Open Quantum Systems and Quantum Information Dynamics

Total Page:16

File Type:pdf, Size:1020Kb

Open Quantum Systems and Quantum Information Dynamics UniversitatÄ Ulm Institut fÄurTheoretische Physik Open Quantum Systems and Quantum Information Dynamics Angel¶ Rivas Vargas Dissertation zur Erlangung des Doktorgrades Dr. rer. nat. der FakultÄatfÄur Naturwissenschaften der UniversitÄatUlm January 2011 Amtierender Dekan Prof. Dr. Axel Gro¼ Erstgutachter Prof. Dr. Martin B. Plenio Zweitgutachter Prof. Dr. Joachim Ankerhold Tag der Promotion 16. MÄarz2011 Dedication A mis abuelos, F¶elix,Gertrudis, Carlos y Luisa. Et si habuero prophetiam, et noverim mysteria omnia, et omnem scientiam, [:::] caritatem autem non habuero, nihil sum. 1 Cor 13, 2. Abstract Just like other theories of physics, quantum theory was developed to explain some experimental facts that were incomprehensible within the previously existing theo- ries (e.g. the black-body radiation or the photoelectric e®ect). After the Planck's introduction of the concept of quanta at the beginning of the XX century [1], many physical situations have been explained by means of quantum mechanics, ranging from the behavior of elementary particles to the operational mechanism of stars. Nowadays, about 100 years from its foundation, a lot of e®ort is being made in try- ing to exploit the genuine features of quantum systems as a resource to solve a wide variety of problems, such as the secure transmission of information, its processing in a more e±cient way or to make extremely accurate measurements of physical quantities. To carry out this task we require an unprecedented control in the fabrication and manipulation of devices operating in the quantum regime. However, quantum systems are much more fragile in the presence of noise than their classical coun- terparts, and relevant quantum states allowing novel forms to store, transmit and process information vanish very easily. Actually, this is the ultimate reason why we cannot see systems exhibiting quantum behavior in our daily life. As a result, the study of the properties of quantum systems in the presence of noise is a fundamental issue in order to develop any form of reliable quantum technology. Noise in physical systems can be explained theoretically using the concept of \open system". Noise arises due to a lack of insulation, in such a way that it is the result of an e®ective interaction between our system and its environment. In this thesis, we present new results concerning the dynamics of open quantum systems. We propose to de¯ne rigourously the concept of quantum Markov processes and introduce quantitative, novel, ways to detect deviations from strict Markovianity. We explore the validity of the usual techniques employed to describe simple open quantum systems, and their extrapolation to more complicated scenarios involving interacting and driven systems. In addition we present examples of noise assisted processes, and transformations to make these usually tricky problems more e±ciently tractable. In the ¯rst part of this thesis we extensively review the general theory of open quantum systems. We introduce new approaches to describe, in a hopefully more transparent way, some aspects which are usually misleading in a broad range of the literature. In addition, we revise new concepts and methods developed in recent years that complement the general theory mainly developed in the 1970s. In the second part, we focus our attention on the so-called Markovian processes which have been described in the previous part. We study the validity of typical equations used in simple systems such as harmonic oscillators, and propose propose and check di®erent strategies to describe Markovian dynamics in more complicated interacting systems. Finally we propose a counterintuitive situation where some level of noise can be actually useful for information tasks. In the third and last part, we approach the problem of the non-Markovian de- scription of open quantum systems. To quantify how non-Markovian an open quan- tum system is we introduce a computable measure and apply it to some relevant situations. We also propose a way of probing the complexity of an environment by visualizing properties of a pair of qubits embedded in it. In addition, we develop a technique based on orthogonal polynomial theory to transform a wide range of environments into simple chains of particles which can be e±ciently simulated with numerical techniques. Contents Acknowledgments 13 1 Introduction 15 I Time Evolution Theory of Open Quantum Systems 19 2 Mathematical tools 21 2.1 Banach spaces, norms and linear operators . 