Observed and Projected Climate Changes
PORT GAMBLE S’KLALLAM TRIBE | CLIMATE CHANGE IMPACT ASSESSMENT The diversity of impacts on natural and human systems resulting from these climate changes, such as impacts on salmon and infrastructure, are summarized in subsequent chapters of this report. Observed and Projected Climate Changes INTRODUCTION This chapter, prepared by Harriet Morgan, Lara Whitely Binder, and Ingrid Tohver at the University of Washington Climate Impacts Group, summarizes projected changes in regional climate (e.g., temperature, precipitation) and related factors (e.g., snowpack, streamflow) that will influence the Tribe’s vulnerability to climate change. In particular, this document focuses on projected changes in air temperature, precipitation, snowpack, streamflow, stream temperature, landslides and sediment transport, fire risk, sea level rise, and ocean chemistry. Because this chapter draws from existing datasets and literature, the time periods and spatial scale of the information vary. Where possible, information specific to the Tribe’s primary traditional use area (see map in the Background chapter) is provided. Other frequently reported geographic scales in this report are the U.S. Pacific Northwest (covering the states of Washington, Oregon, and Idaho) and Puget Sound region (including the water bodies of Puget Sound and the Strait of Juan de Fuca, as well as any U.S. land areas that ultimately drain into these waters). Most projections are for mid-century (generally the 2050s) and end of century (2100). OBSERVED CHANGES IN CLIMATE: PUGET SOUND REGION Instrumental and observational data show that climate in the Puget Sound region and the greater Pacific Northwest is warming. While observed warming at the global scale can be conclusively attributed to rising greenhouse gas emissions, attribution at the regional scale (such as the Puget Sound region) is more OBSERVED AND PROJECTED CLIMATE CHANGES PAGE 1 PORT GAMBLE S’KLALLAM TRIBE | CLIMATE CHANGE IMPACT ASSESSMENT difficult due to the strong influence of natural variability at smaller scales.
[Show full text]