drowning-prevention.org perature, it tries to protect itself by keeping a normal body temperature of 98.6°F. It Children’s Hospital & tries to reduce heat loss by shivering and Regional Medical Center In Our Lakes moving blood from your arms and legs to www.seattlechildrens.org the core of your body—head, chest and and Rivers abdomen. Hypothermia Prevention, Recognition and Treatment www.hypothermia.org Stages of Hypothermia Boat Washington Mild Hypothermia www.boatwashington.org (Core body temperature of 98.6°— 93.2°F) Symptoms: Shivering; altered judg- ment; numbness; clumsiness; loss of Boat U.S. Foundation dexterity; pain from cold; and fast www.boatus.com breathing. Boat Safe Moderate Hypothermia www.boatsafe.com (Core body temperature of 93.2°—86°F) Symptoms: Semiconscious to uncon- scious; shivering reduced or absent; lips are blue; slurred speech; rigid n in muscles; appears drunk; slow Eve breathing; and feeling of warmth can occur. mer! Headquarters Station Sum Severe Hypothermia 18421 Old Buckley Hwy (Core body temperature below 86°F) Bonney Lake, WA 98391 Symptoms: Coma; heart stops; and clinical death. Phone: 253-863-1800 Fax: 253-863-1848 Email: [email protected] Know the water. Know your limits. Wear a life vest. By choosing to swim in colder water you Waters in Western Common Misconceptions Washington reduce your survival time.
    [Show full text]
  • The Hazards of Nitrogen Asphyxiation US Chemical Safety and Hazard Investigation Board
    The Hazards of Nitrogen Asphyxiation US Chemical Safety and Hazard Investigation Board Introduction • Nitrogen makes up 78% of the air we breath; because of this it is often assumed that nitrogen is not hazardous. • However, nitrogen is safe to breath only if it is mixed with an appropriate amount of oxygen. • Additional nitrogen (lower oxygen) cannot be detected by the sense of smell. Introduction • Nitrogen is used commercially as an inerting agent to keep material free of contaminants (including oxygen) that may corrode equipment, present a fire hazard, or be toxic. • A lower oxygen concentration (e.g., caused by an increased amount of nitrogen) can have a range of effects on the human body and can be fatal if if falls below 10% Effects of Oxygen Deficiency on the Human Body Atmospheric Oxygen Concentration (%) Possible Results 20.9 Normal 19.0 Some unnoticeable adverse physiological effects 16.0 Increased pulse and breathing rate, impaired thinking and attention, reduced coordination 14.0 Abnormal fatigue upon exertion, emotional upset, faulty coordination, poor judgment 12.5 Very poor judgment and coordination, impaired respiration that may cause permanent heart damage, nausea, and vomiting <10 Inability to move, loss of consciousness, convulsions, death Source: Compressed Gas Association, 2001 Statistics on Incidents CSB reviewed cases of nitrogen asphyxiation that occurred in the US between 1992 and 2002 and determined the following: • 85 incidents of nitrogen asphyxiation resulted in 80 deaths and 50 injuries. • The majority of
    [Show full text]
  • Respiratory Physiology - Part B Experimental Determination of Anatomical Dead Space Value (Human 9 - Version Sept
    Comp. Vert. Physiology- BI 244 Respiratory Physiology - Part B Experimental Determination of Anatomical Dead Space Value (Human 9 - Version Sept. 10, 2013) [This version has been modified to also serve as a tutorial in how to run HUMAN's artificial organs] Part of the respiratory physiology computer simulation work for this week allows you to obtain a hand-on feeling for the effects of anatomical dead space on alveolar ventilation. The functional importance of dead space can explored via employing HUMAN's artificial respirator to vary the respiration rate and tidal volume. DEAD SPACE DETERMINATION Introduction The lack of unidirectional respiratory medium flow in non-avian air ventilators creates the existence of an anatomical dead space. The anatomical dead space of an air ventilator is a fixed volume not normally under physiological control. However, the relative importance of dead space is adjustable by appropriate respiratory maneuvers. For example, recall the use by panting animals of their dead space to reduce a potentially harmful respiratory alkalosis while hyperventilating. In general, for any given level of lung ventilation, the fraction of the tidal volume attributed to dead space will affect the resulting level of alveolar ventilation, and therefore the efficiency (in terms of gas exchange) of that ventilation. [You should, of course, refresh your knowledge of total lung ventilation, tidal volume alveolar ventilation.] Your objective here is to observe the effects of a constant "unknown" dead space on resulting alveolar ventilation by respiring the model at a variety of tidal volume-frequency combinations. You are then asked to calculate the functional dead space based on the data you collect.