21 2.2 Exponential of an operator . 22 2.3 Semigroups of operators . 25 2.3.1 Contraction semigroups . 27 2.4 Evolution families . 30 3 Quantum time evolutions 35 3.1 Time evolution in closed quantum systems . 35 3.2 Time evolution in open quantum systems. 37 3.2.1 Dynamical maps . 39 3.2.2 Universal dynamical maps . 42 3.2.3 Universal dynamical maps as contractions . 44 3.2.4 The inverse of a universal dynamical map . 46 3.2.5 Temporal continuity. Markovian evolutions . 47 3.3 Quantum Markov process: mathematical structure . 50 3.3.1 Classical Markovian processes . 50 3.3.2 Quantum Markov evolution as a di®erential equation . 51 3.3.3 Kossakowski conditions . 55 3.3.4 Steady states of homogeneous Markov processes . 58 4 Microscopic derivations 65 4.1 Markovian case . 65 4.1.1 Nakajima-Zwanzig equation . 66 7 4.1.2 Weak coupling limit . 69 4.1.3 Singular coupling limit . 86 4.1.4 Extensions of the weak coupling limit . 89 4.2 Non-Markovian case . 93 4.2.1 Integro-di®erential models . 94 4.2.2 Time-convolutionless forms . 95 4.2.3 Dynamical coarse graining method . 97 II Interacting Systems under Markovian Dynamics 101 5 Composite systems of harmonic oscillators 103 5.1 A closer look into the damped harmonic oscillator . 103 5.1.1 Gaussian states . 103 5.1.2 Damped harmonic oscillator . 106 5.2 Markovian master equations for interacting systems . 116 5.2.1 Two coupled damped harmonic oscillators . 117 5.2.2 Driven damped harmonic oscillator . 125 5.2.3 Some conclusions . 132 6 Stochastic resonance phenomena in spin chains 135 6.1 Introduction . 135 6.2 Steady state entanglement in qubit chains subject to longitudinal decoherence (pure decay) . 136 6.3 XXZ Heisenberg interaction . 139 6.4 Steady state entanglement under transverse decoherence (pure de- phasing) . 140 6.5 SR phenomena under both longitudinal and transverse decoherence . 142 6.6 Conclusion . 144 III Identifying Elements of non-Markovianity 147 7 Measures of non-Markovianity 149 7.1 Introduction . 149 7.2 Previous attempts . 149 7.2.1 Proposal of Wolf et. al. 150 7.2.2 Proposal of Breuer et. al. 150 7.2.3 Geometric measures . 150 7.2.4 Microscopic approach . 150 7.3 Witnessing non-Markovianity . 151 7.4 Measuring non-Markovianity . 154 7.5 Conclusions . 157 8 Probing a composite spin-boson environment 159 8.1 Introduction . 159 8.2 System . 161 8.2.1 Master equation . 162 8.2.2 Observable quantities . 164 8.3 Results: detecting the presence of coupling between the TLFs . 164 ^ 8.3.1 Power spectrum of hMxi . 165 8.3.2 Probe entanglement . 167 8.3.3 Discussion of the results . 169 8.4 Decoherence of entangled states . 171 8.5 E®ect of spin-boson environment on entangling gate operations . 173 8.6 Some conclusions . 174 9 Mapping reservoirs to semi-in¯nite discrete chains 177 9.1 Introduction . 177 9.2 Orthogonal polynomials . 179 9.2.1 Basic concepts . 179 9.2.2 Recurrence relations . 180 9.2.3 Boundness properties of the recurrence coe±cients . 182 9.3 System-reservoir structures . 185 9.4 Applications . 189 9.4.1 Continuous spin-boson spectral densities . 189 9.4.2 Discrete spectral densities. The logarithmically discretized spin-boson model . 191 9.4.3 Linearly-discretised baths . 196 9.5 Conclusions . 198 Prospects 201 Bibliography 203 Journal Publications Parts of this thesis are based on material published in the following papers: ² Introduction to the time evolution theory of open quantum systems A. Rivas and S. F. Huelga In preparation (Part I) ² Markovian Master Equations: A Critical Study A. Rivas, A. D. K. Plato, S. F. Huelga and M. B. Plenio New J. Phys. 12 113032 (2010) (Chapter 5) ² Exact mapping between system-reservoir quantum models and semi- in¯nite discrete chains using orthogonal polynomials A. W. Chin, A. Rivas, S. F. Huelga and M. B. Plenio J. Math. Phys. 51, 092109 (2010) (Chapter 9). ² Entanglement and non-Markovianity of quantum evolutions A. Rivas, S. F. Huelga and M. B. Plenio Phys. Rev. Lett. 105, 050403 (2010) (Chapter 7). ² Probing a composite spin-boson environment N. P. Oxtoby, A. Rivas, S. F. Huelga and R. Fazio New J. Phys. 11, 063028 (2009) (Chapter 8). ² Stochastic resonance phenomena in spin chains A. Rivas, N. P. Oxtoby and S. F. Huelga Eur. Phys. J. B 69, 51 (2009) (Chapter 6). Other papers not covered in this thesis to which the author contributed: ² Precision quantum metrology and nonclassicality in linear and non- linear detection schemes A. Rivas and A. Luis Phys. Rev. Lett. 105, 010403 (2010). 