Carbon Nanotubes

Total Page:16

File Type:pdf, Size:1020Kb

Carbon Nanotubes Carbon Nanotubes A Theoretical study of Young's modulus Kolnanorör En teoretisk studie av Youngs modul Tore Fredriksson Health, Science and Technology Physics 30 Thijs Holleboom Lars Johansson 2014-06 Faculty of Health, Science and Technology Department of Engineering and Physics Carbon Nanotubes A Theoretical study of Young's modulus Supervisor: Author: Thijs Holleboom Tore Fredriksson Examiner: Lars Johansson January 29, 2014 Abstract Carbon nanotubes have extraordinary mechanical, electrical, thermal and optical properties. They are harder than diamond yet flexible, have better electrical conductor than copper, but can also be a semiconductor or even an insulator. These ranges of properties of course make carbon nanotubes highly interesting for many applications. Carbon nanotubes are already used in products as hockey sticks and tennis rackets for improving strength and flexibility. Soon there are mobile phones with flexible screens made from carbon nanotubes. Also, car- and airplane bodies will probably be made much lighter and stronger, if carbon nanotubes are included in the construc- tion. However, the real game changers are; nanoelectromechanical systems (NEMS) and computer processors based on graphene and carbon nanotubes. In this work, we study Young's modulus in the axial direction of carbon nanotubes. This has been done by performing density functional theory calculations. The unit cell has been chosen as to accommodate for tubes of different radii. This allows for modelling the effect of bending of the bonds between the carbon atoms in the carbon nanotubes of different radii. The results show that Young's modulus decreases as the radius decreases. In effect, the Young's modulus declines from 1 to 0.8 TPa. This effect can be understood because the bending diminishes the pure sp2 character of the bonds. These results are important and useful in construction, not only when using carbon nanotubes but also when using graphene. Our results point towards a Young's modulus that is a material constant and, above a certain crit- ical value, only weakly dependent on the radius of the carbon nanotube. Graphene can be seen as a carbon nanotube with infinite radius. I Acknowledge First I want to thank my supervisor Thijs Holleboom for the many hours of discussions on how to make this the best thesis it can be. Also, Krister Svensson for his many insights into carbon nanotubes that he has shared with me. My fiancee deserves one huge thank you for her support during this whole ordeal. Finally to the rest of my family and my friends for making the hard times durable, and the good times even better. II Contents 1 Introduction 5 2 Carbon 7 2.1 Diamond . .8 2.1.1 Structure . .8 2.1.2 Properties . .8 2.1.3 Lonsdaleite . .8 2.2 Graphite . .9 2.2.1 Structure . .9 2.2.2 Properties . .9 2.3 Fullerenes . 10 2.3.1 Buckminsterfullerenes . 10 2.3.2 Carbon nanotubes . 10 2.3.3 Nanobuds . 11 2.3.4 Nanofoam . 11 2.3.5 Carbyne . 11 2.4 Graphene . 12 2.4.1 Electronic Properties . 12 2.4.2 Mechanical Properties . 13 2.4.3 Optical Properties . 14 3 Carbon nanotube 15 3.1 Discovery . 15 3.2 Categories of carbon nanotubes . 17 3.2.1 Chirality . 17 3.2.2 Single walled . 18 3.2.3 Multi walled . 19 3.3 Properties . 20 1 CONTENTS 2 3.3.1 Strength . 20 3.3.2 Electrical properties . 21 3.3.3 Thermal properties . 22 3.4 Extreme carbon nanotubes . 22 3.5 Future uses for graphene and carbon nanotubes . 24 3.5.1 Material additives . 24 3.5.2 Nanomechanics . 24 3.5.3 Nanoelectromechanical systems . 25 3.5.4 Solar cells . 26 3.5.5 Energy storage . 26 3.5.6 Biomedicine . 27 3.6 Toxicity and biocompatibility graphene and carbon nanotubes 29 4 Orbital Hybridization 30 4.1 spn Hybridization . 30 4.1.1 sp Hybridization (linear) . 31 4.1.2 sp2 Hybridization (trigonal) . 32 4.1.3 sp3 Hybridization (tetrahedral) . 32 4.2 π bond............................... 33 5 Mechanical properties 34 5.1 Tensile strength . 34 5.2 Young's modulus . 34 6 Density Functional Theory 38 6.1 Born Oppenheimer Approximation . 39 6.2 The theorems of Hohenberg Kohn . 39 6.2.1 The first Hohenberg Kohn theorem . 40 6.2.2 The second Hohenberg Kohn theorem . 40 6.3 Kohn Sham equations . 41 6.4 Local Density Approximation . 42 7 Augmented Plane Wave Method 44 7.1 Linearized APW . 45 7.2 Full Potential Linearized Augmented Plane Wave . 46 8 Results 48 8.1 ELK . 