An Evil Copy: How the Loader Betrays You
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Defeating Memory Corruption Attacks Via Pointer Taintedness Detection
Defeating Memory Corruption Attacks via Pointer Taintedness Detection Shuo Chen †, Jun Xu ‡, Nithin Nakka †, Zbigniew Kalbarczyk †, Ravishankar K. Iyer † † Center for Reliable and High-Performance Computing, ‡ Department of Computer Science University of Illinois at Urbana-Champaign, North Carolina State University 1308 W. Main Street, Urbana, IL 61801 Raleigh, NC 27695 {shuochen, nakka, kalbar, iyer}@crhc.uiuc.edu [email protected] Abstract formal methods have been adopted to prevent Most malicious attacks compromise system security programmers from writing insecure software. But despite through memory corruption exploits. Recently proposed substantial research and investment, the state of the art is techniques attempt to defeat these attacks by protecting far from perfect, and as a result, security vulnerabilities are program control data. We have constructed a new class of constantly being discovered in the field. The most direct attacks that can compromise network applications without counter-measure against vulnerabilities in the field is tampering with any control data. These non-control data security patching. Patching, however, is reactive in nature attacks represent a new challenge to system security. In and can only be applied to known vulnerabilities. The long this paper, we propose an architectural technique to latency between bug discovery and patching allows defeat both control data and non-control data attacks attackers to compromise many unpatched systems. An based on the notion of pointer taintedness . A pointer is alternative to patching is runtime vulnerability masking said to be tainted if user input can be used as the pointer that can stop ongoing attacks. Compiler and library value. A security attack is detected whenever a tainted interception techniques have been proposed to mask value is dereferenced during program execution. -
Representing and Reasoning About Dynamic Code
Representing and reasoning about dynamic code Item Type Proceedings Authors Bartels, Jesse; Stephens, Jon; Debray, Saumya Citation Bartels, J., Stephens, J., & Debray, S. (2020, September). Representing and Reasoning about Dynamic Code. In 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE) (pp. 312-323). IEEE. DOI 10.1145/3324884.3416542 Publisher ACM Journal Proceedings - 2020 35th IEEE/ACM International Conference on Automated Software Engineering, ASE 2020 Rights © 2020 Association for Computing Machinery. Download date 23/09/2021 23:26:56 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final accepted manuscript Link to Item http://hdl.handle.net/10150/652285 Representing and Reasoning about Dynamic Code Jesse Bartels Jon Stephens Saumya Debray Department of Computer Science Department of Computer Science Department of Computer Science The University Of Arizona University Of Texas The University Of Arizona Tucson, AZ 85721, USA Austin, TX 78712, USA Tucson, AZ 85721, USA [email protected] [email protected] [email protected] ABSTRACT and trace dependencies back, into and through the JIT compiler’s Dynamic code, i.e., code that is created or modified at runtime, is code, to understand the data and control flows that influenced the ubiquitous in today’s world. The behavior of dynamic code can JIT compiler’s actions and caused the generation of the problem- depend on the logic of the dynamic code generator in subtle and non- atic code. E.g., for the CVE-2017-5121 bug mentioned above, we obvious ways, e.g., JIT compiler bugs can lead to exploitable vul- might want to perform automated analyses to identify which anal- nerabilities in the resulting JIT-compiled code. -
Linkers and Loaders Hui Chen Department of Computer & Information Science CUNY Brooklyn College
CISC 3320 MW3 Linkers and Loaders Hui Chen Department of Computer & Information Science CUNY Brooklyn College CUNY | Brooklyn College: CISC 3320 9/11/2019 1 OS Acknowledgement • These slides are a revision of the slides by the authors of the textbook CUNY | Brooklyn College: CISC 3320 9/11/2019 2 OS Outline • Linkers and linking • Loaders and loading • Object and executable files CUNY | Brooklyn College: CISC 3320 9/11/2019 3 OS Authoring and Running a Program • A programmer writes a program in a programming language (the source code) • The program resides on disk as a binary executable file translated from the source code of the program • e.g., a.out or prog.exe • To run the program on a CPU • the program must be brought into memory, and • create a process for it • A multi-step process CUNY | Brooklyn College: CISC 3320 9/11/2019 4 OS CUNY | Brooklyn College: CISC 3320 9/11/2019 5 OS Compilation • Source files are compiled into object files • The object files are designed to be loaded into any physical memory location, a format known as an relocatable object file. CUNY | Brooklyn College: CISC 3320 9/11/2019 6 OS Relocatable Object File • Object code: formatted machine code, but typically non-executable • Many formats • The Executable and Linkable Format (ELF) • The Common Object File Format (COFF) CUNY | Brooklyn College: CISC 3320 9/11/2019 7 OS Examining an Object File • In Linux/UNIX, $ file main.o main.o: ELF 64-bit LSB relocatable, x86-64, version 1 (SYSV), not stripped $ nm main.o • Also use objdump, readelf, elfutils, hexedit • You may need # apt-get install hexedit # apt-get install elfutils CUNY | Brooklyn College: CISC 3320 9/11/2019 8 OS Linking • During the linking phase, other object files or libraries may be included as well • Example: $ g++ -o main -lm main.o sumsine.o • A program consists of one or more object files. -
