Functioning As a Death Receptor for B Cells CCR3 Expression Induced By

Total Page:16

File Type:pdf, Size:1020Kb

Functioning As a Death Receptor for B Cells CCR3 Expression Induced By CCR3 Expression Induced by IL-2 and IL-4 Functioning as a Death Receptor for B Cells Tan Jinquan, Henrik H. Jacobi, Chen Jing, Anders Millner, Eva Sten, Lars Hviid, Liu Anting, Lars P. Ryder, Christian This information is current as Glue, Per S. Skov, Elizabeth Jarman, Kasper Lamberth, of September 28, 2021. Hans-Jørgen Malling and Lars K. Poulsen J Immunol 2003; 171:1722-1731; ; doi: 10.4049/jimmunol.171.4.1722 http://www.jimmunol.org/content/171/4/1722 Downloaded from References This article cites 78 articles, 43 of which you can access for free at: http://www.jimmunol.org/content/171/4/1722.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2003 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology CCR3 Expression Induced by IL-2 and IL-4 Functioning as a Death Receptor for B Cells1 Tan Jinquan,2*† Henrik H. Jacobi,† Chen Jing,† Anders Millner,*† Eva Sten,† Lars Hviid,‡ Liu Anting,*† Lars P. Ryder,§ Christian Glue,† Per S. Skov,† Elizabeth Jarman,* Kasper Lamberth,¶ Hans-Jørgen Malling,† and Lars K. Poulsen† We report that CCR3 is not expressed on freshly isolated peripheral and germinal B cells, but is up-regulated after stimulation with IL-2 and IL-4 (ϳ98% CCR3؉). Ligation of CCR3 by eotaxin/chemokine ligand (CCL) 11 induces apoptosis in IL-2- and IL-4-stimulated primary CD19؉ (ϳ40% apoptotic cells) B cell cultures as well as B cell lines, but has no effect on chemotaxis or cell adhesion. Freshly isolated B cells express low levels of CD95 and CD95 ligand (CD95L) (19 and 21%, respectively). Expression is up-regulated on culture in the presence of a combination of IL-2, IL-4, and eotaxin/CCL11 (88% CD95 and 84% CD95L). We therefore propose that ligation of such newly induced CCR3 on peripheral and germinal B cells by eotaxin/CCL11 leads to the Downloaded from enhanced levels of CD95 and CD95L expression. Ligation of CD95 by its CD95L expressed on neigboring B cells triggers relevant death signaling pathways, which include an increase in levels of Bcl-2 expression, its functional activity, and the release of cytochrome c from the mitochondria into the cytosol. These events initiate a cascade of enzymatic processes of the caspase family, culminating in programmed cell death. Interaction between CCR3 and eotaxin/CCL11 may, besides promoting allergic reactions, drive activated B cells to apoptosis, thereby reducing levels of Ig production, including IgE, and consequently limit the develop- http://www.jimmunol.org/ ment of the humoral immune response. The apoptotic action of eotaxin/CCL11 suggests a therapeutic modality in the treatment of B cell lymphoma. The Journal of Immunology, 2003, 171: 1722–1731. hemokine receptors are differently expressed on naive (GC)3 in lymph nodes or Peyer’s patches (15). Thymus-expressed and activated inflammatory cells (1). Although many chemokine attracts mouse pre-B cells and pro-B colonies, but not C chemokine receptors can be found on human B cells, in later stages of B cell development (16). such as CCR1 (2), CCR2 (3), CCR6 (4), CCR7 (5), CXCR3 (6), The CCR3 is expressed in humans on eosinophils and basophils ϩ CXCR4 (7), and CXCR5 (8), in general less is known about the (17, 18), on a subset of CD4 T cells (19), and on dendritic cells functions of these receptors and their ligands on B cells. Nonethe- (20). CCR3 expression on T cells requires stimulation with both by guest on September 28, 2021 less, important insights have been gained from several studies. For the Th1 cytokine IL-2 and Th2 cytokine IL-4 (21). Cellular sources instance, stromal cell-derived factor-1/CXCL12, a ligand for of the CCR3 ligand eotaxin/chemokine