10 ² Nonclassicality of states and measurements by breaking classical bounds on statistics A. Rivas and A. Luis Phys. Rev. A 79, 042105 (2009). ² Practical schemes for the measurement of angular-momentum co- variance matrices in quantum optics A. Rivas and A. Luis Phys. Rev. A 78, 043814 (2008). ² Intrinsic metrological resolution as a distance measure and nonclas- sical light A. Rivas and A. Luis Phys. Rev. A 77, 063813 (2008). ² Characterization of angular momentum fluctuations via principal components A. Rivas and A. Luis Phys. Rev. A 77, 022105 (2008). 11 Acknowledgments First of all, I wish to express my most heartfelt thanks to my supervisors Susana Huelga and Martin Plenio.
Recommended publications
  • Energy Conservation and the Correlation Quasi-Temperature in Open Quantum Dynamics
    Article Energy Conservation and the Correlation Quasi-Temperature in Open Quantum Dynamics Vladimir Morozov 1 and Vasyl’ Ignatyuk 2,* 1 MIREA-Russian Technological University, Vernadsky Av. 78, 119454 Moscow, Russia; [email protected] 2 Institute for Condensed Matter Physics, Svientsitskii Str. 1, 79011 Lviv, Ukraine * Correspondence: [email protected]; Tel.: +38-032-276-1054 Received: 25 October 2018; Accepted: 27 November 2018; Published: 30 November 2018 Abstract: The master equation for an open quantum system is derived in the weak-coupling approximation when the additional dynamical variable—the mean interaction energy—is included into the generic relevant statistical operator. This master equation is nonlocal in time and involves the “quasi-temperature”, which is a non- equilibrium state parameter conjugated thermodynamically to the mean interaction energy of the composite system. The evolution equation for the quasi-temperature is derived using the energy conservation law. Thus long-living dynamical correlations, which are associated with this conservation law and play an important role in transition to the Markovian regime and subsequent equilibration of the system, are properly taken into account. Keywords: open quantum system; master equation; non-equilibrium statistical operator; relevant statistical operator; quasi-temperature; dynamic correlations 1. Introduction In this paper, we continue the study of memory effects and nonequilibrium correlations in open quantum systems, which was initiated recently in Reference [1]. In the cited paper, the nonequilibrium statistical operator method (NSOM) developed by Zubarev [2–5] was used to derive the non-Markovian master equation for an open quantum system, taking into account memory effects and the evolution of an additional “relevant” variable—the mean interaction energy of the composite system (the open quantum system plus its environment).
    [Show full text]
  • Arxiv:Quant-Ph/0105127V3 19 Jun 2003
    DECOHERENCE, EINSELECTION, AND THE QUANTUM ORIGINS OF THE CLASSICAL Wojciech Hubert Zurek Theory Division, LANL, Mail Stop B288 Los Alamos, New Mexico 87545 Decoherence is caused by the interaction with the en- A. The problem: Hilbert space is big 2 vironment which in effect monitors certain observables 1. Copenhagen Interpretation 2 of the system, destroying coherence between the pointer 2. Many Worlds Interpretation 3 B. Decoherence and einselection 3 states corresponding to their eigenvalues. This leads C. The nature of the resolution and the role of envariance4 to environment-induced superselection or einselection, a quantum process associated with selective loss of infor- D. Existential Interpretation and ‘Quantum Darwinism’4 mation. Einselected pointer states are stable. They can retain correlations with the rest of the Universe in spite II. QUANTUM MEASUREMENTS 5 of the environment. Einselection enforces classicality by A. Quantum conditional dynamics 5 imposing an effective ban on the vast majority of the 1. Controlled not and a bit-by-bit measurement 6 Hilbert space, eliminating especially the flagrantly non- 2. Measurements and controlled shifts. 7 local “Schr¨odinger cat” states. Classical structure of 3. Amplification 7 B. Information transfer in measurements 9 phase space emerges from the quantum Hilbert space in 1. Action per bit 9 the appropriate macroscopic limit: Combination of einse- C. “Collapse” analogue in a classical measurement 9 lection with dynamics leads to the idealizations of a point and of a classical trajectory. In measurements, einselec- III. CHAOS AND LOSS OF CORRESPONDENCE 11 tion replaces quantum entanglement between the appa- A. Loss of the quantum-classical correspondence 11 B.