Doin' the Eagle Rock
VIRUS BULLETIN www.virusbtn.com MALWARE ANALYSIS 1 DOIN’ THE EAGLE ROCK this RNG in every virus for which he requires a source of random numbers. Peter Ferrie Microsoft, USA The virus then allocates two blocks of memory: one to hold the intermediate encoding of the virus body, and the other to hold the fully encoded virus body. The virus decompresses If a fi le contains no code, can it be executed? Can arithmetic a fi le header into the second block. The fi le header is operations be malicious? Here we have a fi le that contains compressed using a simple Run-Length Encoder algorithm. no code, and no data in any meaningful sense. All it The header is for a Windows Portable Executable fi le, and it contains is a block of relocation items, and all relocation seems as though the intention was to produce the smallest items do is cause a value to be added to locations in the possible header that can still be executed on Windows. There image. So, nothing but relocation items – and yet it also are overlapping sections, and ‘unnecessary’ fi elds have been contains W32/Lerock. removed. The virus then allocates a third block of memory, Lerock is written by the same virus author as W32/Fooper which will hold a copy of the unencoded virus body. (see VB, January 2010, p.4), and behaves in the same way at a The virus searches for zeroes within the unencoded memory high level, but at a lower level it differs in an interesting way. -
6 Boot Loader
BootBoot LoaderLoader 66 6.1 INTRODUCTION The Boot Loader is a utility program supplied with the ADSP-21000 Family Development Software. The loader converts an ADSP-21xxx executable program, generated by the linker, into a format which can be used to boot a target hardware system and initialize its memory. The loader’s invocation command is LDR21K. The boot loader replaces the MEM21K memory initializer used with the ADSP-21020 processor. Any executable file to be processed with the LDR21K boot loader must not be processed by MEM21K. The -nomem switch of the C compiler should be used when compiling any C source files—this switch prevents the compiler from running MEM21K. The following naming conventions are used throughout this chapter: The loader refers to LDR21K contained in the software release. The boot loader refers to the executable file that performs the memory initialization on the target. The boot file refers to the output of the loader that contains the boot loader and the formatted system configurations. Booting refers to the process of loading the boot loader, initialization system memory, and starting the application on the target. Memory is referred to as being either data memory, program memory, or internal memory. Remember that the ADSP-21020 processor has separate external program and data memories, but does not have any internal memory. The ADSP-2106x SHARC has both internal and external memory. 6 – 1 66 BootBoot LoaderLoader To use the loader, you should be familiar with the hardware requirements of booting an ADSP-21000 target. See Chapter 11 of the ADSP-2106x SHARC User’s Manual or Chapter 9 of the ADSP-21020 User’s Manual for further information. -
Download Article (PDF)
Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013) SecGOT: Secure Global Offset Tables in ELF Executables Chao Zhang, Lei Duan, Tao Wei, Wei Zou Beijing Key Laboratory of Internet Security Technology Institute of Computer Science and Technology, Peking University Beijing, China {chao.zhang, lei_duan, wei_tao, zou_wei}@pku.edu.cn Abstract—Global Offset Table (GOT) is an important feature library code for these two processes are different). This to support library sharing in Executable and Linkable Format problem also restrains the code sharing feature of libraries. (ELF) applications. The addresses of external modules’ global A solution called PIC (Position Independent Code [3]) is variables and functions are runtime resolved and stored in the proposed for the ELF (Executable and Linkable Format [4]) GOT and then are used by the program. If attackers tamper executable binaries which are common in Linux. with the function pointers in the GOT, they can hijack the In libraries or main modules supporting PIC, the code program’s control flow and execute arbitrary malicious code. section does not reference any absolute addresses in order to Current research pays few attentions on this threat (i.e. GOT support code sharing between processes. However, absolute hijacking attack). In this paper, we proposed and implemented addresses are unavoidable in programs. As a result, a GOT a protection mechanism SecGOT to randomize the GOT at table (Global Offset Table [4]) is introduced in the library. load time, and thus prevent attackers from guessing the GOT’s position and tampering with the function pointers. SecGOT is This table resides in the data section and is not shared evaluated against 101 binaries in the /bin directory for Linux. -
