C7000 Embedded Application Binary Interface (EABI)

Total Page:16

File Type:pdf, Size:1020Kb

C7000 Embedded Application Binary Interface (EABI) C7000 Embedded Application Binary Interface (EABI) Reference Guide Literature Number: SPRUIG4C January 2018–Revised August 2019 Contents Preface ........................................................................................................................................ 5 1 Introduction......................................................................................................................... 6 1.1 ABIs for the C7000 .......................................................................................................... 7 1.2 Scope.......................................................................................................................... 8 1.3 ABI Variants .................................................................................................................. 9 1.4 Toolchains and Interoperability ............................................................................................ 9 1.5 Libraries ....................................................................................................................... 9 1.6 Types of Object Files ...................................................................................................... 10 1.7 Segments.................................................................................................................... 10 1.8 C7000 Architecture Overview............................................................................................. 10 1.9 Code Fragment Notation .................................................................................................. 10 2 Data Representation ........................................................................................................... 11 2.1 Basic Types ................................................................................................................. 12 2.1.1 Basic Types in Memory........................................................................................... 12 2.1.2 Basic Types in Registers ......................................................................................... 13 2.2 Complex Types ............................................................................................................. 13 2.2.1 Memory Representation of Complex Types ................................................................... 13 2.2.2 Register Representation of Complex Types ................................................................... 14 2.3 Vector Types................................................................................................................ 14 2.4 Structures and Unions ..................................................................................................... 15 2.4.1 Structures in Registers ........................................................................................... 16 2.5 Bit-Fields..................................................................................................................... 17 2.5.1 Volatile Bit-Fields .................................................................................................. 18 2.6 Enumeration Types ........................................................................................................ 18 3 Calling Conventions ........................................................................................................... 19 3.1 Call and Return ............................................................................................................. 20 3.1.1 Pipeline Conventions ............................................................................................. 20 3.1.2 Weak Functions ................................................................................................... 20 3.2 Register Conventions ...................................................................................................... 20 3.3 Return Values............................................................................................................... 22 3.4 Values Passed and Returned by Reference............................................................................ 22 3.5 Conventions for Compiler Helper Functions ............................................................................ 22 3.6 Scratch Registers for Trampolines and PLT Entries................................................................... 23 4 Data Allocation and Addressing ........................................................................................... 24 4.1 Data Sections and Segments............................................................................................. 25 4.2 Allocation and Addressing of Static Data ............................................................................... 26 4.2.1 Addressing Methods for Static Data ............................................................................ 26 4.2.2 Initialization of Static Data........................................................................................ 27 4.3 Automatic Variables........................................................................................................ 27 4.4 Frame Layout ............................................................................................................... 28 4.4.1 Stack Allocation.................................................................................................... 29 4.4.2 Register Save Order ............................................................................................. 29 4.5 Heap-Allocated Objects ................................................................................................... 29 5 Code Allocation and Addressing .......................................................................................... 30 2 Contents SPRUIG4C–January 2018–Revised August 2019 Submit Documentation Feedback Copyright © 2018–2019, Texas Instruments Incorporated www.ti.com 5.1 Branching.................................................................................................................... 31 5.2 Calls.......................................................................................................................... 31 5.3 Computing Code Addresses .............................................................................................. 32 6 Helper Function API............................................................................................................ 33 6.1 Floating-Point Behavior.................................................................................................... 34 6.2 C Helper Function API..................................................................................................... 34 6.3 Special Register Conventions for Helper Functions ................................................................... 35 7 Standard C Library API ....................................................................................................... 36 7.1 Reserved Symbols ......................................................................................................... 37 7.2 <assert.h> Implementation................................................................................................ 37 7.3 <complex.h> Implementation ............................................................................................. 37 7.4 <ctype.h> Implementation................................................................................................. 37 7.5 <errno.h> Implementation................................................................................................. 38 7.6 <float.h> Implementation .................................................................................................. 38 7.7 <inttypes.h> Implementation.............................................................................................. 38 7.8 <iso646.h> Implementation ............................................................................................... 38 7.9 <limits.h> Implementation ................................................................................................. 39 7.10 <locale.h> Implementation ................................................................................................ 39 7.11 <math.h> Implementation ................................................................................................. 39 7.12 <setjmp.h> Implementation ............................................................................................... 40 7.13 <signal.h> Implementation ................................................................................................ 40 7.14 <stdarg.h> Implementation................................................................................................ 40 7.15 <stdbool.h> Implementation .............................................................................................. 40 7.16 <stddef.h> Implementation................................................................................................ 40 7.17 <stdint.h> Implementation................................................................................................. 40 7.18 <stdio.h> Implementation ................................................................................................. 41 7.19 <stdlib.h> Implementation................................................................................................. 41 7.20 <string.h> Implementation................................................................................................
