Controlling Open Quantum Systems: Tools, Achievements, and Limitations

Total Page:16

File Type:pdf, Size:1020Kb

Controlling Open Quantum Systems: Tools, Achievements, and Limitations Home Search Collections Journals About Contact us My IOPscience Controlling open quantum systems: tools, achievements, and limitations This content has been downloaded from IOPscience. Please scroll down to see the full text. 2016 J. Phys.: Condens. Matter 28 213001 (http://iopscience.iop.org/0953-8984/28/21/213001) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 141.51.198.148 This content was downloaded on 04/05/2016 at 11:31 Please note that terms and conditions apply. IOP Journal of Physics: Condensed Matter Journal of Physics: Condensed Matter J. Phys.: Condens. Matter J. Phys.: Condens. Matter 28 (2016) 213001 (13pp) doi:10.1088/0953-8984/28/21/213001 28 Topical Review 2016 Controlling open quantum systems: © 2016 IOP Publishing Ltd tools, achievements, and limitations JCOMEL Christiane P Koch 213001 Theoretische Physik, Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany C P Koch E-mail: [email protected] Received 22 January 2016, revised 24 March 2016 Controlling open quantum systems: tools, achievements, and limitations Accepted for publication 24 March 2016 Published 3 May 2016 Printed in the UK Abstract The advent of quantum devices, which exploit the two essential elements of quantum physics, CM coherence and entanglement, has sparked renewed interest in the control of open quantum systems. Successful implementations face the challenge of preserving relevant nonclassical features at the level of device operation. A major obstacle is decoherence, which is caused by 10.1088/0953-8984/28/21/213001 interaction with the environment. Optimal control theory is a tool that can be used to identify control strategies in the presence of decoherence. Here we review recent advances in optimal control methodology that allow typical tasks in device operation for open quantum systems to 0953-8984 be tackled and discuss examples of relaxation-optimized dynamics. Optimal control theory is also a useful tool to exploit the environment for control. We discuss examples and point out 21 possible future extensions. Keywords: decoherence, quantum control, quantum information processing and communication, quantum devices 1. Introduction quantum control [2] and is closely related to coherent control [3]. The latter requires exploitation of quantum coherence, i.e. Control refers to the ability to steer a dynamical system from matter wave interference. In contrast, quantum control could an initial to a final state with a desired accuracy; optimal con- also refer to inducing a desired dynamics, for example by trol does so with minimum expenditure of effort and resources. amplitude modulations that avoid driving certain transitions, A famous example is the Apollo space mission where optimal without matter wave interference. control was used to safely land the spacecraft on the moon. Despite its prominence in mathematics and engineering The essence of this control task can be stripped down to a text- [4, 5], optimal control was only introduced to NMR spectroscopy book example where students calculate the change in accel- [6, 7] and to the realm of matter wave dynamics [8–10] in the eration, that is, the rate of burning fuel, required to reach the 1980s. In the latter case, the idea was to calculate, via numer- moon’s surface with zero velocity. This example highlights ical optimization, laser fields that would steer a photoinduced the central role of optimal control in any type of engineering, chemical reaction in the desired way [8–13]. It was triggered its importance being rivaled only by feedback, a subject not by the advent of femtosecond lasers and pulse shaping capa- covered in this review. bilities that opened up seemingly endless possibilities to cre- In quantum optimal control [1], Newton’s equations gov- ate intricate laser pulse trains. While a controlled breaking erning the motion of the spacecraft are replaced by the of chemical bonds was indeed demonstrated soon after [14], quant um mechanical laws of motion, of course. In contrast, the pulses were obtained by closed-loop optimizations in the the control, corresponding for example to a radio-frequency experiments [15] rather than from theoretical calculations. (RF) amplitude or the electric field of a laser, is assumed to be In experimental closed-loop optimization, a shaped pulse is classical. Quantum optimal control represents one variant of applied to the sample, and the outcome is measured. Based 0953-8984/16/213001+13$33.00 1 © 2016 IOP Publishing Ltd Printed in the UK J. Phys.: Condens. Matter 28 (2016) 213001 Topical Review on the outcome, the pulse shape is modified, typically by a quantum system is defined to be open when it interacts with its genetic algorithm. However, even for a chemical reaction as environment [54, 55]. This interaction results in loss of energy simple as breaking the bond in a diatomic alkali molecule, and phase information. It