Foundation API Client Library PHP – Usage Examples By: Juergen Rolf Revision Version: 1.2
Foundation API Client Library PHP – Usage Examples By: Juergen Rolf Revision Version: 1.2 Revision Date: 2019-09-17 Company Unrestricted Foundation API Client Library PHP – Installation Guide Document Information Document Details File Name MDG Foundation API Client Library PHP - Usage Examples_v1_2 external.docx Contents Usage Examples and Tutorial introduction for the Foundation API Client Library - PHP Author Juergen Rolf Version 1.2 Date 2019-09-17 Intended Audience This document provides a few examples helping the reader to understand the necessary mechanisms to request data from the Market Data Gateway (MDG). The intended audience are application developers who want to get a feeling for the way they can request and receive data from the MDG. Revision History Revision Date Version Notes Author Status 2017-12-04 1.0 Initial Release J. Rolf Released 2018-03-27 1.1 Adjustments for external J. Rolf Released release 2019-09-17 1.2 Minor bugfixes J. Ockel Released References No. Document Version Date 1. Quick Start Guide - Market Data Gateway (MDG) 1.1 2018-03-27 APIs external 2. MDG Foundation API Client Library PHP – Installation 1.2 2019-09-17 Guide external Company Unrestricted Copyright © 2018 FactSet Digital Solutions GmbH. All rights reserved. Revision Version 1.2, Revision Date 2019-09-17, Author: Juergen Rolf www.factset.com | 2 Foundation API Client Library PHP – Installation Guide Table of Contents Document Information ............................................................................................................................ -
Opencobol Manual for Opencobol 2.0
OpenCOBOL Manual for OpenCOBOL 2.0 Keisuke Nishida / Roger While Edition 2.0 Updated for OpenCOBOL 2.0 26 January 2012 OpenCOBOL is an open-source COBOL compiler, which translates COBOL programs to C code and compiles it using GCC or other C compiler system. This manual corresponds to OpenCOBOL 2.0. Copyright c 2002,2003,2004,2005,2006 Keisuke Nishida Copyright c 2007-2012 Roger While Permission is granted to make and distribute verbatim copies of this manual provided the copy- right notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the condi- tions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice maybe stated in a translation approved by the Free Software Foundation. i Table of Contents 1 Getting Started :::::::::::::::::::::::::::::::::::::::::::::::: 1 1.1 Hello World!::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 1 2 Compile :::::::::::::::::::::::::::::::::::::::::::::::::::::::: 2 2.1 Compiler Options ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 2 2.1.1 Help Options ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 2 2.1.2 Built Target :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: -
Common Object File Format (COFF)
Application Report SPRAAO8–April 2009 Common Object File Format ..................................................................................................................................................... ABSTRACT The assembler and link step create object files in common object file format (COFF). COFF is an implementation of an object file format of the same name that was developed by AT&T for use on UNIX-based systems. This format encourages modular programming and provides powerful and flexible methods for managing code segments and target system memory. This appendix contains technical details about the Texas Instruments COFF object file structure. Much of this information pertains to the symbolic debugging information that is produced by the C compiler. The purpose of this application note is to provide supplementary information on the internal format of COFF object files. Topic .................................................................................................. Page 1 COFF File Structure .................................................................... 2 2 File Header Structure .................................................................. 4 3 Optional File Header Format ........................................................ 5 4 Section Header Structure............................................................. 5 5 Structuring Relocation Information ............................................... 7 6 Symbol Table Structure and Content........................................... 11 SPRAAO8–April 2009 -
Sok: Make JIT-Spray Great Again