Recommended publications
  • Linkers and Loaders Hui Chen Department of Computer & Information Science CUNY Brooklyn College
    CISC 3320 MW3 Linkers and Loaders Hui Chen Department of Computer & Information Science CUNY Brooklyn College CUNY | Brooklyn College: CISC 3320 9/11/2019 1 OS Acknowledgement • These slides are a revision of the slides by the authors of the textbook CUNY | Brooklyn College: CISC 3320 9/11/2019 2 OS Outline • Linkers and linking • Loaders and loading • Object and executable files CUNY | Brooklyn College: CISC 3320 9/11/2019 3 OS Authoring and Running a Program • A programmer writes a program in a programming language (the source code) • The program resides on disk as a binary executable file translated from the source code of the program • e.g., a.out or prog.exe • To run the program on a CPU • the program must be brought into memory, and • create a process for it • A multi-step process CUNY | Brooklyn College: CISC 3320 9/11/2019 4 OS CUNY | Brooklyn College: CISC 3320 9/11/2019 5 OS Compilation • Source files are compiled into object files • The object files are designed to be loaded into any physical memory location, a format known as an relocatable object file. CUNY | Brooklyn College: CISC 3320 9/11/2019 6 OS Relocatable Object File • Object code: formatted machine code, but typically non-executable • Many formats • The Executable and Linkable Format (ELF) • The Common Object File Format (COFF) CUNY | Brooklyn College: CISC 3320 9/11/2019 7 OS Examining an Object File • In Linux/UNIX, $ file main.o main.o: ELF 64-bit LSB relocatable, x86-64, version 1 (SYSV), not stripped $ nm main.o • Also use objdump, readelf, elfutils, hexedit • You may need # apt-get install hexedit # apt-get install elfutils CUNY | Brooklyn College: CISC 3320 9/11/2019 8 OS Linking • During the linking phase, other object files or libraries may be included as well • Example: $ g++ -o main -lm main.o sumsine.o • A program consists of one or more object files.
    [Show full text]
  • 6 Boot Loader
    BootBoot LoaderLoader 66 6.1 INTRODUCTION The Boot Loader is a utility program supplied with the ADSP-21000 Family Development Software. The loader converts an ADSP-21xxx executable program, generated by the linker, into a format which can be used to boot a target hardware system and initialize its memory. The loader’s invocation command is LDR21K. The boot loader replaces the MEM21K memory initializer used with the ADSP-21020 processor. Any executable file to be processed with the LDR21K boot loader must not be processed by MEM21K. The -nomem switch of the C compiler should be used when compiling any C source files—this switch prevents the compiler from running MEM21K. The following naming conventions are used throughout this chapter: The loader refers to LDR21K contained in the software release. The boot loader refers to the executable file that performs the memory initialization on the target. The boot file refers to the output of the loader that contains the boot loader and the formatted system configurations. Booting refers to the process of loading the boot loader, initialization system memory, and starting the application on the target. Memory is referred to as being either data memory, program memory, or internal memory. Remember that the ADSP-21020 processor has separate external program and data memories, but does not have any internal memory. The ADSP-2106x SHARC has both internal and external memory. 6 – 1 66 BootBoot LoaderLoader To use the loader, you should be familiar with the hardware requirements of booting an ADSP-21000 target. See Chapter 11 of the ADSP-2106x SHARC User’s Manual or Chapter 9 of the ADSP-21020 User’s Manual for further information.
    [Show full text]
  • Virtual Table Hijacking Protection Enhancement for CFG
    Liberation Guard: Virtual Table Hijacking Protection Enhancement for CFG Eyal Itkin [email protected] eyalitkin.wordpress.com Abstract—Control Flow Guard (CFG) is an advanced defense mechanism by Microsoft, that aims to mitigate exploiting tech- niques using control flow integrity checks. In this paper we1 present a proposed enhancement of CFG, that adds virtual table integrity checks which will mitigate most virtual table hijacking exploits. The proposed defense creates a strong differentiation between ordinary and virtual functions, thus significantly nar- rowing the exploit options available when controlling an indirect virtual call. This differentiation will impose strong restrictions over current virtual table hijacking exploits, thus significantly raising the protection CFG can offer to protected programs2. I. PRELIMINARIES Fig. 1. Example of address translation for an unaligned address (at the top) and an aligned address (at the bottom). A. Control Flow Guard Overview Control Flow Guard (CFG) is an advanced control flow integrity (CFI) defense mechanism introduced by Microsoft in In order to use this CFI knowledge, the compiler adds Windows 8.1 and Windows 10 [4]. CFG aims to significantly a validation check prior to each indirect call (only call restrict the allowed control flow in the cases of indirect calls, assembly opcode, and not jump opcodes). This function is and is supported in Visual Studio 2015. stored in ntdll.dll, and exported to the rest of the DLLs. This defense mechanism is based on the fact that during The function verifies the requested address against the stored compilation time the compiler ”learns” where ”legitimate” bitmap, while acting as a NOP in case the bit is ”1” and crashes functions start, and records these addresses in the compiled the program in case the bit is ”0”.