48 CONTENTS 3 8.1.1 Periodic Structures and unit cells . 49 8.2 Graphene . 51 8.3 Carbon nanotubes . 51 8.3.1 Zigzag . 51 8.3.2 Armchair . 53 8.4 Y(r) . 54 8.5 In situ Si . 54 9 Discussion and Conclusions 56 A Tables 58 List of Tables 3.1 Mechanical properties . 21 8.1 E() = a + bx + cx2 ........................ 53 8.2 Y (r)................................ 54 A.1 E() - Graphene . 58 A.2 E() - Zigzag r = 3:21301 . 59 A.3 E() - Armchair r = 2:74452 . 60 A.4 E() - Armchair r = 3:41653 . 60 A.5 E() - Armchair r = 4:09065 . 61 A.6 E() - Armchair r = 4:76598 . 61 A.7 E() - Armchair r = 5:44211 . 62 A.8 E() - Armchair r = 6:79564 . 62 A.9 E() - Armchair r = 6:79564 . 63 4 Chapter 1 Introduction \Graphene - a single layer of carbon atoms - may be the most amazing and versatile substance available to mankind" - Graphene Flagship When Iijima 1991 [16] made carbon nanotubes known to the broad scientific community, he set a revolution in motion. Albeit slow at first but from 2004, when Geim and Novoselov [28] successfully uncovered one free layer of graphene, there has been a boom seldom seen. This was accentuated by graphene being the first of EU's flagships1, granting e1 B over a ten year period, the biggest research initiative ever. Graphene is one monolayer of carbon atoms packed into a honeycomb lattice. It was the first two dimensional material to be discovered and is the mother of all graphitic allotropes. It can be wrapped up into zero-dimensional struc- tures known as fullerenes. Stacked layer upon layer to three-dimensional graphite. Rolled up into one dimensional carbon nanotubes, the structure we have chosen to investigate further. In mid 1930s Peierls and Landau [29, 21] taught us that two dimensional materials can not exist as they are thermodynamically unstable. However these strange two dimensional materials where still theoretically interesting 1http://graphene-flagship.eu/ 5 CHAPTER 1. INTRODUCTION 6 thus they were discussed and researched for purely academic reasons. In 1991 Iijima published a high impact article [16]. Here he claimed to have seen carbon structures shaped like needles, this was not the first evidence that carbon nanotubes existed. Despite not being first, Iijimas carbon needles, triggered a first boom in the interest around low dimensional materials. This boom was enough for some to disregard Peierls and Landau's results. In 2004 Konstantin Novoselov and Andre Geim [28], successfully extracted a single layer of graphene from the graphite in a pencil, using only scotch tape. The ensuing second boom this created was immense, making carbon and its allotropes one of the biggest fields of research. The discovery yielded Novoselov and Geim the Nobel prize in physics 2010. Despite many tries, no one is yet successful in unambiguously determining the Young's modulus of carbon nanotubes. Reported values are ranging between 0.6-5.5 TPa [38]. However, they seem to be converging to 1 TPa [26]. This is our try to cast some light on the subject, and hopefully some new insights can emerge from our work. Chapter 2 Carbon Carbon only exists as single atoms in extreme temperature environments. In ambient environment carbon reacts with other atoms to stabilize, to form multi atomic compounds. The most important of these compounds must be attributed to organic chemistry and carbons r^olein makeup the nucleic acids in DNA. Also, the proteins which are the building blocks for all life, thus making carbon the basis of life. Now, a short description of how carbon bonds to carbon forming what is known as allotropes1, especially graphene and carbon nanotubes. The most fascinating about the carbon allotropes is the multitude of dif- ferent properties they display, most notably electrical, range from strongly insulating to nearly perfect conductors. Thermal, most thermally conduct- ing, and mechanical, diamond is the hardest naturally occurring material and graphite one of the softest, carbyne has the highest Young's modulus ever measured. A short description of the most common and interesting carbon allotropes, together with some of their extreme properties follows below. 1Carbon allotropes include, but is not limited to; amorphous carbon, graphite, dia- mond, fullerenes (buckyballs, carbon nanotubes, carbon nanobuds and nanofibers), lons- daleite, glassy carbon, carbon nanofoam, graphene and linear acetylenic carbon (carbyne) 7 CHAPTER 2. CARBON 8 2.1 Diamond In an environment with extreme pressure (4.5-6.0 GPa) and temperatures (900-1300 ◦C), carbon forms the compact allotrope diamond. 