    [Show full text]
  • The Quantum Toolbox in Python Release 2.2.0
    QuTiP: The Quantum Toolbox in Python Release 2.2.0 P.D. Nation and J.R. Johansson March 01, 2013 CONTENTS 1 Frontmatter 1 1.1 About This Documentation.....................................1 1.2 Citing This Project..........................................1 1.3 Funding................................................1 1.4 Contributing to QuTiP........................................2 2 About QuTiP 3 2.1 Brief Description...........................................3 2.2 Whats New in QuTiP Version 2.2..................................4 2.3 Whats New in QuTiP Version 2.1..................................4 2.4 Whats New in QuTiP Version 2.0..................................4 3 Installation 7 3.1 General Requirements........................................7 3.2 Get the software...........................................7 3.3 Installation on Ubuntu Linux.....................................8 3.4 Installation on Mac OS X (10.6+)..................................9 3.5 Installation on Windows....................................... 10 3.6 Verifying the Installation....................................... 11 3.7 Checking Version Information via the About Box.......................... 11 4 QuTiP Users Guide 13 4.1 Guide Overview........................................... 13 4.2 Basic Operations on Quantum Objects................................ 13 4.3 Manipulating States and Operators................................. 20 4.4 Using Tensor Products and Partial Traces.............................. 29 4.5 Time Evolution and Quantum System Dynamics.........................
    [Show full text]
  • Non-Ergodicity in Open Quantum Systems Through Quantum Feedback
    epl draft Non-Ergodicity in open quantum systems through quantum feedback Lewis A. Clark,1;4 Fiona Torzewska,2;4 Ben Maybee3;4 and Almut Beige4 1 Joint Quantum Centre (JQC) Durham-Newcastle, School of Mathematics, Statistics and Physics, Newcastle University, Newcastle-Upon-Tyne, NE1 7RU, United Kingdom 2 The School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom 3 Higgs Centre for Theoretical Physics, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ, UK, United Kingdom 4 The School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom PACS 42.50.-p { Quantum optics PACS 42.50.Ar { Photon statistics and coherence theory PACS 42.50.Lc { Quantum fluctuations, quantum noise, and quantum jumps Abstract {It is well known that quantum feedback can alter the dynamics of open quantum systems dramatically. In this paper, we show that non-Ergodicity may be induced through quan- tum feedback and resultantly create system dynamics that have lasting dependence on initial conditions. To demonstrate this, we consider an optical cavity inside an instantaneous quantum feedback loop, which can be implemented relatively easily in the laboratory. Non-Ergodic quantum systems are of interest for applications in quantum information processing, quantum metrology and quantum sensing and could potentially aid the design of thermal machines whose efficiency is not limited by the laws of classical thermodynamics. Introduction. { Looking at the mechanical motion applicability of statistical-mechanical methods to quan- of individual particles, it is hard to see why ensembles tum physics [3]. Moreover, it has been shown that open of such particles should ever thermalise.
    [Show full text]
  • Neural Networks Take on Open Quantum Systems
    VIEWPOINT Neural Networks Take on Open Quantum Systems Simulating a quantum system that exchanges energy with the outside world is notoriously hard, but the necessary computations might be easier with the help of neural networks. by Maria Schuld∗,y, Ilya Sinayskiyyy, and Francesco Petruccione{,k,∗∗ eural networks are behind technologies that are revolutionizing our daily lives, such as face recognition, web searching, and medical diagno- sis. These general problem solvers reach their Nsolutions by being adapted or “trained” to capture cor- relations in real-world data. Having seen the success of neural networks, physicists are asking if the tools might also be useful in areas ranging from high-energy physics to quantum computing [1]. Four research groups now re- port on using neural network tools to tackle one of the most Figure 1: Four teams have designed a neural network (right) that computationally challenging problems in condensed-matter can find the stationary steady states for an ``open'' quantum physics—simulating the behavior of an open many-body system (left). Their approach is built on neural network models for quantum system [2–5]. This scenario describes a collection of closed systems, where the wave function was represented by a particles—such as the qubits in a quantum computer—that statistical distribution over ``visible spins'' connected to a number of ``hidden spins.'' To extend the idea to an open system, three of both interact with each other and exchange energy with their the teams [3–5] added in a third set of ``ancillary spins,'' which environment. For certain open systems, the new work might capture correlations between the system and environment.