    [Show full text]
  • Majnemer-Fuzzingclang.Pdf
    Fuzzing Clang to find ABI Bugs David Majnemer What’s in an ABI? • The size, alignment, etc. of types • Layout of records, RTTI, virtual tables, etc. • The decoration of types, functions, etc. • To generalize: anything that you need N > 1 compilers to agree upon C++: A complicated language union U { int a; int b; }; ! int U::*x = &U::a; int U::*y = &U::b; ! Does ‘x’ equal ‘y’ ? We’ve got a standard How hard could it be? “[T]wo pointers to members compare equal if they would refer to the same member of the same most derived object or the same subobject if indirection with a hypothetical object of the associated class type were performed, otherwise they compare unequal.” No ABI correctly implements this. Why does any of this matter? • Data passed across ABI boundaries may be interpreted by another compiler • Unpredictable things may happen if two compilers disagree about how to interpret this data • Subtle bugs can be some of the worst bugs Finding bugs isn’t easy • ABI implementation techniques may collide with each other in unpredictable ways • One compiler permutes field order in structs if the alignment is 16 AND it has an empty virtual base AND it has at least one bitfield member AND … • Some ABIs are not documented • Even if they are, you can’t always trust the documentation What happens if we aren’t proactive • Let users find our bugs for us • This can be demoralizing for users, eroding their trust • Altruistic; we must hope that the user will file the bug • At best, the user’s time has been spent on something they probably didn’t want to do Let computers find the bugs 1.
    [Show full text]
  • ILE C/C++ Language Reference, SC09-7852
    IBM IBM i Websphere Development Studio ILE C/C++ Language Reference 7.1 SC09-7852-02 IBM IBM i Websphere Development Studio ILE C/C++ Language Reference 7.1 SC09-7852-02 Note! Before using this information and the product it supports, be sure to read the general information under “Notices” on page 355. This edition applies to IBM i 7.1, (program 5770-WDS), ILE C/C++ compilers, and to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all reduced instruction set computer (RISC) models nor does it run on CISC models. © Copyright IBM Corporation 1998, 2010. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents About ILE C/C++ Language Reference Digraph characters ........... 27 (SC09-7852-01) ........... ix Trigraph sequences ........... 28 Who should read this book ......... ix Comments............... 28 Highlighting Conventions .......... x How to Read the Syntax Diagrams ....... x Chapter 3. Data objects and Prerequisite and related information ...... xii declarations ............ 31 How to send your comments ........ xii Overview of data objects and declarations .... 31 Overview of data objects ......... 31 What's new for IBM i 7.1 ....... xv Incomplete types .......... 32 Compatible and composite types ..... 32 Chapter 1. Scope and linkage ..... 1 Overview of data declarations and definitions .. 33 Tentative definitions ......... 34 Scope ................. 1 Storage class specifiers........... 35 Block/local scope ............ 2 The auto storage class specifier ....... 35 Function scope ............ 2 Storage duration of automatic variables ... 35 Function prototype scope ......... 3 Linkage of automatic variables ...... 36 File/global scope ...........