2.1.1 Structure The Diamond lattice is a face centered cubic crystal structure, where each atom is bonded tetrahedrally to four other carbon atoms in a sp3 bonding, see chapter 4, thus making a three dimensional network of puckered six mem- bered rings of atoms; it is the same structure as silicon and germanium, but due to the strength of the carbon-carbon bonds, it is the hardest naturally occurring material in terms of resistance to scratching. 2.1.2 Properties Hardness 10 000 kg mm−2, scratch resistance 160 GPa and a Young's modulus of 1.22 TPa.
Recommended publications
  • Investigation Into the Re-Arrangement of Copper Foams Pre- and Post-CO2 Electrocatalysis
    Article Investigation into the Re-Arrangement of Copper Foams Pre- and Post-CO2 Electrocatalysis Jennifer A. Rudd 1 , Sandra Hernandez-Aldave 1 , Ewa Kazimierska 1, Louise B. Hamdy 1 , Odin J. E. Bain 1, Andrew R. Barron 1,2,3,4 and Enrico Andreoli 1,* 1 Energy Safety Research Institute, Swansea University, Bay Campus, Swansea SA1 8EN, UK; [email protected] (J.A.R.); [email protected] (S.H.-A.); [email protected] (E.K.); [email protected] (L.B.H.); [email protected] (O.J.E.B.); [email protected] (A.R.B.) 2 Department of Chemistry, Rice University, Houston, TX 77007, USA 3 Department of Materials Science and Nanoengineering, Rice University, Houston, TX 77007, USA 4 Faculty of Engineering, Universiti Teknologi Brunei, Jalan Tungku Link, Gadong BE1410, Brunei * Correspondence: [email protected] Abstract: The utilization of carbon dioxide is a major incentive for the growing field of carbon capture. Carbon dioxide could be an abundant building block to generate higher-value chemical products. Herein, we fabricated a porous copper electrode capable of catalyzing the reduction of carbon dioxide into higher-value products, such as ethylene, ethanol and propanol. We investigated the formation of the foams under different conditions, not only analyzing their morphological and Citation: Rudd, J.A.; crystal structure, but also documenting their performance as a catalyst. In particular, we studied Hernandez-Aldave, S.; Kazimierska, the response of the foams to CO2 electrolysis, including the effect of urea as a potential additive to E.; Hamdy, L.B.; Bain, O.J.E.; Barron, enhance CO catalysis.
    [Show full text]
  • Nanosystems, Edge Computing, and the Next Generation Computing Systems
    sensors Review Nanosystems, Edge Computing, and the Next Generation Computing Systems Ali Passian * and Neena Imam Computing & Computational Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; [email protected] * Correspondence: [email protected] Received: 30 July 2019; Accepted: 16 September 2019; Published: 19 September 2019 Abstract: It is widely recognized that nanoscience and nanotechnology and their subfields, such as nanophotonics, nanoelectronics, and nanomechanics, have had a tremendous impact on recent advances in sensing, imaging, and communication, with notable developments, including novel transistors and processor architectures. For example, in addition to being supremely fast, optical and photonic components and devices are capable of operating across multiple orders of magnitude length, power, and spectral scales, encompassing the range from macroscopic device sizes and kW energies to atomic domains and single-photon energies. The extreme versatility of the associated electromagnetic phenomena and applications, both classical and quantum, are therefore highly appealing to the rapidly evolving computing and communication realms, where innovations in both hardware and software are necessary to meet the growing speed and memory requirements. Development of all-optical components, photonic chips, interconnects, and processors will bring the speed of light, photon coherence properties, field confinement and enhancement, information-carrying capacity, and the broad spectrum of light into the high-performance computing, the internet of things, and industries related to cloud, fog, and recently edge computing. Conversely, owing to their extraordinary properties, 0D, 1D, and 2D materials are being explored as a physical basis for the next generation of logic components and processors. Carbon nanotubes, for example, have been recently used to create a new processor beyond proof of principle.