can be modeled phenomenologi- the calculated optimized laser field cannot directly be used in cally within the semigroup approach or microscopically, by the experiment [16]. The reason for this is two-fold: the way embedding the system in a bath. Besides coupling to a bath, in which the optimized laser fields are obtained is rather dif- the dynamics of a quantum system becomes effectively dis- ferent in theory and experiment. Whereas the field in calcul- sipative also when the system is subject to measurements or ations is shaped as a function of time [13, 17], experiments noisy controls. employ spectral shaping [18]. As a result, calculated pulses Dissipative processes pose a challenge to quantum control. are often incompatible with experimental pulse shaping capa- At the same time, desired dissipation may act as an enabler bilities. Second, the theoretical modeling is simply not accu- for control. We will review control strategies in both cases and rate enough. This results in pulses which are optimal for the then explain how optimal control theory can be used to adapt ‘wrong’ dynamics and which can therefore not directly be them to more complex quantum systems. applied in the experiments. This topical review is organized as follows: section 2 briefly These obstacles are not present, or at least much less recalls the basic concepts in the theory of open quant um sys- severe, in other fields of application [1]. Once the timescale of tems, introducing the distinction between Markovian and non- the relevant dynamics is nanoseconds or slower, pulse shap- Markovian dynamics in section 2.1 and addressing the issue ing in the experiment is also performed in the time domain of gauging success of control for open quantum systems in [19]. While device response might still be an issue [20, 21], section 2.2. The problem of analyzing controllability of open the overall approaches in theory and experiment are similar in quantum systems, an important prerequisiste for synthesizing spirit. Moreover, Hamiltonians and relaxation parameters may control fields, is introduced in section 3.1. Progress in the con- be known much more accurately than is currently the case in trol of open quantum systems is reviewed in sections 3.2 and photoinduced chemical reactions. A prominent example is 4 with section 3.2 dedicated to control strategies that were NMR where the development of optimal control in theory and constructed with analytical methods and section 4 cover- experiment went hand in hand, yielding beautiful results, for ing numerical optimal control. In section 4.1, the numer ical example on arbitrary excitation profiles [22], or robust broad- methodology is explained in detail for a simple example, fol- band excitation [23, 24]. lowed by a discussion of the modifications required to adapt Given these observations, quantum information process- it to more advanced control targets. The remainder of sec- ing (QIP) and related technologies offer themselves as an tion 4 reviews applications of numerical optimal control to obvious playground for quantum optimal control: in these open quantum systems, starting with examples for fighting or applications, typically the quantum system to be controlled avoiding decoherence in section 4.2. Control strategies that is well characterized, and timescales are sufficiently slow to rely on the presence of the environment are discussed in sec- use electronics for pulse shaping. Not surprisingly, quantum tions 4.3 and 4.4. Section 5 concludes. optimal control has attracted much interest in these fields over the last decade. This included the adaptation of optimal con- 2. Open quantum systems trol tools, for example to gate optimization [25–27], creation of entanglement [28–30], or measurement [31]. Gate optim- izations were carried out for almost all QIP platforms, notably The state of an open quantum system is described by the den- sity operator ρ which is an element of Liouville space. Any comprising ions [32], atoms [33–35], nitrogen vacancy (NV) ˆS centers in diamond [36, 37], and superconducting qubits theory that aims at the control of an open quantum system is faced with two basic prerequisites the ability to calculate the [38, 39]. Other QIP tasks, such as state preparation [40–44], — system s dynamics, ρ t , and the ability to quantify the suc- transport [45–47], and storage [48], have also been the subject ’ ˆS() of optimal control studies. These tasks are not only relevant for cess of control. quantum computing and communication but also for related applications that exploit coherence and entanglement, for 2.1. Markovian versus non-Markovian dynamics example quantum sensing or quantum simulation. Protocols derived with optimal control have by now reached a matu- Formally, the time evolution of any open quantum system can rity that allows them to be tested in experiments. Examples be described by a dynamical map, ρˆS()t = Dt,0()ρˆS()0 which include the crossing of a phase transition studied with trapped, is completely positive and trace preserving (CPTP) [55].