    [Show full text]
  • The UNIX Time- Sharing System
    1. Introduction There have been three versions of UNIX. The earliest version (circa 1969–70) ran on the Digital Equipment Cor- poration PDP-7 and -9 computers. The second version ran on the unprotected PDP-11/20 computer. This paper describes only the PDP-11/40 and /45 [l] system since it is The UNIX Time- more modern and many of the differences between it and older UNIX systems result from redesign of features found Sharing System to be deficient or lacking. Since PDP-11 UNIX became operational in February Dennis M. Ritchie and Ken Thompson 1971, about 40 installations have been put into service; they Bell Laboratories are generally smaller than the system described here. Most of them are engaged in applications such as the preparation and formatting of patent applications and other textual material, the collection and processing of trouble data from various switching machines within the Bell System, and recording and checking telephone service orders. Our own installation is used mainly for research in operating sys- tems, languages, computer networks, and other topics in computer science, and also for document preparation. UNIX is a general-purpose, multi-user, interactive Perhaps the most important achievement of UNIX is to operating system for the Digital Equipment Corpora- demonstrate that a powerful operating system for interac- tion PDP-11/40 and 11/45 computers. It offers a number tive use need not be expensive either in equipment or in of features seldom found even in larger operating sys- human effort: UNIX can run on hardware costing as little as tems, including: (1) a hierarchical file system incorpo- $40,000, and less than two man years were spent on the rating demountable volumes; (2) compatible file, device, main system software.
    [Show full text]
  • Application Binary Interface for the ARM Architecture
    ABI for the ARM Architecture (Base Standard) Application Binary Interface for the ARM® Architecture The Base Standard Document number: ARM IHI 0036B, current through ABI release 2.10 Date of Issue: 10th October 2008, reissued 24th November 2015 Abstract This document describes the structure of the Application Binary Interface (ABI) for the ARM architecture, and links to the documents that define the base standard for the ABI for the ARM Architecture. The base standard governs inter-operation between independently generated binary files and sets standards common to ARM- based execution environments. Keywords ABI for the ARM architecture, ABI base standard, embedded ABI How to find the latest release of this specification or report a defect in it Please check the ARM Information Center (http://infocenter.arm.com/) for a later release if your copy is more than one year old (navigate to the ARM Software development tools section, ABI for the ARM Architecture subsection). Please report defects in this specification to arm dot eabi at arm dot com. Licence THE TERMS OF YOUR ROYALTY FREE LIMITED LICENCE TO USE THIS ABI SPECIFICATION ARE GIVEN IN SECTION 1.4, Your licence to use this specification (ARM contract reference LEC-ELA-00081 V2.0). PLEASE READ THEM CAREFULLY. BY DOWNLOADING OR OTHERWISE USING THIS SPECIFICATION, YOU AGREE TO BE BOUND BY ALL OF ITS TERMS. IF YOU DO NOT AGREE TO THIS, DO NOT DOWNLOAD OR USE THIS SPECIFICATION. THIS ABI SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES (SEE SECTION 1.4 FOR DETAILS). Proprietary notice ARM, Thumb, RealView, ARM7TDMI and ARM9TDMI are registered trademarks of ARM Limited.
    [Show full text]
  • Application Binary Interface Compatability Through A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The University of Utah: J. Willard Marriott Digital Library APPLICATION BINARY INTERFACE COMPATIBILITY THROUGH A CUSTOMIZABLE LANGUAGE by Kevin Jay Atkinson A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science School of Computing The University of Utah December 2011 Copyright c Kevin Jay Atkinson 2011 All Rights Reserved The University of Utah Graduate School STATEMENT OF DISSERTATION APPROVAL The dissertation of Kevin Jay Atkinson has been approved by the following supervisory committee members: Matthew Flatt , Chair 11/3/2011 Date Approved Gary Lindstrom , Member 11/17/2011 Date Approved Eric Eide , Member 11/3/2011 Date Approved Robert Kessler , Member 11/3/2011 Date Approved Olin Shivers , Member 11/29/2011 Date Approved and by Al Davis , Chair of the Department of School of Computing and by Charles A. Wight, Dean of The Graduate School. ABSTRACT ZL is a C++-compatible language in which high-level constructs, such as classes, are defined using macros over a C-like core language. This approach is similar in spirit to Scheme and makes many parts of the language easily customizable. For example, since the class construct can be defined using macros, a programmer can have complete control over the memory layout of objects. Using this capability, a programmer can mitigate certain problems in software evolution such as fragile ABIs (Application Binary Interfaces) due to software changes and incompatible ABIs due to compiler changes.