    [Show full text]
  • From Quantum Mechanics to Nanoparticles and Their Applications
    Part 2 Learning Station XIa: From quantum mechanics to nanoparticles and their applications Quantum Spin-Off 2 LEARNING STATION XIa: FROM QUANTUM MECHANICS TO NANOPARTICLES AND THEIR APPLICATIONS Introduction ..................................................................................................................................................... 3 1. Elementary particles in nanotechnology ...................................................................................................... 3 2. Size matters .................................................................................................................................................. 4 3. Can we observe this phenomenon in a real-life experiment? ....................................................................... 4 3.a Emission spectrum of single atoms............................................................................................................... 4 3.b How can we observe the emission spectrum? ............................................................................................. 5 3.c Step-by-step instructions to make your own spectrometer ......................................................................... 5 3.d What can we observe and investigate with our spectrometer?................................................................... 9 3.e How does fluorescence spectrometry work? ............................................................................................... 9 4. Quantum dots .............................................................................................................................................
    [Show full text]
  • Production and Functionalization of Cobalt Nanofoams for Energy Storage Energy Engineering and Management
    Production and functionalization of cobalt nanofoams for energy storage Naureen Khanam Thesis to obtain the Master of Science Degree in Energy Engineering and Management Supervisors: Prof. Maria de Fátima Grilo da Costa Montemor Prof. Maria Teresa Oliveira de Moura e Silva Examination Committee Chairperson: Duarte de Mesquita e Sousa Supervisor: Prof. Maria Teresa Oliveira de Moura e Silva Members of the Committee: Prof. Raquel Alexandra Galamba Duarte Dr. Alberto Adán Más October 2019 I declare that this document is an original work of my own authorship and that it fulfils all the requirements of the Code of Conduct and Good Practices of the Universidade de Lisboa. ii Acknowledgements Acknowledgements All praise to the Almighty, the Most Merciful. I would like to express gratitude to my supervisors Professor Fátima Montemor and Professor Maria Terresa Moura e Silva for their continuous guidance, advices and support during this work. My heartful gratitude to Dr. Alberto Adán Más for his support and all the endeavours to teach me everything from zero. I would like to thank EIT KIC InnoEnergy for providing scholarship under CFAFE program for my master study. This research work was developed under IDI&CA/SuperStore 0712045/ISEL project funded by Instituto Politécnico de Lisboa. I would like to thank this institution for offering me the scientific initiation fellowship under this project. I appreciate all the support of my colleagues for their help, support and kindness throughout this master study in two different countries. Finally, respect and love for my family and friends who helped keeping my moral spirit high during this journey from thousand miles apart.
    [Show full text]
  • Numerical Investigation of Carbon Nanotube Thin-Film Composites and Devices
    NUMERICAL INVESTIGATION OF CARBON NANOTUBE THIN-FILM COMPOSITES AND DEVICES A Dissertation Presented to The Academic Faculty By Man Prakash Gupta In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy in Mechanical Engineering Georgia Institute of Technology May 2015 Copyright © Man Prakash Gupta 2015 NUMERICAL INVESTIGATION OF CARBON NANOTUBE THIN-FILM COMPOSITES AND DEVICES Approved by: Dr. Satish Kumar, Adviser Dr. Abhijit Chatterjee School of Mechanical Engineering School of Electrical and Computer Georgia Institute of Technology Engineering Georgia Institute of Technology Dr. Alexander Alexeev Dr. Manos Tentzeris School of Mechanical Engineering School of Electrical and Computer Georgia Institute of Technology Engineering Georgia Institute of Technology Dr. Baratunde Cola School of Mechanical Engineering Georgia Institute of Technology Date Approved: December 5, 2014 ACKNOWLEDGEMENTS The period of last five years during my PhD program has been profoundly transformational for me in many ways. Looking back, I find that it has been truly an enjoyable and intellectually satisfying journey which was made possible by the help and support of a number of people. Among them first and foremost, I would like to thank my mentor and adviser Dr. Satish Kumar for providing the necessary guidance and constant encouragement. He has been incredibly patient and supportive during the entire program. Needless to say, he has been a role model for me and I consider it my privilege to be one of the first graduate students in his research group. I am grateful to my collaborators Dr. Saibal Mukhopadhyay, Dr. Eric Pop, Dr. Minki Cho, Dr. David Estrada and Dr. Ashkan Behnam for allowing me to work with them and having fruitful discussions.