ligand (CCL) 11 are bron- CXCR4, is a potent chemoattractant for both normal and malignant chial epithelial cells, T cells, macrophages, and eosinophils (22). human B cells (9–11). Mice lacking the stromal cell-derived fac- The importance of this chemokine in allergic diseases is widely tor-1/CXCL12 gene or the CXCR4 gene show gross defects in B recognized due to its activation and attraction of eosinophils, ba- cell development (10, 12, 13). CCR7 is important for retaining B sophils, and T cells (19, 21). To date, CCR3 expression on B cells cells in the splenic periarteriolar lymphatic sheath (14). Mice de- and the biological functions of CCR3 ligand eotaxin/CCL11 for ficient for CCR7 display a severely impaired migration of B cells human B cells have not been characterized. to lymph nodes or Peyer’s patches (14). CXCR5 is necessary for A considerable amount of data was derived from genomic, B cell homeostatic trafficking into follicles (15). Disruption of structural, and functional studies on the role of chemokine recep- CXCR5 gene leads to loss of B cell follicles and germinal center tors and their ligands in both normal physiology (e.g., organogen- esis, hemopoiesis, angiogenesis, and physiological lymphocyte trafficking) and pathophysiology, such as coreceptors for HIV en- try and the pathological distribution of leukocytes in chronic in- *Biological Allergy Research, Hørsholm, Denmark; †Laboratory of Medical Aller- flammation (23). A major role of chemokine receptors and their gology, Allergy Clinic, ‡Center of Medical Parasitology, Department of Infectious ligand playing is leukocyte traffic and recruitment to sites of in- Diseases, and §Laboratory of Tissue Typing, Department of Clinical Immunology, National University Hospital, Copenhagen, Denmark; and ¶Institute of Medical Anat- flammation (24). It was reported that activation of cell surface omy, Panum Institute, University of Copenhagen, Copenhagen, Denmark CXCR4 induced programmed cell death of human peripheral ϩ Received for publication August 23, 2002. Accepted for publication June 18, 2003. CD4 T cells, malignant T cells, and CD4/CXCR4 transfectants The costs of publication of this article were defrayed in part by the payment of page (25). The interaction between HIV R5 Env and CCR5 activated the charges. This article must therefore be hereby marked advertisement in accordance Fas pathway and caspase-8 as well as triggering Fas ligand pro- with 18 U.S.C. Section 1734 solely to indicate this fact. duction, ultimately causing CD4ϩ T cell death (26). However, no 1 C.J. is supported by a generous grant from Hovedstadens Sygehusfællesskab, Den- mark. E.S. is supported by BioRisk project under Danish Medical Research Council. C.G. is supported by the Danish Environmental Research Program, 1998–2001. This work was partially supported by Danish Allergy Research Center and the National Science Foundation of China (39870674). 3 Abbreviations used in this paper: GC, germinal center, CCL, chemokine ligand; 2 Address correspondence and reprint requests to Dr. Tan Jinquan, Biological Allergy CD95L, CD95 ligand; C.I., chemotactic index; MCNC, migrating cell on negative Research, ALK-Abello´A/S, Bøge Alle´6-8, DK-2970 Hørsholm, Denmark. E-mail control; MCP, monocyte chemotactic protein; MIP, macrophage-inflammatory pro- address: [email protected] tein; PI, propidium iodide. Copyright © 2003 by The American Association of Immunologists, Inc. 0022-1767/03/$02.00 The Journal of Immunology 1723 study has looked at the function of chemokine receptors in the ously described (31). To semiquantitatively estimate CCR3 mRNA, visu- programmed B cell death. alized bands were scanned using Gene Tools densitometry (SYNGENE, In this study, we report that CCR3, expressed on IL-2- and IL- Cambridge, U.K.). 