    [Show full text]
  • Study of Decoherence in Quantum Computers: a Circuit-Design Perspective
    Study of Decoherence in Quantum Computers: A Circuit-Design Perspective Abdullah Ash- Saki Mahabubul Alam Swaroop Ghosh Electrical Engineering Electrical Engineering Electrical Engineering Pennsylvania State University Pennsylvania State University Pennsylvania State University University Park, USA University Park, USA University Park, USA [email protected] [email protected] [email protected] Abstract—Decoherence of quantum states is a major hurdle interaction with environment [8]. The decoherence problem towards scalable and reliable quantum computing. Lower de- worsens with an increasing number of qubits. To mitigate coherence (i.e., higher fidelity) can alleviate the error correc- those, techniques like cryogenic cooling and error correction tion overhead and obviate the need for energy-intensive noise reduction techniques e.g., cryogenic cooling. In this paper, we code [9] are employed. However, these techniques are costly performed a noise-induced decoherence analysis of single and as cooling the qubits to ultra-low temperature (mili-Kelvin) re- multi-qubit quantum gates using physics-based simulations. The quires very high power (as much as 25kW) and error correction analysis indicates that (i) decoherence depends on the input requires many redundant physical qubits (one popular error state and the gate type. Larger number of j1i states worsen correction method named surface code incurs 18X overhead the decoherence; (ii) amplitude damping is more detrimental than phase damping; (iii) shorter depth implementation of a [10]). quantum function can achieve lower decoherence. Simulations Circuit level implications of decoherence are not well un- indicate 20% improvement in the fidelity of a quantum adder derstood. Therefore, a circuit level analysis of decoherence when realized using lower depth topology.
    [Show full text]
  • Quantum Thermodynamics of Single Particle Systems Md
    www.nature.com/scientificreports OPEN Quantum thermodynamics of single particle systems Md. Manirul Ali, Wei‑Ming Huang & Wei‑Min Zhang* Thermodynamics is built with the concept of equilibrium states. However, it is less clear how equilibrium thermodynamics emerges through the dynamics that follows the principle of quantum mechanics. In this paper, we develop a theory of quantum thermodynamics that is applicable for arbitrary small systems, even for single particle systems coupled with a reservoir. We generalize the concept of temperature beyond equilibrium that depends on the detailed dynamics of quantum states. We apply the theory to a cavity system and a two‑level system interacting with a reservoir, respectively. The results unravels (1) the emergence of thermodynamics naturally from the exact quantum dynamics in the weak system‑reservoir coupling regime without introducing the hypothesis of equilibrium between the system and the reservoir from the beginning; (2) the emergence of thermodynamics in the intermediate system‑reservoir coupling regime where the Born‑Markovian approximation is broken down; (3) the breakdown of thermodynamics due to the long-time non- Markovian memory efect arisen from the occurrence of localized bound states; (4) the existence of dynamical quantum phase transition characterized by infationary dynamics associated with negative dynamical temperature. The corresponding dynamical criticality provides a border separating classical and quantum worlds. The infationary dynamics may also relate to the origin of big bang and universe infation. And the third law of thermodynamics, allocated in the deep quantum realm, is naturally proved. In the past decade, many eforts have been devoted to understand how, starting from an isolated quantum system evolving under Hamiltonian dynamics, equilibration and efective thermodynamics emerge at long times1–5.
