La(Fe,Al)L3 Unisn * Uru2si2 Thorn Palstra
Total Page:16
File Type:pdf, Size:1020Kb
MAGNETISM, SUPERCONDUCTIVITY AND THEIR INTERPLAY A STUDY OF THREE NOVEL . INTERMETALLIC COMPOUNDS: La(Fe,Al)l3 UNiSn * URu2Si2 Thorn Palstra STELLINGEN 1. De kritieke stroomdichtheid van gesputterd polykristallijn NbN kan worden vergroot in de buurt van het bovenste kritieke veld B o door het sputteren uit te voeren met tegenspanning op het substraat. 2. In quasi-kristallijn U-Pd-Si, waarin vijfvoudige roostersymmetrie is gevonden, kan de puntsymmetrie beter worden begrepen door metingen van de kristalveldeigenschappen. S.J. Poon, A.J. Dféhman en K.R. Lawless, Phys. Rev. Lett. 55 (1985) 2324. 3. In de analyse van het Mössbauerspectrum van het organo-metallisch cluster Au55(F(C5H5)3)i2Cl6 door G. Schmid et al. is ten onrechte de quadrupoolsplitsing van de ongebonden oppervlakte goudatomen verwaarloosd. G. Schmid, R. Pfeil, R. Boese, F. Bandevmann, S. Meyev, G.H.M. Calls en J.W.A. van der Velden, Chem. Ber. 114 (1981) 2634. 4. Het verdient aanbeveling de optische zuiger, gebaseerd op het principe van laser-geïnduceerde drift, te onderzoeken in een quasi-stationalre toestand. Dit kan worden bereikt in een open capillair omgeven door het te onderzoeken gasmengsel. H.G.C. Wevij, J.P. Woevdman, J.J.M. Beenakkev en J. Kusoer>, Phys. Rev. Lett. 52 (1984) 2237. 5. Ten onrechte wordt de soortelijke warmte van quasi-ëéndimensio- nale magnetische verbindingen tegenwoordig geïnterpreteerd in termen van soliton-gas modellen. F. Bovsa, M.G. Pini, A. Rettori en V. Tognetti, J. Uagn. Magn. Matef. 31-34 (1983) 1287. 6. Het beschrijven van een supergeleidende ring, onderbroken door een puntcontact, met een circuit waarin de Josephson-junctie parallel staat aan de intrinsieke capaciteit van de junctie in plaats van de capaciteit van de gehele ring, doet geen afbreuk aan het macroscopische karakter van het optredende tunnelproces. A.J. Leggett, in "Essays in Theoretical Physiae". 7. De minimum temperatuur die Bradley et al. bereikt hebben bij het afkoelen van ^He-Tfe mengsels, wordt beperkt door het warmtelek door de vloeistof in het capillair tussen de meetcel en de omringende thermische afschermingscel. D.I. Bradley, A.M. Guénault, V. Keith, C.J. Kennedy, I.E. Miller, S.G. Museett, G.R. Piakett en W.P. Pratt Jr>., J. Low Temp. Phys. 57 (1984) 359. 8. De waarneming van de ruimtesonde Giotto, dat de kern van de komeet van Halley donker is, komt eerder voort uit het feit dat deze kern is opgebouwd uit een losse structuur van zeer kleine deeltjes dan dat het oppervlak sterk licht absorbeert. 9. Bij besturingsproblemen in organisaties wordt vaak ten onrechte meer aandacht besteed aan een (geautomatiseerd) informatiesysteem dan aan de besluitvormingsstructuur. 10. Gezien de toenemende vervolmaking van de moderne zeilvlieger is een volgende voor de hand liggende stap het vervangen van de piloot door een druppelvormige massa. T.T.M. Palstra Leiden, 21 mei 1986 MAGNETISM, SUPERCONDUCTIVITY AND THEIR INTERPLAY A STUDY OF THREE NOVEL INTERMETALLIC COMPOUNDS: La(Fe,Al)13 UNiSn URu2Si2 MAGNETISM, SUPERCONDUCTIVITY AND THEIR INTERPLAY A STUDY OF THREE NOVEL INTERMETALLIC COMPOUNDS: La(Fe,Al)13 UNiSn URu2Si2 PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE WISKUNDE EN NATUURWETENSCHAPPEN AAN DE RIJKSUNIVERSITEIT TE LEIDEN, OP GEZAG