    [Show full text]
  • Studies of Cobalt and Iron Oxides/ Oxyhydroxides Nanostructures for Electrochemical Applications
    STUDIES OF COBALT AND IRON OXIDES/ OXYHYDROXIDES NANOSTRUCTURES FOR ELECTROCHEMICAL APPLICATIONS LEE KIAN KEAT NATIONAL UNIVERSITY OF SINGAPORE 2014 STUDIES OF COBALT AND IRON OXIDES/ OXYHYDROXIDES NANOSTRUCTURES FOR ELECTROCHEMICAL APPLICATIONS LEE KIAN KEAT (M. Sc., Universiti Teknologi Malaysia) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMISTRY NATIONAL UNIVERSITY OF SINGAPORE 2014 DECLARATION I hereby declare that the thesis is my original work and it has been written by me in its entirely, under the supervision of Assoc. Prof. Sow Chorng Haur (Department of Physics) and Assoc. Prof. Chin Wee Shong (Department of Chemistry), National University of Singapore, between 3 August 2009 and 31 Jan 2014. I have duly acknowledged all the sources of information which have been used in the thesis. This thesis has also not been submitted for any degree in any university previously. The content of the thesis has been partly published in: 1. Lee, K. K., Loh, P. Y., Sow, C. H., Chin, W. S. CoOOH nanosheet electrodes: Simple fabrication for sensitive electrochemical sensing of hydrogen peroxide and hydrazine. Biosensors and Bioelectronics, 2013, 39, 255-260. (Chapter 3 & 5) 2. Lee, K. K., Loh, P. Y., Sow, C. H., Chin, W. S. CoOOH nanosheets on cobalt substrate as a non-enzymatic glucose sensor. Electrochemistry Communications, 2012, 20, 128-132. (Chapter 4) 3. Lee, K. K.#, Deng, S.#, Fan, H. M., Mhaisalkar, S., Tan, H. R., Tok, E. S., Loh, K. P., Chin, W. S, Sow, C. H. α-Fe2O3 nanotubes-reduced graphene oxide composites as synergistic electrochemical capacitor materials. Nanoscale, 2012, 4, 2958-2961.
    [Show full text]
  • Carbon Nanotube-Based Three-Dimensional Monolithic Optoelectronic Integrated System
    ARTICLE Received 14 Aug 2016 | Accepted 15 Apr 2017 | Published 8 Jun 2017 DOI: 10.1038/ncomms15649 OPEN Carbon nanotube-based three-dimensional monolithic optoelectronic integrated system Yang Liu1, Sheng Wang2, Huaping Liu3,4 & Lian-Mao Peng1,2 Single material-based monolithic optoelectronic integration with complementary metal oxide semiconductor-compatible signal processing circuits is one of the most pursued approaches in the post-Moore era to realize rapid data communication and functional diversification in a limited three-dimensional space. Here, we report an electrically driven carbon nanotube-based on-chip three-dimensional optoelectronic integrated circuit. We demonstrate that photovoltaic receivers, electrically driven transmitters and on-chip electronic circuits can all be fabricated using carbon nanotubes via a complementary metal oxide semiconductor-compatible low-temperature process, providing a seamless integration platform for realizing monolithic three-dimensional optoelectronic integrated circuits with diversified functionality such as the heterogeneous AND gates. These circuits can be vertically scaled down to sub-30 nm and operates in photovoltaic mode at room temperature. Parallel optical communication between functional layers, for example, bottom-layer digital circuits and top-layer memory, has been demonstrated by mapping data using a 2 Â 2 transmitter/receiver array, which could be extended as the next generation energy-efficient signal processing paradigm. 1 Key Laboratory for the Physics and Chemistry of Nanodevices and Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China. 2 Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China. 3 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
    [Show full text]
  • Nanotechnology - Fundamentals and Applications 1
    D. Cremer, CHEM 6342, Nanotechnology - Fundamentals and Applications 1 CHEM 6342 Nanotechnology – Fundamentals and Applications Class location: TBD Lectures, time and location: TBD Lab times and location: TBD Instructor: Dieter Cremer, 325 FOSC, ext 8-1300, [email protected] http://smu.edu/catco/ Office Hours: By appointment Units: 3 Grading: ABC Letter Grade Class number TBD 1. Rationale: Nanotechnology (NT) is a rather young discipline, which came up in the nineties. Nevertheless, NT has gained so much importance within the last years that universities at all rankings have introduced or are going to introduce NT teaching programs. Predictions say that NT will change our lives and society more than computer technology and electricity have done together. The course will provide an overview over NT. It will show that the nano regime is so different from other regimes because both classical and quantum effects can be active thus leading to unique properties of nano devices. NT is a highly interdisciplinary science, which will be reflected in the course by making reference to chemistry, physics, biology, pharmacy, and engineering. Applications of NT, as they are already in use today or as they are planned for the future, will be discussed. 