    [Show full text]
  • Clinical Management of Severe Acute Respiratory Infections When Novel Coronavirus Is Suspected: What to Do and What Not to Do
    INTERIM GUIDANCE DOCUMENT Clinical management of severe acute respiratory infections when novel coronavirus is suspected: What to do and what not to do Introduction 2 Section 1. Early recognition and management 3 Section 2. Management of severe respiratory distress, hypoxemia and ARDS 6 Section 3. Management of septic shock 8 Section 4. Prevention of complications 9 References 10 Acknowledgements 12 Introduction The emergence of novel coronavirus in 2012 (see http://www.who.int/csr/disease/coronavirus_infections/en/index. html for the latest updates) has presented challenges for clinical management. Pneumonia has been the most common clinical presentation; five patients developed Acute Respira- tory Distress Syndrome (ARDS). Renal failure, pericarditis and disseminated intravascular coagulation (DIC) have also occurred. Our knowledge of the clinical features of coronavirus infection is limited and no virus-specific preven- tion or treatment (e.g. vaccine or antiviral drugs) is available. Thus, this interim guidance document aims to help clinicians with supportive management of patients who have acute respiratory failure and septic shock as a consequence of severe infection. Because other complications have been seen (renal failure, pericarditis, DIC, as above) clinicians should monitor for the development of these and other complications of severe infection and treat them according to local management guidelines. As all confirmed cases reported to date have occurred in adults, this document focuses on the care of adolescents and adults. Paediatric considerations will be added later. This document will be updated as more information becomes available and after the revised Surviving Sepsis Campaign Guidelines are published later this year (1). This document is for clinicians taking care of critically ill patients with severe acute respiratory infec- tion (SARI).
    [Show full text]
  • QUESTIONS ABOUT YOUR BREATHING Name:______Please Answer the Questions Below for ONLY the PATIENT Seeing the Doctor Today, Date of Birth:______You OR Your Child
    QUESTIONS ABOUT YOUR BREATHING Name:_____________________________________ Please answer the questions below for ONLY THE PATIENT seeing the doctor today, Date of Birth:_______________________________ you OR your child. Today’s Date:_______________________________ 1. Have you/has your child had shortness of breath, 9. At what age did you/did your child start having coughing, wheezing (whistling in the chest) during the day? breathing trouble?_____________ r Yes r No 10. Do any blood relatives (parent, brother, sister, child) have: 2. Have you/has your child had breathing trouble at night r Asthma r Allergies or early in the morning r Yes r No 11. Do you or anyone in the family smoke? r Yes r No 3. Has breathing trouble kept you/kept your child from school/ work/normal activities? r Yes r No 12. Are you/is your child ever in smoky places? r Yes r No 4. Have you/has your child ever been to a doctor, urgent care, 13. Check any of the things that make your/your child’s emergency room or a hospital for breathing trouble? r Yes r No breathing worse, or tell us about others. 5. Do you/does your child get colds that settle in the chest, r Breathing in chemicals, dusts, fumes at work r Colds or flu r Strong odors, like cleaners or perfumes or coughing that lasts 10 days or more after a cold is gone? r Animals r Weather r Yes r No r Dust r Exercise 6. Have you/has your child ever needed steroid pills or syrup r Pollen and mold r Cigarette and other smoke (prednisone, prednisolone, prelone) for breathing trouble? r Medicines:___________________________________________ r Yes r No _______________________________________________________ If yes, how many times has this happened? ___________________ r Other things: 7.