VAN DE RECTOR MAGNIFICUS DR. J.J.M. BEENAKKER, HOOGLERAAR IN DE FACULTEIT DER WISKUNDE EN NATUURWETENSCHAPPEN, VOLGENS BESLUIT VAN HET COLLEGE VAN DEKANEN TE VERDEDIGEN OP WOENSDAG 21 MEI 1986 TE KLOKKE 16.15 UUR door THOMAS THEODORUS MARIE PALSTRA geboren te Kerkrade in 1958 NKB OFFSET BV — BLEISW1JK Samenstelling Promotiecommissie Promotor : Prof.Dr. J.A. Mydosh Co-promotoren : Dr. K.H.J. Buschow Dr. G.J. Nieuwenhuys Referenten : Prof.Dr. E.P. Wohlfarth Dr. J.J.M. Franse Overige leden : Prof.Dr. R. de Bruyn Ouboter Prof.Dr. G. Frossati Prof.Dr. W.J. Huiskamp Prof.Dr. P. Mazur This investigation is part of the research program of the Stichting voor Fundamenteel Onderzoek der Materie (Foundation for Fundamental Research on Matter) and was made possible by financial support from the Nederlandse Organisatie voor Zuiver Wetenschappelijk Onderzoek (Netherlands Organisation for the Advancement of Pure Research). Exegi monumentulum CONTENTS Chapter 1 GENERAL INTRODUCTION 9 Chapter 2 EXPERIMENTAL PROCEDURES 15 2.1 Electrical resistivity 15 2.1.1 Cryogenics 15 2.1.2 Automation 16 2.2 Magnetisation 16 2.3 ac susceptibility 17 2.4 Specific heat 17 2.5 3He cryostat 17 2.6 Theraal expansion 19 2.7 Other techniques 19 Chapter 3 STRUCTURAL AND MAGNETIC PROPERTIES OF THE CUBIC La(Fe,Al)13 AND I,a(Fe,Si)13 INTERMETALLIC COMPOUNDS 21 3.1 Introduction 21 3.2 Crystal structure 23 3.3 Composition and stability 25 3.4 Experimental results 27 3.4.1 Zero-field measurements 27 3.4.2 Field measurements 31 3.5 Discussion 36 3.5.1 Magnetic properties 36 3.5.2 Metamagnetism 39 3.5.3 Electrical resistivity 40 3.5.4 Spontaneous and forced magnetostriction 44 3.6 Neutron scattering and Mössbauer spectroscopy 46 3.6.1 Experimental procedures 46 3.6.2 Experimental results 47 3.6.3 Discussion 49 3.7 The critical behaviour of La(Fe,Si)13 53 3.7.1 Introduction 53 3.7.2 Experimental results 53 3.7.3 Magnetic properties 57 3.7.4 Electrical resistivity 58 3.8 Summary 59 Chapter 4 MAGNETIC PROPERTIES AND ELECTRICAL RESISTIVITY OF SEVERAL EQUIATOMIC TERNARY U-COMPOUNDS 63 4.1 Introduction 63 4.2 Experimental procedures and results 64 4.2.1 Crystal structure 64 4.2.2 Magnetic properties 65 4.2.3 Electrical resistivity 71 4.2.4 Magnetoresistivity 73 4.2.5 Hall resistivity 74 4.2.6 Specific heat 77 4.3 Discussion 77 4.3.1 Magnetic properties 77 4.3.2 Resistivity 79 4.4 Conclusions 82 Chapter 5 MAGNETIC AND SUPERCONDUCTING PROPERTIES OF SEVERAL RT2Si2 INTERMETALLIC COMPOUNDS 85 5.1 Introduction 85 5.2 Structure and crystal growth 85 5.3 Superconductivity of the RT2Si2~ternary compounds (R=Y,La,Lu) 87 5.3.1 Introduction 87 5.3.2 Experimental results 89 5.3.3 Discussion 91 5.4 Magnetic properties of the RT2Si2~ternary compounds (R=Ce,U) 95 5.4.1 Introduction 95 5.4.2 Crystal structure 95 5.4.3 Experimental results 96 5.4.4 Discussion 103 5.5 The heavy-fermion compound URu2Si2 112 5.5.1 Introduction to heavy-fermion behaviour 112 5.5.2 Magnetism and superconductivity of the heavy-fermion system URu2Si2 115 5.5.3 Anisotropical electrical resistivity of URu2Si2 121 Summary 132 Samenvatting 133 Nawoord 135 Curriculum vitae 136 General Introduction The interplay between magnetism and superconductivity is an intriguing topic, which has been studied for more than 30 years. The first experimental efforts were to dilute a superconductor