2. Course Recommendations: The course is designed to reach all graduate students who had have an education in chemistry, physics, engineering or biology. It does not require special knowledge in mathematics or theoretical physics. The course contents will be presented in self-sustained modules, which make it possible to follow the course without special knowledge. The course will prepare for the interdisciplinary work in NT.
    [Show full text]
  • The Nanobank Database Is Available at for Free Use for Research Purposes
    Forthcoming: Annals of Economics and Statistics (Annales d’Economie et Statistique), Issue 115/116, in press 2014 NBER WORKING PAPER SERIES COMMUNITYWIDE DATABASE DESIGNS FOR TRACKING INNOVATION IMPACT: COMETS, STARS AND NANOBANK Lynne G. Zucker Michael R. Darby Jason Fong Working Paper No. 17404 http://www.nber.org/papers/w17404 NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 September 2011 Revised March 2014 The construction of Nanobank was supported under major grants from the National Science Foundation (SES- 0304727 and SES-0531146) and the University of California’s Industry-University Cooperative Research Program (PP9902, P00-04, P01-02, and P03-01). Additional support was received from the California NanoSystems Institute, Sun Microsystems, Inc., UCLA’s International Institute, and from the UCLA Anderson School’s Center for International Business Education and Research (CIBER) and the Harold Price Center for Entrepreneurial Studies. The COMETS database (also known as the Science and Technology Agents of Revolution or STARS database) is being constructed for public research use under major grants from the Ewing Marion Kauffman Foundation (2008- 0028 and 2008-0031) and the Science of Science and Innovation Policy (SciSIP) Program at the National Science Foundation (grants SES-0830983 and SES-1158907) with support from other agencies. Our colleague Jonathan Furner of the UCLA Department of Information Studies played a leading role in developing the methodology for selecting records for Nanobank. We are indebted to our scientific and policy advisors Roy Doumani, James R. Heath, Evelyn Hu, Carlo Montemagno, Roger Noll, and Fraser Stoddart, and to our research team, especially Amarita Natt, Hsing-Hau Chen, Robert Liu, Hongyan Ma, Emre Uyar, and Stephanie Hwang Der.
    [Show full text]
  • Advanced Current Collectors with Carbon Nanofoams for Electrochemically Stable Lithium—Sulfur Cells
    nanomaterials Article Advanced Current Collectors with Carbon Nanofoams for Electrochemically Stable Lithium—Sulfur Cells Shu-Yu Chen 1 and Sheng-Heng Chung 1,2,* 1 Department of Materials Science and Engineering, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan; [email protected] 2 Hierarchical Green-Energy Materials Research Center, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan * Correspondence: [email protected] Abstract: An inexpensive sulfur cathode with the highest possible charge storage capacity is attractive for the design of lithium-ion batteries with a high energy density and low cost. To promote existing lithium–sulfur battery technologies in the current energy storage market, it is critical to increase the electrochemical stability of the conversion-type sulfur cathode. Here, we present the adoption of a carbon nanofoam as an advanced current collector for the lithium–sulfur battery cathode. The carbon nanofoam has a conductive and tortuous network, which improves the conductivity of the sulfur cathode and reduces the loss of active material. The carbon nanofoam cathode thus enables the development of a high-loading sulfur cathode (4.8 mg cm−2) with a high discharge capacity that approaches 500 mA·h g−1 at the C/10 rate and an excellent cycle stability that achieves 90% capacity retention over 100 cycles. After adopting such an optimal cathode configuration, we superficially coat the carbon nanofoam with graphene and molybdenum disulfide (MoS2) to amplify the fast charge transfer and strong polysulfide-trapping capabilities, respectively. The highest charge storage −1 Citation: Chen, S.-Y.; Chung, S.-H.