Recommended publications
  • Energy Conservation and the Correlation Quasi-Temperature in Open Quantum Dynamics
    Article Energy Conservation and the Correlation Quasi-Temperature in Open Quantum Dynamics Vladimir Morozov 1 and Vasyl’ Ignatyuk 2,* 1 MIREA-Russian Technological University, Vernadsky Av. 78, 119454 Moscow, Russia; [email protected] 2 Institute for Condensed Matter Physics, Svientsitskii Str. 1, 79011 Lviv, Ukraine * Correspondence: [email protected]; Tel.: +38-032-276-1054 Received: 25 October 2018; Accepted: 27 November 2018; Published: 30 November 2018 Abstract: The master equation for an open quantum system is derived in the weak-coupling approximation when the additional dynamical variable—the mean interaction energy—is included into the generic relevant statistical operator. This master equation is nonlocal in time and involves the “quasi-temperature”, which is a non- equilibrium state parameter conjugated thermodynamically to the mean interaction energy of the composite system. The evolution equation for the quasi-temperature is derived using the energy conservation law. Thus long-living dynamical correlations, which are associated with this conservation law and play an important role in transition to the Markovian regime and subsequent equilibration of the system, are properly taken into account. Keywords: open quantum system; master equation; non-equilibrium statistical operator; relevant statistical operator; quasi-temperature; dynamic correlations 1. Introduction In this paper, we continue the study of memory effects and nonequilibrium correlations in open quantum systems, which was initiated recently in Reference [1]. In the cited paper, the nonequilibrium statistical operator method (NSOM) developed by Zubarev [2–5] was used to derive the non-Markovian master equation for an open quantum system, taking into account memory effects and the evolution of an additional “relevant” variable—the mean interaction energy of the composite system (the open quantum system plus its environment).
    [Show full text]
  • Arxiv:Quant-Ph/0105127V3 19 Jun 2003
    DECOHERENCE, EINSELECTION, AND THE QUANTUM ORIGINS OF THE CLASSICAL Wojciech Hubert Zurek Theory Division, LANL, Mail Stop B288 Los Alamos, New Mexico 87545 Decoherence is caused by the interaction with the en- A. The problem: Hilbert space is big 2 vironment which in effect monitors certain observables 1. Copenhagen Interpretation 2 of the system, destroying coherence between the pointer 2. Many Worlds Interpretation 3 B. Decoherence and einselection 3 states corresponding to their eigenvalues. This leads C. The nature of the resolution and the role of envariance4 to environment-induced superselection or einselection, a quantum process associated with selective loss of infor- D. Existential Interpretation and ‘Quantum Darwinism’4 mation. Einselected pointer states are stable. They can retain correlations with the rest of the Universe in spite II. QUANTUM MEASUREMENTS 5 of the environment. Einselection enforces classicality by A. Quantum conditional dynamics 5 imposing an effective ban on the vast majority of the 1. Controlled not and a bit-by-bit measurement 6 Hilbert space, eliminating especially the flagrantly non- 2. Measurements and controlled shifts. 7 local “Schr¨odinger cat” states. Classical structure of 3. Amplification 7 B. Information transfer in measurements 9 phase space emerges from the quantum Hilbert space in 1. Action per bit 9 the appropriate macroscopic limit: Combination of einse- C. “Collapse” analogue in a classical measurement 9 lection with dynamics leads to the idealizations of a point and of a classical trajectory. In measurements, einselec- III. CHAOS AND LOSS OF CORRESPONDENCE 11 tion replaces quantum entanglement between the appa- A. Loss of the quantum-classical correspondence 11 B.