    [Show full text]
  • Brownie's THIRD LUNG
    BrMARINEownie GROUP’s Owner’s Manual Variable Speed Hand Carry Hookah Diving System ADVENTURE IS ALWAYS ON THE LINE! VSHCDC Systems This manual is also available online 3001 NW 25th Avenue, Pompano Beach, FL 33069 USA Ph +1.954.462.5570 Fx +1.954.462.6115 www.BrowniesMarineGroup.com CONGRATULATIONS ON YOUR PURCHASE OF A BROWNIE’S SYSTEM You now have in your possession the finest, most reliable, surface supplied breathing air system available. The operation is designed with your safety and convenience in mind, and by carefully reading this brief manual you can be assured of many hours of trouble-free enjoyment. READ ALL SAFETY RULES AND OPERATING INSTRUCTIONS CONTAINED IN THIS MANUAL AND FOLLOW THEM WITH EACH USE OF THIS PRODUCT. MANUAL SAFETY NOTICES Important instructions concerning the endangerment of personnel, technical safety or operator safety will be specially emphasized in this manual by placing the information in the following types of safety notices. DANGER DANGER INDICATES AN IMMINENTLY HAZARDOUS SITUATION WHICH, IF NOT AVOIDED, WILL RESULT IN DEATH OR SERIOUS INJURY. THIS IS LIMITED TO THE MOST EXTREME SITUATIONS. WARNING WARNING INDICATES A POTENTIALLY HAZARDOUS SITUATION WHICH, IF NOT AVOIDED, COULD RESULT IN DEATH OR INJURY. CAUTION CAUTION INDICATES A POTENTIALLY HAZARDOUS SITUATION WHICH, IF NOT AVOIDED, MAY RESULT IN MINOR OR MODERATE INJURY. IT MAY ALSO BE USED TO ALERT AGAINST UNSAFE PRACTICES. NOTE NOTE ADVISE OF TECHNICAL REQUIREMENTS THAT REQUIRE PARTICULAR ATTENTION BY THE OPERATOR OR THE MAINTENANCE TECHNICIAN FOR PROPER MAINTENANCE AND UTILIZATION OF THE EQUIPMENT. REGISTER YOUR PRODUCT ONLINE Go to www.BrowniesMarineGroup.com to register your product.
    [Show full text]
  • What Are the Health Effects from Exposure to Carbon Monoxide?
    CO Lesson 2 CARBON MONOXIDE: LESSON TWO What are the Health Effects from Exposure to Carbon Monoxide? LESSON SUMMARY Carbon monoxide (CO) is an odorless, tasteless, colorless and nonirritating Grade Level: 9 – 12 gas that is impossible to detect by an exposed person. CO is produced by the Subject(s) Addressed: incomplete combustion of carbon-based fuels, including gas, wood, oil and Science, Biology coal. Exposure to CO is the leading cause of fatal poisonings in the United Class Time: 1 Period States and many other countries. When inhaled, CO is readily absorbed from the lungs into the bloodstream, where it binds tightly to hemoglobin in the Inquiry Category: Guided place of oxygen. CORE UNDERSTANDING/OBJECTIVES By the end of this lesson, students will have a basic understanding of the physiological mechanisms underlying CO toxicity. For specific learning and standards addressed, please see pages 30 and 31. MATERIALS INCORPORATION OF TECHNOLOGY Computer and/or projector with video capabilities INDIAN EDUCATION FOR ALL Fires utilizing carbon-based fuels, such as wood, produce carbon monoxide as a dangerous byproduct when the combustion is incomplete. Fire was important for the survival of early Native American tribes. The traditional teepees were well designed with sophisticated airflow patterns, enabling fires to be contained within the shelter while minimizing carbon monoxide exposure. However, fire was used for purposes other than just heat and cooking. According to the historian Henry Lewis, Native Americans used fire to aid in hunting, crop management, insect collection, warfare and many other activities. Today, fire is used to heat rocks used in sweat lodges.