SoK: Make JIT-Spray Great Again Robert Gawlik and Thorsten Holz Ruhr-Universitat¨ Bochum Abstract Attacks against client-side programs such as browsers were at first tackled with a non-executable stack to pre- Since the end of the 20th century, it has become clear that vent execution of data on the stack and also with a non- web browsers will play a crucial role in accessing Internet executable heap to stop heap sprays of data being later resources such as the World Wide Web. They evolved executed as code. This defense became widely known into complex software suites that are able to process a as W ⊕ X (Writable xor eXecutable) or Data Execution multitude of data formats. Just-In-Time (JIT) compilation Prevention (DEP) to make any data region non-executable was incorporated to speed up the execution of script code, in 2003 [45, 54]. To counter DEP, attackers started to per- but is also used besides web browsers for performance form code reuse such as Return-Oriented Programming reasons. Attackers happily welcomed JIT in their own (ROP) and many variants [10, 11, 32, 68]. In general, if an way, and until today, JIT compilers are an important target adversary knows the location of static code in the address of various attacks. This includes for example JIT-Spray, space of the vulnerable target, she can prepare a fake stack JIT-based code-reuse attacks and JIT-specific flaws to cir- with addresses of these gadgets. As soon as control of cumvent mitigation techniques in order to simplify the the instruction pointer is gained, these gadgets execute exploitation of memory-corruption vulnerabilities. -
Virtual Table Hijacking Protection Enhancement for CFG
Liberation Guard: Virtual Table Hijacking Protection Enhancement for CFG Eyal Itkin [email protected] eyalitkin.wordpress.com Abstract—Control Flow Guard (CFG) is an advanced defense mechanism by Microsoft, that aims to mitigate exploiting tech- niques using control flow integrity checks. In this paper we1 present a proposed enhancement of CFG, that adds virtual table integrity checks which will mitigate most virtual table hijacking exploits. The proposed defense creates a strong differentiation between ordinary and virtual functions, thus significantly nar- rowing the exploit options available when controlling an indirect virtual call. This differentiation will impose strong restrictions over current virtual table hijacking exploits, thus significantly raising the protection CFG can offer to protected programs2. I. PRELIMINARIES Fig. 1. Example of address translation for an unaligned address (at the top) and an aligned address (at the bottom). A. Control Flow Guard Overview Control Flow Guard (CFG) is an advanced control flow integrity (CFI) defense mechanism introduced by Microsoft in In order to use this CFI knowledge, the compiler adds Windows 8.1 and Windows 10 [4]. CFG aims to significantly a validation check prior to each indirect call (only call restrict the allowed control flow in the cases of indirect calls, assembly opcode, and not jump opcodes). This function is and is supported in Visual Studio 2015. stored in ntdll.dll, and exported to the rest of the DLLs. This defense mechanism is based on the fact that during The function verifies the requested address against the stored compilation time the compiler ”learns” where ”legitimate” bitmap, while acting as a NOP in case the bit is ”1” and crashes functions start, and records these addresses in the compiled the program in case the bit is ”0”. -
Chapter 6: the Linker
6. The Linker 6-1 Chapter 6: The Linker References: • Brian W. Kernighan / Dennis M. Ritchie: The C Programming Language, 2nd Ed. Prentice-Hall, 1988. • Samuel P. Harbison / Guy L. Steele Jr.: C — A Reference Manual, 4th Ed. Prentice-Hall, 1995. • Online Documentation of Microsoft Visual C++ 6.0 (Standard Edition): MSDN Library: Visual Studio 6.0 release. • Horst Wettstein: Assemblierer und Binder (in German). Carl Hanser Verlag, 1979. • Peter Rechenberg, Gustav Pomberger (Eds.): Informatik-Handbuch (in German). Carl Hanser Verlag, 1997. Kapitel 12: Systemsoftware (H. M¨ossenb¨ock). Stefan Brass: Computer Science III Universit¨atGiessen, 2001 6. The Linker 6-2 Overview ' $ 1. Introduction (Overview) & % 2. Object Files, Libraries, and the Linker 3. Make 4. Dynamic Linking Stefan Brass: Computer Science III Universit¨atGiessen, 2001 6. The Linker 6-3 Introduction (1) • Often, a program consists of several modules which are separately compiled. Reasons are: The program is large. Even with fast computers, editing and compiling a single file with a million lines leads to unnecessary delays. The program is developed by several people. Different programmers cannot easily edit the same file at the same time. (There is software for collaborative work that permits that, but it is still a research topic.) A large program is easier to understand if it is divided into natural units. E.g. each module defines one data type with its operations. Stefan Brass: Computer Science III Universit¨atGiessen, 2001 6. The Linker 6-4 Introduction (2) • Reasons for splitting a program into several source files (continued): The same module might be used in different pro- grams (e.g.