    [Show full text]
  • The Quantum Toolbox in Python Release 2.2.0
    QuTiP: The Quantum Toolbox in Python Release 2.2.0 P.D. Nation and J.R. Johansson March 01, 2013 CONTENTS 1 Frontmatter 1 1.1 About This Documentation.....................................1 1.2 Citing This Project..........................................1 1.3 Funding................................................1 1.4 Contributing to QuTiP........................................2 2 About QuTiP 3 2.1 Brief Description...........................................3 2.2 Whats New in QuTiP Version 2.2..................................4 2.3 Whats New in QuTiP Version 2.1..................................4 2.4 Whats New in QuTiP Version 2.0..................................4 3 Installation 7 3.1 General Requirements........................................7 3.2 Get the software...........................................7 3.3 Installation on Ubuntu Linux.....................................8 3.4 Installation on Mac OS X (10.6+)..................................9 3.5 Installation on Windows....................................... 10 3.6 Verifying the Installation....................................... 11 3.7 Checking Version Information via the About Box.......................... 11 4 QuTiP Users Guide 13 4.1 Guide Overview........................................... 13 4.2 Basic Operations on Quantum Objects................................ 13 4.3 Manipulating States and Operators................................. 20 4.4 Using Tensor Products and Partial Traces.............................. 29 4.5 Time Evolution and Quantum System Dynamics.........................
    [Show full text]
  • Non-Ergodicity in Open Quantum Systems Through Quantum Feedback
    epl draft Non-Ergodicity in open quantum systems through quantum feedback Lewis A. Clark,1;4 Fiona Torzewska,2;4 Ben Maybee3;4 and Almut Beige4 1 Joint Quantum Centre (JQC) Durham-Newcastle, School of Mathematics, Statistics and Physics, Newcastle University, Newcastle-Upon-Tyne, NE1 7RU, United Kingdom 2 The School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom 3 Higgs Centre for Theoretical Physics, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ, UK, United Kingdom 4 The School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom PACS 42.50.-p { Quantum optics PACS 42.50.Ar { Photon statistics and coherence theory PACS 42.50.Lc { Quantum fluctuations, quantum noise, and quantum jumps Abstract {It is well known that quantum feedback can alter the dynamics of open quantum systems dramatically. In this paper, we show that non-Ergodicity may be induced through quan- tum feedback and resultantly create system dynamics that have lasting dependence on initial conditions. To demonstrate this, we consider an optical cavity inside an instantaneous quantum feedback loop, which can be implemented relatively easily in the laboratory. Non-Ergodic quantum systems are of interest for applications in quantum information processing, quantum metrology and quantum sensing and could potentially aid the design of thermal machines whose efficiency is not limited by the laws of classical thermodynamics. Introduction. { Looking at the mechanical motion applicability of statistical-mechanical methods to quan- of individual particles, it is hard to see why ensembles tum physics [3]. Moreover, it has been shown that open of such particles should ever thermalise.
    [Show full text]
  • Neural Networks Take on Open Quantum Systems
    VIEWPOINT Neural Networks Take on Open Quantum Systems Simulating a quantum system that exchanges energy with the outside world is notoriously hard, but the necessary computations might be easier with the help of neural networks. by Maria Schuld∗,y, Ilya Sinayskiyyy, and Francesco Petruccione{,k,∗∗ eural networks are behind technologies that are revolutionizing our daily lives, such as face recognition, web searching, and medical diagno- sis. These general problem solvers reach their Nsolutions by being adapted or “trained” to capture cor- relations in real-world data. Having seen the success of neural networks, physicists are asking if the tools might also be useful in areas ranging from high-energy physics to quantum computing [1]. Four research groups now re- port on using neural network tools to tackle one of the most Figure 1: Four teams have designed a neural network (right) that computationally challenging problems in condensed-matter can find the stationary steady states for an ``open'' quantum physics—simulating the behavior of an open many-body system (left). Their approach is built on neural network models for quantum system [2–5]. This scenario describes a collection of closed systems, where the wave function was represented by a particles—such as the qubits in a quantum computer—that statistical distribution over ``visible spins'' connected to a number of ``hidden spins.'' To extend the idea to an open system, three of both interact with each other and exchange energy with their the teams [3–5] added in a third set of ``ancillary spins,'' which environment. For certain open systems, the new work might capture correlations between the system and environment.