with magnetic impurities [1]. This resulted in an understanding of the (Cooper)pair-breaking mechanism for para- magnetic impurities. A second stage was reached with the discovery of the rhodium-boride and Chevrel-phase systems. Here, a coexistence of superconduc- tivity and a magnetically long-range ordered state was established [2]. However, the superconductivity and the magnetism are carried by different types of electrons, spatially separated by the special crystal structure, with the net result to reduce the pair-breaking effect. A completely new research area was commenced by the discovery of the heavy-fermion system CeCu2Si2 [3]« Now, another kind of balance between magnetism and superconductivity is found. At high temperature local-moment behaviour is observed. Nevertheless, with decreasing temperature the moments disappear and a strongly interacting electron system remains at about IK. Surprisingly, this strongly interacting electron system becomes super- conducting below IK. Indeed, the balance between magnetism and superconduc- tivity is very delicate, as even a coexistence of superconductivity and a long-range ordered antiferromagnetic state was found for one of the systems, URu2Si2> in this class of heavy-fermion compounds[4]. The most puzzling aspect of the coexistence is that the magnetism and the superconductivity are carried by the same 5f-electrons, hybridized with the conduction electrons. The theory of this interplay developed along similar lines. First, the pair-breaking effect of paramagnetic impurities was formulated in the Abrikosov-Gor'kov theory [5], which has been extended in many aspects, e.g. the Kondo effect. Soon it was realised that ferromagnetism and superconduc- tivity are mutually exclusive [6], although several claims of coexistence have recently been made [7,8]. However, there is no rigorous theoretical argument that excludes the coexistence of spin-density waves or antiferromagnetism and superconductivity. Still, it was not until the discovery of these properties in URu2Si2, that a confirmation was given experimentally. A simple theoretical picture supposes that part of the Fermi surface carries the magnetism and another part the superconductivity [9]. Presently it is generally believed that the ordinary electron-phonon inter- action is insufficient to create Cooper-pairing in the strongly interacting electron system of these heavy-fermion compounds* Consequently, the electron-phonon interaction must be dramatically enhanced, or another attractive interaction must be present [10]. It was recently suggested that the large electron-electron interactions, present in the normal state, also provide the attractive mechanism, required for superconductivity. Furthermore, there are indications that the order parameter vanishes over part of the Fermi-surface[11]. As this is impossible for singlet spin pairing, it was argued that triplet (or better "odd-parity") spin pairing could be present. Unfortunately, thus far no decisive experiment has been performed or suggested to unambiguously distinguish the possible pairing mechanisms. Another type of magnetism, discussed in this thesis, is the magnetism of iron-based compounds and the related Invar problem [12]. The name Invar originates from a vanishing of the thermal expansion coefficient around room temperature.