4-stimulated peripheral and germinal B cells and on several B cell Blot assays lines, is a death-promoting receptor when triggered by its ligand For mRNA detection (Northern blot), 5 ␮g of total RNA obtained from eotaxin/CCL11. Eotaxin/CCL11 via CCR3 promotes the apoptosis each sample was electrophoresed under denaturing conditions, followed by of these cells by increasing levels of CD95 and CD95 ligand blotting onto Nytran membranes, and cross-linked by UV irradiation, as (CD95L) expression. Ligation of CD95 and CD95L on neighbor- previously described (32). CCR3 cDNA probe, labeled by ␣-[32P]dCTP, was obtained by PCR amplification of the sequence mentioned above from ing cells consequently triggers relevant death signaling pathways, ϩ which include either an increase in the level of Bcl-2 expression or total RNA from CD3 T cells. The membranes were hybridized overnight with 1 ϫ 106 cpm/ml of 32P-labeled probe, followed by intensively wash- in its functional activity. This in turn triggers the release of cyto- ing before being autoradiographed. For protein detection (Western blot), chrome c from the mitochondria into the cytosol. These events the cells were lysed in lysis buffer (0.4% Nonidet P-40, 150 mM NaCl, 50 initiate the cascade of enzymatic events of the caspase family, mM Tris-HCl, 1 mM sodium vanadate, 0.1 mM PMSF, and 2 ␮g/ml of which lead to a programmed suicide cell death. leupeptin and apoprotein, pH 8.0), as previously described (27, 33). Ly- sates were centrifuged at 10,000 rpm for 5 min at 4°C. Protein concentra- tion was measured by Bio-Rad (Hercules, CA) protein assay.
Recommended publications
  • Disease Lymphocytes in Small Intestinal Crohn's Chemokine
    Phenotype and Effector Function of CC Chemokine Receptor 9-Expressing Lymphocytes in Small Intestinal Crohn's Disease This information is current as of September 29, 2021. Masayuki Saruta, Qi T. Yu, Armine Avanesyan, Phillip R. Fleshner, Stephan R. Targan and Konstantinos A. Papadakis J Immunol 2007; 178:3293-3300; ; doi: 10.4049/jimmunol.178.5.3293 http://www.jimmunol.org/content/178/5/3293 Downloaded from References This article cites 26 articles, 12 of which you can access for free at: http://www.jimmunol.org/content/178/5/3293.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 29, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2007 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Phenotype and Effector Function of CC Chemokine Receptor 9-Expressing Lymphocytes in Small Intestinal Crohn’s Disease1 Masayuki Saruta,2*QiT.Yu,2* Armine Avanesyan,* Phillip R. Fleshner,† Stephan R.
    [Show full text]
  • Differentiation and Bone Resorption Role of CX3CL1/Fractalkine In
    Role of CX3CL1/Fractalkine in Osteoclast Differentiation and Bone Resorption Keiichi Koizumi, Yurika Saitoh, Takayuki Minami, Nobuhiro Takeno, Koichi Tsuneyama, Tatsuro Miyahara, This information is current as Takashi Nakayama, Hiroaki Sakurai, Yasuo Takano, Miyuki of September 29, 2021. Nishimura, Toshio Imai, Osamu Yoshie and Ikuo Saiki J Immunol published online 18 November 2009 http://www.jimmunol.org/content/early/2009/11/18/jimmuno l.0803627.citation Downloaded from Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 29, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published November 18, 2009, doi:10.4049/jimmunol.0803627 The Journal of Immunology Role of CX3CL1/Fractalkine in Osteoclast Differentiation and Bone Resorption1 Keiichi Koizumi,2* Yurika Saitoh,* Takayuki Minami,* Nobuhiro Takeno,* Koichi Tsuneyama,†‡ Tatsuro Miyahara,§ Takashi Nakayama,¶ Hiroaki Sakurai,*† Yasuo Takano,‡ Miyuki Nishimura,ʈ Toshio Imai,ʈ Osamu Yoshie,¶ and Ikuo Saiki*† The recruitment of osteoclast precursors toward osteoblasts and subsequent cell-cell interactions are critical for osteoclast dif- ferentiation.