    [Show full text]
  • Study of Decoherence in Quantum Computers: a Circuit-Design Perspective
    Study of Decoherence in Quantum Computers: A Circuit-Design Perspective Abdullah Ash- Saki Mahabubul Alam Swaroop Ghosh Electrical Engineering Electrical Engineering Electrical Engineering Pennsylvania State University Pennsylvania State University Pennsylvania State University University Park, USA University Park, USA University Park, USA [email protected] [email protected] [email protected] Abstract—Decoherence of quantum states is a major hurdle interaction with environment [8]. The decoherence problem towards scalable and reliable quantum computing. Lower de- worsens with an increasing number of qubits. To mitigate coherence (i.e., higher fidelity) can alleviate the error correc- those, techniques like cryogenic cooling and error correction tion overhead and obviate the need for energy-intensive noise reduction techniques e.g., cryogenic cooling. In this paper, we code [9] are employed. However, these techniques are costly performed a noise-induced decoherence analysis of single and as cooling the qubits to ultra-low temperature (mili-Kelvin) re- multi-qubit quantum gates using physics-based simulations. The quires very high power (as much as 25kW) and error correction analysis indicates that (i) decoherence depends on the input requires many redundant physical qubits (one popular error state and the gate type. Larger number of j1i states worsen correction method named surface code incurs 18X overhead the decoherence; (ii) amplitude damping is more detrimental than phase damping; (iii) shorter depth implementation of a [10]). quantum function can achieve lower decoherence. Simulations Circuit level implications of decoherence are not well un- indicate 20% improvement in the fidelity of a quantum adder derstood. Therefore, a circuit level analysis of decoherence when realized using lower depth topology.
    [Show full text]
  • Quantum Thermodynamics of Single Particle Systems Md
    www.nature.com/scientificreports OPEN Quantum thermodynamics of single particle systems Md. Manirul Ali, Wei‑Ming Huang & Wei‑Min Zhang* Thermodynamics is built with the concept of equilibrium states. However, it is less clear how equilibrium thermodynamics emerges through the dynamics that follows the principle of quantum mechanics. In this paper, we develop a theory of quantum thermodynamics that is applicable for arbitrary small systems, even for single particle systems coupled with a reservoir. We generalize the concept of temperature beyond equilibrium that depends on the detailed dynamics of quantum states. We apply the theory to a cavity system and a two‑level system interacting with a reservoir, respectively. The results unravels (1) the emergence of thermodynamics naturally from the exact quantum dynamics in the weak system‑reservoir coupling regime without introducing the hypothesis of equilibrium between the system and the reservoir from the beginning; (2) the emergence of thermodynamics in the intermediate system‑reservoir coupling regime where the Born‑Markovian approximation is broken down; (3) the breakdown of thermodynamics due to the long-time non- Markovian memory efect arisen from the occurrence of localized bound states; (4) the existence of dynamical quantum phase transition characterized by infationary dynamics associated with negative dynamical temperature. The corresponding dynamical criticality provides a border separating classical and quantum worlds. The infationary dynamics may also relate to the origin of big bang and universe infation. And the third law of thermodynamics, allocated in the deep quantum realm, is naturally proved. In the past decade, many eforts have been devoted to understand how, starting from an isolated quantum system evolving under Hamiltonian dynamics, equilibration and efective thermodynamics emerge at long times1–5.
    [Show full text]
  • Exact N-Point Function Mapping Between Pairs of Experiments With
    Exact N -point function mapping between pairs of experiments with Markovian open quantum systems Etienne Wamba1;2;3;4, and Axel Pelster4 1 Faculty of Engineering and Technology, University of Buea, P.O. Box 63 Buea, Cameroon, 2 African Institute for Mathematical Sciences, P.O. Box 608 Limbe, Cameroon, 3 International Center for Theoretical Physics, 34151 Trieste, Italy, 4 Fachbereich Physik and State Research Center OPTIMAS, Technische Universit¨atKaiserslautern, 67663 Kaiserslautern, Germany E-mail: [email protected], [email protected] September 11, 2020 Abstract We formulate an exact spacetime mapping between the N -point correlation functions of two different experiments with open quantum gases. Our formalism extends a quantum-field mapping result for closed systems [Phys. Rev. A 94, 043628 (2016)] to the general case of open quantum systems with Markovian property. For this, we consider an open many-body system consisting of a D-dimensional quantum gas of bosons or fermions that interacts with a bath under Born-Markov approximation and evolves according to a Lindblad master equation in a regime of loss or gain. Invoking the independence of expectation values on pictures of quantum mechanics and using the quantum fields that describe the gas dynamics, we derive the Heisenberg evolution of any arbitrary N -point function of the system in the regime when the Lindblad generators feature a loss or a gain. Our quantum field mapping for closed quantum systems is rewritten in the Schr¨odingerpicture and then extended to open quantum systems by relating onto each other two different evolutions of the N -point functions of the open quantum system.