    [Show full text]
  • Oxygen Toxicity in Neonatal Rats: the Effect of Endotoxin Treatment on Survival During and Post-02 Exposure
    0031-3998/87/2102-0 I 09$02.00/0 PEDIATRIC RESEARCH Vol. 21. No.2, 1987 Copyright© 1987 International Pediatric Research Foundation, Inc. Printed in U.S.A. Oxygen Toxicity in Neonatal Rats: The Effect of Endotoxin Treatment on Survival during and post-02 Exposure LEE FRANK Department ofMedicine, Pulmonary Research Labora10ry, University of Miami School of Medicine, Miami, Florida 33136 ABSTRACT. Neonatal rats were treated with low doses of monary 0 2 toxicity (I, 2). However, there are unique pulmonary bacterial lipopolysaccharide (endotoxin) to test for a pro­ complications associated with prolonged hyperoxic exposure in tective effect of endotoxin against 02 toxicity and the the neonatal animal which could importantly influence both severe inhibition of normal lung development which occurs short and long-term survival post-02 exposure. These complica­ during prolonged exposure to hyperoxia. The rationale for tions relate to the known inhibitory action of hyperoxia on lung the prophylactic use of endotoxin included its marked biosynthetic processes (1, 3, 4), and the morphological conse­ protective effect against pulmonary 0 2 toxicity in adult quences this inhibitory action has on the rapidly growing and rats and its lung growth-promoting effect in experimental differentiating newborn (animal) lung. Several studies have now pulmonary stress models. Neonatal rats (4-5 days old) demonstrated that early postnatal exposure to hyperoxia is as­ survived a 14-day exposure to >95% 0 2 equally well sociated with marked inhibition of the normal septation process whether treated with saline (39/51 = 76%) or with endo­ by which the large saccular airspaces characteristic of the new­ toxin (41/51 = 80%).
    [Show full text]
  • Breathing Air Quality, Sampling and Testing
    Breathing Air Quality, Sampling and Testing Environmental Health Laboratory Department of Environmental and Occupational Health Sciences School of Public Health University of Washington Funding and support from The State of Washington Department of Labor & Industries Safety & Health Investment Projects Medical Aid and Accident Fund Breathing Air Quality, Sampling, and Testing Environmental Health Laboratory Department of Environmental and Occupational Health Sciences School of Public Health University of Washington Funding and support from The State of Washington Department of Labor & Industries Safety & Health Investment Projects Medical Aid and Accident Funds 1 University of Washington Environmental Health Laboratory Table of Contents Overview ...............................................................................1 Background ...........................................................................2 Regulated Components of Breathing Air ...............................7 Performance of Breathing Air Testing Kits ............................9 Laboratory Accreditation .....................................................18 Guidance Summary .............................................................19 Glossary ..............................................................................20 References ...........................................................................22 List of Tables Table 1. Breathing Air Quality Specifications ........................2 Table 2. Description of Kits Tested ........................................9
    [Show full text]
  • Diving Air Compressor - Wikipedia, the Free Encyclopedia Diving Air Compressor from Wikipedia, the Free Encyclopedia
    2/8/2014 Diving air compressor - Wikipedia, the free encyclopedia Diving air compressor From Wikipedia, the free encyclopedia A diving air compressor is a gas compressor that can provide breathing air directly to a surface-supplied diver, or fill diving cylinders with high-pressure air pure enough to be used as a breathing gas. A low pressure diving air compressor usually has a delivery pressure of up to 30 bar, which is regulated to suit the depth of the dive. A high pressure diving compressor has a delivery pressure which is usually over 150 bar, and is commonly between 200 and 300 bar. The pressure is limited by an overpressure valve which may be adjustable. A small stationary high pressure diving air compressor installation Contents 1 Machinery 2 Air purity 3 Pressure 4 Filling heat 5 The bank 6 Gas blending 7 References 8 External links A small scuba filling and blending station supplied by a compressor and Machinery storage bank Diving compressors are generally three- or four-stage-reciprocating air compressors that are lubricated with a high-grade mineral or synthetic compressor oil free of toxic additives (a few use ceramic-lined cylinders with O-rings, not piston rings, requiring no lubrication). Oil-lubricated compressors must only use lubricants specified by the compressor's manufacturer. Special filters are used to clean the air of any residual oil and water(see "Air purity"). Smaller compressors are often splash lubricated - the oil is splashed around in the crankcase by the impact of the crankshaft and connecting A low pressure breathing air rods - but larger compressors are likely to have a pressurized lubrication compressor used for surface supplied using an oil pump which supplies the oil to critical areas through pipes diving at the surface control point and passages in the castings.