    [Show full text]
  • Complementary DNA Microarray Analysis of Chemokines and Their Receptors in Allergic Rhinitis RX Zhang,1 SQ Yu,2 JZ Jiang,3 GJ Liu3
    RX Zhang, et al ORIGINAL ARTICLE Complementary DNA Microarray Analysis of Chemokines and Their Receptors in Allergic Rhinitis RX Zhang,1 SQ Yu,2 JZ Jiang,3 GJ Liu3 1 Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China 2 Department of Otolaryngology , Jinan General Hospital of PLA, Shandong, China 3 Department of Otolaryngology, Changhai Hospital, Second Military Medical University, Shanghai, China ■ Abstract Objective: To analyze the roles of chemokines and their receptors in the pathogenesis of allergic rhinitis by observing the complementary DNA (cDNA) expression of the chemokines and their receptors in the nasal mucosa of patients with and without allergic rhinitis, using gene chips. Methods: The total RNAs were isolated from the nasal mucosa of 20 allergic rhinitis patients and purifi ed to messenger RNAs, and then reversely transcribed to cDNAs and incorporated with samples of fl uorescence-labeled with Cy5-dUPT (rhinitis patient samples) or Cy3- dUTP (control samples of nonallergic nasal mucosa). Thirty-nine cDNAs of chemokines and their receptors were latticed into expression profi le chips, which were hybridized with probes and then scanned with the computer to study gene expression according to the different fl uorescence intensities. Results: The cDNAs of the following chemokines were upregulated: CCL1, CCL2, CCL5, CCL7, CCL8, CCL11, CCL13, CCL14, CCL17, CCL18, CCL19, CCL24, and CX3CL1 in most of the allergic rhinitis sample chips. CCR2, CCR3, CCR4, CCR5, CCR8 and CX3CR1 were the highly expressed receptor genes. Low expression of CXCL4 was found in these tissues. Conclusion: The T helper cell (TH) immune system is not well regulated in allergic rhinitis.
    [Show full text]
  • Anti-CCL13 / MCP4 Antibody (Biotin) (ARG65993)
    Product datasheet [email protected] ARG65993 Package: 50 μg anti-CCL13 / MCP4 antibody (Biotin) Store at: 4°C Summary Product Description Biotin-conjugated Goat Polyclonal antibody recognizes CCL13 / MCP4 Tested Reactivity Hu Tested Application ELISA, WB Host Goat Clonality Polyclonal Isotype IgG Target Name CCL13 / MCP4 Antigen Species Human Immunogen E. coli derived recombinant Human CCL13 / MCP4. (QPDALNVPST CCFTFSSKKI SLQRLKSYVI TTSRCPQKAV IFRTKLGKEI CADPKEKWVQ NYMKHLGRKA HTLKT) Conjugation Biotin Alternate Names SCYA13; C-C motif chemokine 13; Monocyte chemotactic protein 4; Small-inducible cytokine A13; CKb10; SCYL1; Monocyte chemoattractant protein 4; MCP-4; NCC-1; NCC1; CK-beta-10 Application Instructions Application table Application Dilution ELISA Direct: 0.25 - 1.0 µg/ml Sandwich: 0.25 - 1.0 µg/ml with ARG65992 as a capture antibody WB 0.1 - 0.2 µg/ml Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Calculated Mw 11 kDa Properties Form Liquid Purification Purified by affinity chromatography. Buffer PBS (pH 7.2) Concentration 1 mg/ml Storage instruction Aliquot and store in the dark at 2-8°C. Keep protected from prolonged exposure to light. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. Note For laboratory research only, not for drug, diagnostic or other use. www.arigobio.com 1/2 Bioinformation Database links GeneID: 6357 Human Swiss-port # Q99616 Human Gene Symbol CCL13 Gene Full Name chemokine (C-C motif) ligand 13 Background This antimicrobial gene is one of several Cys-Cys (CC) cytokine genes clustered on the q-arm of chromosome 17.