    [Show full text]
  • Arxiv:2104.07823V2 [Quant-Ph] 3 Jun 2021
    Digital quantum simulation of open quantum systems using quantum imaginary time evolution Hirsh Kamakari,1 Shi-Ning Sun,1 Mario Motta,2 and Austin J. Minnich1, ∗ 1Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA 2IBM Quantum, IBM Research Almaden, San Jose, CA 95120, USA (Dated: June 4, 2021) Abstract Quantum simulation on emerging quantum hardware is a topic of intense interest. While many studies focus on computing ground state properties or simulating unitary dynamics of closed sys- tems, open quantum systems are an interesting target of study owing to their ubiquity and rich physical behavior. However, their non-unitary dynamics are also not natural to simulate on digital quantum devices. Here, we report algorithms for the digital quantum simulation of the dynam- ics of open quantum systems governed by a Lindblad equation using adaptations of the quantum imaginary time evolution (QITE) algorithm. We demonstrate the algorithms on IBM Quantum's hardware with simulations of the spontaneous emission of a two level system and the dissipative transverse field Ising model. Our work advances efforts to simulate the dynamics of open quantum systems on near-term quantum hardware. arXiv:2104.07823v2 [quant-ph] 3 Jun 2021 ∗ [email protected] 1 I. INTRODUCTION The development of quantum algorithms to simulate the dynamics of quantum many- body systems is now a topic of interest owing to advances in quantum hardware [1{3]. While the real-time evolution of closed quantum systems on digital quantum computers has been extensively studied in the context of spin models [4{10], fermionic systems [11, 12], electron- phonon interactions [13], and quantum field theories [14{16], fewer studies have considered the time evolution of open quantum systems, which exhibit rich dynamical behavior due to coupling of the system to its environment [17, 18].
    [Show full text]
  • Quantum Thermodynamics: a Dynamical Viewpoint
    Entropy 2013, 15, 2100-2128; doi:10.3390/e15062100 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Review Quantum Thermodynamics: A Dynamical Viewpoint Ronnie Kosloff Institute of Chemistry, The Hebrew University, Jerusalem 91904, Israel; E-Mail: [email protected]; Tel.: + 972-26585485; Fax: + 972-26513742 Received: 26 March 2013; in revised form: 21 May 2013 / Accepted: 23 May 2013 / Published: 29 May 2013 Abstract: Quantum thermodynamics addresses the emergence of thermodynamic laws from quantum mechanics. The viewpoint advocated is based on the intimate connection of quan- tum thermodynamics with the theory of open quantum systems. Quantum mechanics inserts dynamics into thermodynamics, giving a sound foundation to finite-time-thermodynamics. The emergence of the 0-law, I-law, II-law and III-law of thermodynamics from quantum considerations is presented. The emphasis is on consistency between the two theories, which address the same subject from different foundations. We claim that inconsistency is the result of faulty analysis, pointing to flaws in approximations. Keywords: thermodynamics; open quantum systems; heat engines; refrigerators; quantum devices; finite time thermodynamics 1. Introduction Quantum thermodynamics is the study of thermodynamic processes within the context of quantum dynamics. Thermodynamics preceded quantum mechanics; consistency with thermodynamics led to Planck’s law, the dawn of quantum theory. Following the ideas of Planck on black body radiation, Einstein (1905) quantized the electromagnetic field [1]. Quantum thermodynamics is devoted to unraveling the intimate connection between the laws of thermodynamics and their quantum origin, requiring consistency. For many decades, the two theories developed separately. An exception is the study of Scovil et al.[2,3], which showed the equivalence of the Carnot engine [4] with the three level Maser, setting the stage for new developments.