    [Show full text]
  • Symbol Table Relocation Table Object File Format Where Are We Now
    inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Symbol Table Lecture 19 – Running a Program II . List of “items” in this file that may be used by other files. (Compiling, Assembling, Linking, Loading) Hello to . What are they? Lecturer SOE 2008-03-05 Neil Sharma Labels: function calling Dan Garcia from the 3rd row! Data: anything in the .data section; variables which may be accessed across files Researchers at Princeton have developed a flexible electricity-producing sheet of rubber that can use body movements into electricity. Breathing generates 1 W, walking around the room generates 70 W. Shoes may be the best place, to power/recharge cell phones & iPods. www.nytimes.com/2010/03/02/science/02obribbon.html CS61C L19 : Running a Progam II … Compiling, Assembling, Linking, and Loading (3) Garcia, Spring 2010 © UCB Relocation Table Object File Format . List of “items” this file needs the address later. object file header: size and position of the other . What are they? pieces of the object file Any label jumped to: j or jal . text segment: the machine code internal . data segment: binary representation of the data in external (including lib files) the source file Any piece of data connected with an address . relocation information: identifies lines of code that such as the la instruction need to be “handled” . symbol table: list of this file’s labels and data that can be referenced . debugging information . A standard format is ELF (except MS) http://www.skyfree.org/linux/references/ELF_Format.pdf CS61C L19 : Running a Progam II … Compiling, Assembling, Linking, and Loading (4) Garcia, Spring 2010 © UCB CS61C L19 : Running a Progam II … Compiling, Assembling, Linking, and Loading (5) Garcia, Spring 2010 © UCB Where Are We Now? Linker (1/3) .
    [Show full text]
  • Linkers and Loaders Do?
    Linkers & Loaders by John R. Levine Table of Contents 1 Table of Contents Chapter 0: Front Matter ........................................................ 1 Dedication .............................................................................................. 1 Introduction ............................................................................................ 1 Who is this book for? ......................................................................... 2 Chapter summaries ............................................................................. 3 The project ......................................................................................... 4 Acknowledgements ............................................................................ 5 Contact us ........................................................................................... 6 Chapter 1: Linking and Loading ........................................... 7 What do linkers and loaders do? ............................................................ 7 Address binding: a historical perspective .............................................. 7 Linking vs. loading .............................................................................. 10 Tw o-pass linking .............................................................................. 12 Object code libraries ........................................................................ 15 Relocation and code modification .................................................... 17 Compiler Drivers .................................................................................
    [Show full text]
  • Assemblers, Linkers & Loaders
    Assemblers, Linkers & Loaders C program Translation Hierarchy Compiler Assembly language program Assembler Object: Machine language module Object: Library routine (machine language) Linker Executable: Machine language program Loader Memory 1 Translation Hierarchy • Compiler – Translates high-level language program into assembly language (CS 440) • Assembler – Converts assembly language programs into object files • Object files contain a combination of machine instructions, data, and information needed to place instructions properly in memory Assemblers • Assemblers need to – translate assembly instructions and pseudo-instructions into machine instructions – Convert decimal numbers, etc. specified by programmer into binary • Typically, assemblers make two passes over the assembly file – First pass: reads each line and records labels in a symbol table – Second pass: use info in symbol table to produce actual machine code for each line 2 Object file format Object file Text Data Relocation Symbol Debugging header segment segment information table information • Object file header describes the size and position of the other pieces of the file • Text segment contains the machine instructions • Data segment contains binary representation of data in assembly file • Relocation info identifies instructions and data that depend on absolute addresses • Symbol table associates addresses with external labels and lists unresolved references • Debugging info Process for producing an executable file Source Object Assembler file file Source Object Executable Assembler file file Linker file Source Object Program Assembler file file library 3 Object file sub: · Object file · Executable file · Instructions main: main: jal ??? jal printf · · · · · · jal ??? jal sub printf: call, sub Linker · Relocation call, printf · records · sub: · C library · · print: · · · Linker • Tool that merges the object files produced by separate compilation or assembly and creates an executable file • Three tasks – Searches the program to find library routines used by program, e.g.
    [Show full text]
  • Codewarrior Development Studio for Starcore 3900FP Dsps Application Binary Interface (ABI) Reference Manual
    CodeWarrior Development Studio for StarCore 3900FP DSPs Application Binary Interface (ABI) Reference Manual Document Number: CWSCABIREF Rev. 10.9.0, 06/2015 CodeWarrior Development Studio for StarCore 3900FP DSPs Application Binary Interface (ABI) Reference Manual, Rev. 10.9.0, 06/2015 2 Freescale Semiconductor, Inc. Contents Section number Title Page Chapter 1 Introduction 1.1 Standards Covered............................................................................................................................................................ 7 1.2 Accompanying Documentation........................................................................................................................................ 8 1.3 Conventions...................................................................................................................................................................... 8 1.3.1 Numbering Systems............................................................................................................................................. 8 1.3.2 Typographic Notation.......................................................................................................................................... 9 1.3.3 Special Terms.......................................................................................................................................................9 Chapter 2 Low-level Binary Interface 2.1 StarCore Architectures......................................................................................................................................................11
    [Show full text]