    [Show full text]
  • Acting on the CCR1 Receptor Mediates Neutrophil Migration in Immune Inflammation Via Sequential ␣ Release of TNF- and LTB4 Cleber D
    MIP-1␣[CCL3] acting on the CCR1 receptor mediates neutrophil migration in immune inflammation via sequential ␣ release of TNF- and LTB4 Cleber D. L. Ramos,* Claudio Canetti,*,† Janeusa T. Souto,‡,§ Joa˜ o S. Silva,‡ Cory M. Hogaboam,¶ Sergio H. Ferreira,* and Fernando Q. Cunha*,1 Departments of *Pharmacology and ‡Biochemistry and Immunology, School of Medicine of Ribeira˜o Preto, University of Sa˜o Paulo, Brazil; §Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, RN, Brazil; and †Division of Pulmonary & Critical Care Medicine and ¶Department of Pathology, University of Michigan, Ann Arbor Abstract: In the present study, we investigated nists might have a therapeutic potential. J. Leukoc. the involvement of macrophage-inflammatory pro- Biol. 78: 167–177; 2005. tein-1␣ (MIP-1␣)[CC chemokine ligand 3 (CCL3)], MIP-1␤[CCL4], regulated on activation, normal Key Words: chemokines ⅐ chemokine receptors ⅐ chemotaxis T expressed and secreted (RANTES)[CCL5], and CC chemokine receptors (CCRs) on neutrophil mi- gration in murine immune inflammation. Previ- INTRODUCTION ously, we showed that ovalbumin (OVA)-triggered neutrophil migration in immunized mice depends on the sequential release of tumor necrosis factor Neutrophil migration is a complex process, which results ␣ ␣ mainly from the release of neutrophil chemotactic factors by (TNF- ) and leukotriene B4 (LTB4). Herein, we show increased mRNA expression for MIP- resident cells, inducing rolling and adhesion of neutrophils on 1␣[CCL3], MIP-1␤[CCL4], RANTES[CCL5], and endothelial cells, followed by their transmigration to the ex- travascular space [1, 2]. Apart from its importance in host CCR1 in peritoneal cells harvested from OVA-chal- defense, the migration of neutrophils to the inflammatory site lenged, immunized mice, as well as MIP-1␣[CCL3] is, at least in part, responsible for tissue damage observed in and RANTES[CCL5] but not MIP-1␤[CCL4] proteins several inflammatory diseases such as rheumatoid arthritis, in the peritoneal exudates.
    [Show full text]
  • Original Article Tocilizumab Infusion Therapy Normalizes Inflammation in Sporadic ALS Patients
    Am J Neurodegener Dis 2013;2(2):129-139 www.AJND.us /ISSN:2165-591X/AJND1304002 Original Article Tocilizumab infusion therapy normalizes inflammation in sporadic ALS patients Milan Fiala1, Mathew T Mizwicki1, Rachel Weitzman1, Larry Magpantay2, Norihiro Nishimoto3 1Department of Surgery, David Geffen School of Medicine at UCLA, 100 UCLA Medical Plaza, Suite 220, Los Angeles, CA 90095-6970, USA; 2Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, 650 Charles E. Young Drive, Los Angeles, CA, 90095-1735, USA; 3Department of Molecular Regulation for Intractable Diseases, Institute of Medical Sciences, Tokyo Medical University, Minamisenba, Chuo- ku, Osaka, 542-0081, Japan Received April 8 2013; Accepted May 19 2013; Epub June 21, 2013; Published July 1, 2013 Abstract: Patients with sporadic amyotrophic lateral sclerosis (sALS) show inflammation in the spinal cord and pe- ripheral blood. The inflammation is driven by stimulation of macrophages by aggregated superoxide dismutase 1 (SOD1) through caspase1, interleukin 1 (IL1), IL6 and chemokine signaling. Inflammatory gene activation is inhibit- ed in vitro by tocilizumab, a humanized antibody to IL6 receptor (IL6R). Tocilizumab inhibits global interleukin-6 (IL6) signaling, a key mechanism in chronic rheumatoid disorders. Here we studied in vivo baseline inflammatory gene transcription in peripheral blood mononuclear cells (PBMCs) of 10 sALS patients, and the effects of tocilizumab (ActemraR) infusions. At baseline, one half of ALS subjects had strong inflammatory activation (Group 1) (8 genes up regulated >4-fold, P<0.05 vs. controls) and the other half (Group 2) had weak activation. All patients showed greater than four-fold up regulation of MMP1, CCL7, CCL13 and CCL24.