    [Show full text]
  • Quantum Thermodynamics of Single Particle Systems
    Quantum thermodynamics of single particle systems Md. Manirul Ali,1, ∗ Wei-Ming Huang,1 and Wei-Min Zhang1, † 1Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan Abstract Classical thermodynamics is built with the concept of equilibrium states. However, it is less clear how equilibrium thermodynamics emerges through the dynamics that follows the principle of quantum mechanics. In this paper, we develop a theory to study the exact nonequilibrium thermodynamics of quantum systems that is applicable to arbitrary small systems, even for single particle systems, in contact with a reservoir. We generalize the concept of temperature into nonequilibrium regime that depends on the detailed dynamics of quantum states. When we apply the theory to the cavity system and the two-level atomic system interacting with a heat reservoir, the exact nonequilibrium theory unravels unambiguously (1) the emergence of classical ther- modynamics from quantum dynamics in the weak system-reservoir coupling regime, without introducing equilibrium hypothesis; (2) the breakdown of classical thermo- dynamics in the strong coupling regime, which is induced by non-Markovian memory dynamics; and (3) the occurrence of dynamical quantum phase transition character- ized by inflationary dynamics associated with a negative nonequilibrium temperature, from which the third law of thermodynamics, allocated in the deep quantum realm, is naturally proved. The corresponding dynamical criticality provides the border sep- arating the classical and quantum thermodynamics. The inflationary dynamics may arXiv:1803.04658v3 [quant-ph] 17 Dec 2018 also provide a simple picture for the origin of big bang and universe inflation. ∗ [email protected][email protected] 1 Introduction Recent development in the field of open quantum systems initiates a renewed interest on the issue of quantum thermodynamics taking place under nonequilibrium situations [1–8].
    [Show full text]
  • Quantum Theory of the Classical
    QUANTUM THEORY OF THE CLASSICAL Wojciech Hubert Zurek (to be continued by Mike Zwolak and Jess Ridel) “BEYOND DECOHERENCE” Quantum Jumps (discrete outcomes from unitary evolutions) Quantum Origins of Probability (from entanglement) Quantum Darwinism (the origin of “objective reality”) WHZ, Nature Physics March 2009 Quantum Theory of the Classical PROGRAM: Take the core “quantum” postulates of textbook * quantum theory and investigate whether they can account for the quantum-classical transition. 0. State of a composite system is a vector in the Q tensor product of constituent Hilbert spaces. U C 1. States correspond to vectors in Hilbert space. A R (“Quantum Superposition Principle”) N E 2. Evolutions are unitary (e.g. generated by T D Schroedinger equation). (“Unitarity”) U O 3. Immediate repetition of a measurement } M yields the same outcome. (“Repeatability”) 4. (a) Outcomes are restricted to orthonormal states {|sk>} (eigenstates of the measured observable). (b) One outcome is seen each time. 2 5. Probability of an outcome |sk> given state |ƒ> is pk=|<sk|ƒ>| . (“Born’s Rule”) *Postulates according to Dirac DECOHERENCE, POINTER BASIS, AND EINSELECTION* S E H , σ σ = 0 [ SE i i ] ⎛ ⎞ Interaction α σ ⊗ ε = Φ t EntanglementH i i SE ( ) ΦSE (0) = ψS ⊗ ε0 = ⎜ α i σ i ⎟ ⊗ ε0 SE ∑ i ∑ i ⎝ i ⎠ 2 REDUCED DENSITY MATRIX ρS (t) = TrE ΦSE (t) ΦSE (t) = ∑α i σ i σ i € i EINSELECTION* leads to POINTER STATES Stable states, tend to appear near diagonal€ of ρ t after decoherence time; € S ( ) Pointer states are effectively€ classical! They preserve correlations: they are left unperturbed€ by the “environmental monitoring”.
    [Show full text]