    [Show full text]
  • Exact N-Point Function Mapping Between Pairs of Experiments With
    Exact N -point function mapping between pairs of experiments with Markovian open quantum systems Etienne Wamba1;2;3;4, and Axel Pelster4 1 Faculty of Engineering and Technology, University of Buea, P.O. Box 63 Buea, Cameroon, 2 African Institute for Mathematical Sciences, P.O. Box 608 Limbe, Cameroon, 3 International Center for Theoretical Physics, 34151 Trieste, Italy, 4 Fachbereich Physik and State Research Center OPTIMAS, Technische Universit¨atKaiserslautern, 67663 Kaiserslautern, Germany E-mail: [email protected], [email protected] September 11, 2020 Abstract We formulate an exact spacetime mapping between the N -point correlation functions of two different experiments with open quantum gases. Our formalism extends a quantum-field mapping result for closed systems [Phys. Rev. A 94, 043628 (2016)] to the general case of open quantum systems with Markovian property. For this, we consider an open many-body system consisting of a D-dimensional quantum gas of bosons or fermions that interacts with a bath under Born-Markov approximation and evolves according to a Lindblad master equation in a regime of loss or gain. Invoking the independence of expectation values on pictures of quantum mechanics and using the quantum fields that describe the gas dynamics, we derive the Heisenberg evolution of any arbitrary N -point function of the system in the regime when the Lindblad generators feature a loss or a gain. Our quantum field mapping for closed quantum systems is rewritten in the Schr¨odingerpicture and then extended to open quantum systems by relating onto each other two different evolutions of the N -point functions of the open quantum system.
    [Show full text]
  • Arxiv:2104.07823V2 [Quant-Ph] 3 Jun 2021
    Digital quantum simulation of open quantum systems using quantum imaginary time evolution Hirsh Kamakari,1 Shi-Ning Sun,1 Mario Motta,2 and Austin J. Minnich1, ∗ 1Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA 2IBM Quantum, IBM Research Almaden, San Jose, CA 95120, USA (Dated: June 4, 2021) Abstract Quantum simulation on emerging quantum hardware is a topic of intense interest. While many studies focus on computing ground state properties or simulating unitary dynamics of closed sys- tems, open quantum systems are an interesting target of study owing to their ubiquity and rich physical behavior. However, their non-unitary dynamics are also not natural to simulate on digital quantum devices. Here, we report algorithms for the digital quantum simulation of the dynam- ics of open quantum systems governed by a Lindblad equation using adaptations of the quantum imaginary time evolution (QITE) algorithm. We demonstrate the algorithms on IBM Quantum's hardware with simulations of the spontaneous emission of a two level system and the dissipative transverse field Ising model. Our work advances efforts to simulate the dynamics of open quantum systems on near-term quantum hardware. arXiv:2104.07823v2 [quant-ph] 3 Jun 2021 ∗ [email protected] 1 I. INTRODUCTION The development of quantum algorithms to simulate the dynamics of quantum many- body systems is now a topic of interest owing to advances in quantum hardware [1{3]. While the real-time evolution of closed quantum systems on digital quantum computers has been extensively studied in the context of spin models [4{10], fermionic systems [11, 12], electron- phonon interactions [13], and quantum field theories [14{16], fewer studies have considered the time evolution of open quantum systems, which exhibit rich dynamical behavior due to coupling of the system to its environment [17, 18].
    [Show full text]
  • Quantum Thermodynamics: a Dynamical Viewpoint
    Entropy 2013, 15, 2100-2128; doi:10.3390/e15062100 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Review Quantum Thermodynamics: A Dynamical Viewpoint Ronnie Kosloff Institute of Chemistry, The Hebrew University, Jerusalem 91904, Israel; E-Mail: [email protected]; Tel.: + 972-26585485; Fax: + 972-26513742 Received: 26 March 2013; in revised form: 21 May 2013 / Accepted: 23 May 2013 / Published: 29 May 2013 Abstract: Quantum thermodynamics addresses the emergence of thermodynamic laws from quantum mechanics. The viewpoint advocated is based on the intimate connection of quan- tum thermodynamics with the theory of open quantum systems. Quantum mechanics inserts dynamics into thermodynamics, giving a sound foundation to finite-time-thermodynamics. The emergence of the 0-law, I-law, II-law and III-law of thermodynamics from quantum considerations is presented. The emphasis is on consistency between the two theories, which address the same subject from different foundations. We claim that inconsistency is the result of faulty analysis, pointing to flaws in approximations. Keywords: thermodynamics; open quantum systems; heat engines; refrigerators; quantum devices; finite time thermodynamics 1. Introduction Quantum thermodynamics is the study of thermodynamic processes within the context of quantum dynamics. Thermodynamics preceded quantum mechanics; consistency with thermodynamics led to Planck’s law, the dawn of quantum theory. Following the ideas of Planck on black body radiation, Einstein (1905) quantized the electromagnetic field [1]. Quantum thermodynamics is devoted to unraveling the intimate connection between the laws of thermodynamics and their quantum origin, requiring consistency. For many decades, the two theories developed separately. An exception is the study of Scovil et al.[2,3], which showed the equivalence of the Carnot engine [4] with the three level Maser, setting the stage for new developments.