    [Show full text]
  • Bioinformatics Identification of CCL8/21 As Potential Prognostic
    Bioscience Reports (2020) 40 BSR20202042 https://doi.org/10.1042/BSR20202042 Research Article Bioinformatics identification of CCL8/21 as potential prognostic biomarkers in breast cancer microenvironment 1,* 2,* 3 4 5 1 Bowen Chen , Shuyuan Zhang ,QiuyuLi, Shiting Wu ,HanHe and Jinbo Huang Downloaded from http://portlandpress.com/bioscirep/article-pdf/40/11/BSR20202042/897847/bsr-2020-2042.pdf by guest on 28 September 2021 1Department of Breast Disease, Maoming People’s Hospital, Maoming 525000, China; 2Department of Clinical Laboratory, Maoming People’s Hospital, Maoming 525000, China; 3Department of Emergency, Maoming People’s Hospital, Maoming 525000, China; 4Department of Oncology, Maoming People’s Hospital, Maoming 525000, China; 5Department of Medical Imaging, Maoming People’s Hospital, Maoming 525000, China Correspondence: Shuyuan Zhang ([email protected]) Background: Breast cancer (BC) is the most common malignancy among females world- wide. The tumor microenvironment usually prevents effective lymphocyte activation and infiltration, and suppresses infiltrating effector cells, leading to a failure of the host toreject the tumor. CC chemokines play a significant role in inflammation and infection. Methods: In our study, we analyzed the expression and survival data of CC chemokines in patients with BC using several bioinformatics analyses tools. Results: The mRNA expression of CCL2/3/4/5/7/8/11/17/19/20/22 was remark- ably increased while CCL14/21/23/28 was significantly down-regulated in BC tis- sues compared with normal tissues. Methylation could down-regulate expression of CCL2/5/15/17/19/20/22/23/24/25/26/27 in BC. Low expression of CCL3/4/23 was found to be associated with drug resistance in BC.
    [Show full text]
  • HIV-1 Tat Protein Mimicry of Chemokines
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 13153–13158, October 1998 Immunology HIV-1 Tat protein mimicry of chemokines ADRIANA ALBINI*, SILVANO FERRINI*, ROBERTO BENELLI*, SABRINA SFORZINI*, DANIELA GIUNCIUGLIO*, MARIA GRAZIA ALUIGI*, AMANDA E. I. PROUDFOOT†,SAMI ALOUANI†,TIMOTHY N. C. WELLS†, GIULIANO MARIANI‡,RONALD L. RABIN§,JOSHUA M. FARBER§, AND DOUGLAS M. NOONAN*¶ *Centro di Biotecnologie Avanzate, Istituto Nazionale per la Ricerca sul Cancro, Largo Rosanna Benzi, 10, 16132 Genoa, Italy; †Geneva Biomedical Research Institute, Glaxo Wellcome Research and Development, 14 chemin des Aulx, 1228 Plan-les Ouates, Geneva, Switzerland; ‡Dipartimento di Medicina Interna, Medicina Nucleare, University of Genova, Viale Benedetto XV, 6, 16132 Genoa, Italy; and §National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 10, Room 11N228 MSC 1888, Bethesda, MD 20892 Edited by Anthony S. Fauci, National Institute of Allergy and Infectious Diseases, Bethesda, MD, and approved August 25, 1998 (received for review June 24, 1998) ABSTRACT The HIV-1 Tat protein is a potent chemoat- ceptors for some dual tropic HIV-1 strains (10, 11). A CCR2 tractant for monocytes. We observed that Tat shows conserved polymorphism has been found to correlate with delayed amino acids corresponding to critical sequences of the che- progression to AIDS (12, 13). mokines, a family of molecules known for their potent ability We report here that the HIV-1 Tat protein and the peptide to attract monocytes. Synthetic Tat and a peptide (CysL24–51) encompassing the cysteine-rich and core regions induce per- encompassing the ‘‘chemokine-like’’ region of Tat induced a tussis toxin sensitive Ca21 fluxes in monocytes.