    [Show full text]
  • Methods for Dispersing Carbon Nanotubes For
    Methods for dispersing carbon nanotubes for nanotechnology applications: liquid nanocrystals, suspensions, polyelectrolytes, colloids and organization control Sergio Manzetti, Jean Christophe Gabriel To cite this version: Sergio Manzetti, Jean Christophe Gabriel. Methods for dispersing carbon nanotubes for nanotechnol- ogy applications: liquid nanocrystals, suspensions, polyelectrolytes, colloids and organization control. International Nano Letters, 2019, 1, pp.1-19. 10.1007/s40089-018-0260-4. cea-01971413 HAL Id: cea-01971413 https://hal-cea.archives-ouvertes.fr/cea-01971413 Submitted on 7 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. International Nano Letters https://doi.org/10.1007/s40089-018-0260-4 REVIEW Methods for dispersing carbon nanotubes for nanotechnology applications: liquid nanocrystals, suspensions, polyelectrolytes, colloids and organization control Sergio Manzetti1,2 · Jean‑Christophe P. Gabriel3,4 Received: 1 November 2017 / Accepted: 15 December 2018 © The Author(s) 2018 Abstract Carbon nanotubes (CNTs) are a central part of advanced nanomaterials and are used in state-of-the-art technologies, based on their high tensile strength, excellent thermal transfer properties, low-band gaps and optimal chemical and physical stability. Carbon nanotubes are also intriguing given their unique π-electron-rich structures, which opens a variety of possibilities for modifcations and alterations of their chemical and electronic properties.
    [Show full text]
  • Large-Scale Synthesis of Carbon Nanomaterials by Catalytic Chemical Vapor Deposition: a Review of the Effects of Synthesis Parameters and Magnetic Properties
    Materials 2010, 3, 4142-4174; doi:10.3390/ma3084142 OPEN ACCESS materials ISSN 1996–1944 www.mdpi.com/journal/materials Review Large-Scale Synthesis of Carbon Nanomaterials by Catalytic Chemical Vapor Deposition: A Review of the Effects of Synthesis Parameters and Magnetic Properties Xiaosi Qi 1, Chuan Qin 1, Wei Zhong 1,*, Chaktong Au 2,*, Xiaojuan Ye 1and Youwei Du 1 1 Nanjing National Laboratory of Microstructures and Jiangsu Provincial Laboratory for NanoTechnology, Nanjing University, Nanjing 210093, China; E-Mails: [email protected] (X.S.Q.); [email protected] (C.Q.); [email protected] (X.J.Y.); [email protected] (Y.W.D.) 2 Chemistry Department, Hong Kong Baptist University, Hong Kong, China * Authors to whom correspondence should be addressed; E-Mails: [email protected] (W.Z.); [email protected] (C.T.A.); Tel.: +86-25-83621200; Fax: +86-25-83595535. Received: 26 June 2010 / Accepted: 26 July 2010 / Published: 30 July 2010 Abstract: The large-scale production of carbon nanomaterials by catalytic chemical vapor deposition is reviewed in context with their microwave absorbing ability. Factors that influence the growth as well as the magnetic properties of the carbon nanomaterials are discussed. Keywords: carbon nanomaterials; catalytic chemical vapor deposition; magnetic properties; microwave absorbing ability 1. Introduction Since the landmark paper of Ijima [1], carbon nanotubes (CNTs) have been studied widely [2-4]. The unique physical and chemical properties of CNTs suggests that the materials can potentially be utilized in areas such as field emission display [5], microelectronic devices [6-12], hydrogen storage [13] and composite material additives [14].
    [Show full text]