    [Show full text]
  • The Future of Mechanical Ventilation: Lessons from the Present and the Past Luciano Gattinoni1*, John J
    Gattinoni et al. Critical Care (2017) 21:183 DOI 10.1186/s13054-017-1750-x REVIEW Open Access The future of mechanical ventilation: lessons from the present and the past Luciano Gattinoni1*, John J. Marini2, Francesca Collino1, Giorgia Maiolo1, Francesca Rapetti1, Tommaso Tonetti1, Francesco Vasques1 and Michael Quintel1 Abstract The adverse effects of mechanical ventilation in acute respiratory distress syndrome (ARDS) arise from two main causes: unphysiological increases of transpulmonary pressure and unphysiological increases/decreases of pleural pressure during positive or negative pressure ventilation. The transpulmonary pressure-related side effects primarily account for ventilator-induced lung injury (VILI) while the pleural pressure-related side effects primarily account for hemodynamic alterations. The changes of transpulmonary pressure and pleural pressure resulting from a given applied driving pressure depend on the relative elastances of the lung and chest wall. The term ‘volutrauma’ should refer to excessive strain, while ‘barotrauma’ should refer to excessive stress. Strains exceeding 1.5, corresponding to a stress above ~20 cmH2O in humans, are severely damaging in experimental animals. Apart from high tidal volumes and high transpulmonary pressures, the respiratory rate and inspiratory flow may also play roles in the genesis of VILI. We do not know which fraction of mortality is attributable to VILI with ventilation comparable to that reported in recent clinical practice surveys (tidal volume ~7.5 ml/kg, positive end-expiratory pressure (PEEP) ~8 cmH2O, rate ~20 bpm, associated mortality ~35%). Therefore, a more complete and individually personalized understanding of ARDS lung mechanics and its interaction with the ventilator is needed to improve future care.
    [Show full text]
  • Chronic Lung Disease (Bronchopulmonary Dysplasia)
    Intensive Care Nursery House Staff Manual Chronic Lung Disease (Bronchopulmonary Dysplasia) was first described in 1967 as severe chronic lung disease (CLD) in preterm infants with severe Respiratory Distress Syndrome (RDS) who received treatment with 100% O2, high inspiratory ventilator pressures and no PEEP. With antenatal glucocorticoids, surfactant treatment and improved ventilatory techniques, CLD has almost disappeared in larger preterm infants and now affects very preterm infants with or without antecedent RDS. DEFINITION: CLD is defined as a need for increased oxygen: • Infants <32 weeks gestation: oxygen requirement at 36 weeks gestational age (GA) or at discharge (whichever comes first) • Infants ≥32 weeks GA: oxygen requirement at age >28 d or at discharge (whichever comes first) INCIDENCE of CLD is inversely related to birth weight and GA: Birth weight (g) Incidence of CLD* 501-750 34% *UCSF 1998-2002 751-1,000 20% 1,001-1,250 5% 1,251-1,500 3% PATHOLOGY includes areas of atelectasis and emphysema, hyperplasia of airway epithelium and interstitial edema. Late changes include interstitial fibrosis and hypertrophy of airway smooth muscle and pulmonary arteriolar musculature. ETIOLOGICAL FACTORS include: • Lung immaturity with (a) ↑ susceptibility to damage from oxygen, barotrauma and volutrauma, (b) surfactant deficiency and (c) immature antioxidant defenses. • Oxygen toxicity • Barotrauma and volutrauma • Pulmonary edema (excessive fluid administration, patent ductus arteriosus) • Inflammation (multiple associated biochemical
    [Show full text]