    [Show full text]
  • Role of Chemokines and Chemokine Receptors in Shaping the Effector Phase of the Antitumor Immune Response
    Published OnlineFirst December 7, 2012; DOI: 10.1158/0008-5472.CAN-12-2027 Cancer Review Research Role of Chemokines and Chemokine Receptors in Shaping the Effector Phase of the Antitumor Immune Response Katarzyna Franciszkiewicz1, Alexandre Boissonnas2, Marie Boutet1, Christophe Combadiere 2, and Fathia Mami-Chouaib1 Abstract Immune system–mediated eradication of neoplastic cells requires induction of a strong long-lasting antitumor T-cell response. However, generation of tumor-specific effector T cells does not necessarily result in tumor clearance. CTL must firstbeabletomigratetothetumorsite,infiltrate the tumor tissue, and interact with the target to finally trigger effector functions indispensable for tumor destruction. Chemokines are involved in circulation, homing, retention, and activation of immunocompetent cells. Although some of them are known to contribute to tumor growth and metastasis, others are responsible for changes in the tumor microenvironment that lead to extensive infiltration of lymphocytes, resulting in tumor eradication. Given their chemoattractive and activating properties, a role for chemokines in the development of the effector phase of the antitumor immune response has been suggested. Here, we emphasize the role of the chemokine–chemokine receptor network at multiple levels of the T-cell–mediated antitumor immune response. The identification of chemokine-dependent molecular mechanisms implicated in tumor-specific CTL trafficking, retention, and regulation of their in situ effector functions may offer new perspectives for development of innovative immunotherapeutic approaches to cancer treatment. Cancer Res; 72(24); 1–8. Ó2012 AACR. Introduction critical step in optimization of current cancer immunotherapy The identification of tumor-associated antigens (TAA) and protocols. the isolation of tumor-specific cytotoxic T cells have led to Chemokines coordinate circulation, homing, and retention great efforts in developing immunotherapeutic approaches to of immune cells.
    [Show full text]
  • A Subset of CCL25-Induced Gut-Homing T Cells Affects Intestinal Immunity to Infection and Cancer
    ORIGINAL RESEARCH published: 25 February 2019 doi: 10.3389/fimmu.2019.00271 A Subset of CCL25-Induced Gut-Homing T Cells Affects Intestinal Immunity to Infection and Cancer Hongmei Fu 1, Maryam Jangani 1, Aleesha Parmar 1, Guosu Wang 1, David Coe 1, Sarah Spear 2†, Inga Sandrock 3, Melania Capasso 2†, Mark Coles 4, Georgina Cornish 1, Helena Helmby 5 and Federica M. Marelli-Berg 1* 1 William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom, 2 Bart’s Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom, 3 Institute of Immunology, Hannover Medical School, Hannover, 4 5 Edited by: Germany, Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom, Department for Immunology Mariagrazia Uguccioni, and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom Institute for Research in Biomedicine (IRB), Switzerland Protective immunity relies upon differentiation of T cells into the appropriate subtype Reviewed by: required to clear infections and efficient effector T cell localization to antigen-rich tissue. Maria Rescigno, Istituto Europeo di Oncologia s.r.l., Recent studies have highlighted the role played by subpopulations of tissue-resident Italy memory (TRM) T lymphocytes in the protection from invading pathogens. The intestinal Fabio Grassi, Institute for Research in Biomedicine mucosa and associated lymphoid tissue are densely populated by a variety of resident (IRB), Switzerland lymphocyte populations, including αβ and γδ CD8+ intraepithelial T lymphocytes (IELs) *Correspondence: and CD4+ T cells. While the development of intestinal γδ CD8+ IELs has been extensively Federica M.