    [Show full text]
  • Quantum Thermodynamics of Single Particle Systems
    Quantum thermodynamics of single particle systems Md. Manirul Ali,1, ∗ Wei-Ming Huang,1 and Wei-Min Zhang1, † 1Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan Abstract Classical thermodynamics is built with the concept of equilibrium states. However, it is less clear how equilibrium thermodynamics emerges through the dynamics that follows the principle of quantum mechanics. In this paper, we develop a theory to study the exact nonequilibrium thermodynamics of quantum systems that is applicable to arbitrary small systems, even for single particle systems, in contact with a reservoir. We generalize the concept of temperature into nonequilibrium regime that depends on the detailed dynamics of quantum states. When we apply the theory to the cavity system and the two-level atomic system interacting with a heat reservoir, the exact nonequilibrium theory unravels unambiguously (1) the emergence of classical ther- modynamics from quantum dynamics in the weak system-reservoir coupling regime, without introducing equilibrium hypothesis; (2) the breakdown of classical thermo- dynamics in the strong coupling regime, which is induced by non-Markovian memory dynamics; and (3) the occurrence of dynamical quantum phase transition character- ized by inflationary dynamics associated with a negative nonequilibrium temperature, from which the third law of thermodynamics, allocated in the deep quantum realm, is naturally proved. The corresponding dynamical criticality provides the border sep- arating the classical and quantum thermodynamics. The inflationary dynamics may arXiv:1803.04658v3 [quant-ph] 17 Dec 2018 also provide a simple picture for the origin of big bang and universe inflation. ∗ [email protected][email protected] 1 Introduction Recent development in the field of open quantum systems initiates a renewed interest on the issue of quantum thermodynamics taking place under nonequilibrium situations [1–8].
    [Show full text]
  • Quantum Theory of the Classical
    QUANTUM THEORY OF THE CLASSICAL Wojciech Hubert Zurek (to be continued by Mike Zwolak and Jess Ridel) “BEYOND DECOHERENCE” Quantum Jumps (discrete outcomes from unitary evolutions) Quantum Origins of Probability (from entanglement) Quantum Darwinism (the origin of “objective reality”) WHZ, Nature Physics March 2009 Quantum Theory of the Classical PROGRAM: Take the core “quantum” postulates of textbook * quantum theory and investigate whether they can account for the quantum-classical transition. 0. State of a composite system is a vector in the Q tensor product of constituent Hilbert spaces. U C 1. States correspond to vectors in Hilbert space. A R (“Quantum Superposition Principle”) N E 2. Evolutions are unitary (e.g. generated by T D Schroedinger equation). (“Unitarity”) U O 3. Immediate repetition of a measurement } M yields the same outcome. (“Repeatability”) 4. (a) Outcomes are restricted to orthonormal states {|sk>} (eigenstates of the measured observable). (b) One outcome is seen each time. 2 5. Probability of an outcome |sk> given state |ƒ> is pk=|<sk|ƒ>| . (“Born’s Rule”) *Postulates according to Dirac DECOHERENCE, POINTER BASIS, AND EINSELECTION* S E H , σ σ = 0 [ SE i i ] ⎛ ⎞ Interaction α σ ⊗ ε = Φ t EntanglementH i i SE ( ) ΦSE (0) = ψS ⊗ ε0 = ⎜ α i σ i ⎟ ⊗ ε0 SE ∑ i ∑ i ⎝ i ⎠ 2 REDUCED DENSITY MATRIX ρS (t) = TrE ΦSE (t) ΦSE (t) = ∑α i σ i σ i € i EINSELECTION* leads to POINTER STATES Stable states, tend to appear near diagonal€ of ρ t after decoherence time; € S ( ) Pointer states are effectively€ classical! They preserve correlations: they are left unperturbed€ by the “environmental monitoring”.
    [Show full text]