    [Show full text]
  • Structural Basis of the Activation of the CC Chemokine Receptor 5 by a Chemokine Agonist
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.27.401117; this version posted November 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: Structural basis of the activation of the CC chemokine receptor 5 by a chemokine agonist One-sentence summary: The structure of CCR5 in complex with the chemokine agonist [6P4]CCL5 and the heterotrimeric Gi protein reveals its activation mechanism Authors: Polina Isaikina1, Ching-Ju Tsai2, Nikolaus Dietz1, Filip Pamula2,3, Anne Grahl1, Kenneth N. Goldie4, Ramon Guixà-González2, Gebhard F.X. Schertler2,3,*, Oliver Hartley5,*, 4 1,* 2,* 1,* Henning Stahlberg , Timm Maier , Xavier Deupi , and Stephan Grzesiek Affiliations: 1 Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, CH-4056 Basel, Switzerland 2 Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland 3 Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland 4 Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, CH-4058 Basel, Switzerland 5 Department of Pathology and Immunology, Faculty of Medicine, University of Geneva *Address correspondence to: Stephan Grzesiek Focal Area Structural Biology and Biophysics, Biozentrum University of Basel, CH-4056 Basel, Switzerland Phone: ++41 61 267 2100 FAX: ++41 61 267 2109 Email: [email protected] Xavier Deupi Email: [email protected] Timm Maier Email: [email protected] Oliver Hartley Email: [email protected] Gebhard F.X. Schertler Email: [email protected] Keywords: G protein coupled receptor (GPCR); CCR5; chemokines; CCL5/RANTES; CCR5- gp120 interaction; maraviroc; HIV entry; AIDS; membrane protein structure; cryo-EM; GPCR activation.
    [Show full text]
  • Overexpression of Microrna-155 Suppresses Chemokine Expression Induced by Interleukin-13 in BEAS-2B Human Bronchial Epithelial Cells
    Allergology International 65 (2016) S17eS23 Contents lists available at ScienceDirect Allergology International journal homepage: http://www.elsevier.com/locate/alit Original article Overexpression of microRNA-155 suppresses chemokine expression induced by Interleukin-13 in BEAS-2B human bronchial epithelial cells * Satoshi Matsukura a, , Yuki Osakabe a, Ayaka Sekiguchi a, Daisuke Inoue a, Yusuke Kakiuchi a, Toshitaka Funaki a, Yohei Yamazaki a, Hiromi Takayasu a, Hidetsugu Tateno a, Eisuke Kato a, Aya Wakabayashi a, Makoto Hayashi a, Gen Ishii a, b, Fumihiro Yamaguchi a, Yutaka Tsuchiya a, Keita Kasahara b, Hironori Sagara c, Fumio Kokubu a a Department of Respiratory Internal Medicine, Showa University Fujigaoka Hospital, Kanagawa, Japan b Respiratory Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan c Department of Internal Medicine, Division of Allergy and Respiratory Medicine, Showa University School of Medicine, Tokyo, Japan article info abstract Article history: Background: MicroRNAs are non-coding small RNAs that regulate expression of target genes by binding Received 22 January 2016 to 30 untranslated regions. In this study, we used bronchial epithelial cells to investigate in vitro the role Received in revised form of the microRNA miR-155 in the expression of chemokines associated with airway inflammation. miR- 23 April 2016 155 has previously been reported to regulate allergic inflammation. Accepted 30 April 2016 Methods: BEAS-2B bronchial epithelial cells were cultured and transfected with mimic or inhibitor oli- Available online 3 August 2016 gonucleotides to overexpress or downregulate miR-155, as confirmed by real-time PCR. Cells were then stimulated with tumor necrosis factor-alpha, interleukin-13 (IL-13), and a double stranded RNA that Keywords: Asthma binds Toll-like receptor 3.
    [Show full text]