<<

Eastern Illinois University The Keep

Masters Theses Student Theses & Publications

1992 New Reagents and Reactions for Desulfurization of Shan Wang This research is a product of the graduate program in Chemistry at Eastern Illinois University. Find out more about the program.

Recommended Citation Wang, Shan, "New Reagents and Reactions for Desulfurization of Coal" (1992). Masters Theses. 2143. https://thekeep.eiu.edu/theses/2143

This is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact [email protected]. New Reagents and Reactions for Desulfurization of Coal (TITLE)

BY

Shan Wang

THESIS

SUBMITIED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

~­ Master of Science in Chemistry-

IN THE GRADUATE SCHOOL, EASTERN ILLINOIS UNIVERSITY CHARLESTON, ILLINOIS

1992 YEAR

I HEREBY RECOMMEND THIS THESIS BE ACCEPTED AS FULFILLING THIS PART OF THE GRADUATE DECREE CITED ABOVE

DATE .w~-- - DATE

~~~i·~~:::~··~~~.·~·~~~·~~.:..;~~~1<';,.o:,,..~,~_,-,,·1-ii.~~"~:,:fiJl.·•::~;7;i,:.Z:;c·i~:;· I ' , NEW REAGENTS AND REACTIONS FOR ~ESULFURIZATION OF COAL

Thesis Approved by:

)ate

··~ ...

Dr. T. H. Black Date Thesis Title: "New Reagents and Reactions for Desulfurization of Coal"

Author: Shan Wang

Thesis directed by: Dr. David H. Buchanan

Abstract

Searching for new reagents and reactions for pre-combustion desulfurization of coal was the goal of this work. In this study, modifications of mild desulfurization reactions, which were found to work with organosulfur model compounds, have been investigated systemetically for improvements in removal and reduction of reagent cost. The screening of reagents and new reactions utilized substituted plus aryl as the initial models for in coal. extracts of

Illinois Basin were also used as second generation targets for desulfurization reac­ tions.

Dibenzothiophene was converted to using potassium metal/tetrahydrofuran without the addition of electron transfer agents. Similar desulfurization reactions of tetrahydrofuran extracts of Illinois Basin coals gave up to an 82.8% reduction in organo­ sulfur content. A soluble chlorovinyl nickel complex added to the reaction increased the desulfurization to 85.6%. Attempts to produce active desulfurization reagents from iron pentacarbonyl with reduc­

1 ing agents in solvents (conditions for the production of [H-Fe(C0)4r ) did not lead to useful desulfurization of , or benzyl .

Tetrabutylammonium hydroxide in aprotic solvents is known to react with elemental sulfur to produce trisulfide anion radical by the single electron transfer pathway. Reac­ tion of tetrabutylammonium hydroxide with dibenzothiophene in aprotic solvents led to large amounts of unreacted starting material and gave no evidence of hydrocarbon products.

Desulfurized products bibenzyl, biphenyl, and 2-phenyl were produced by reac­ tion of benzyl phenyl sulfide using potassium hydroxide/n-butyl /18-crown-6 in dimethyl . No desulfurization of dibenzothiophene was observed using the same reaction system. Acknowledgement

I would like to thank my advisor Dr. David H. Buchanan for his great patience and help

during this work.

Also I would like to thank those who gave me supports in many respects during my staying at Eastern Illinois University. List of Tables

Table 1. Desulfurization of coal THF soluble fractions

Table 2. Desulfurization of organosulfur model compounds using iron

pentacarbonyl

Table 3. Desulfurization of dibenzothiophene using tetrabutylammonium

hydroxide List of Figures

Figure 1. 1H NMR of NiCl(CCl=CC12)(PP~)2

31 Figure 2. P NMR of NiCl(CCl=CC12)(PPh3) 2

Figure 3. FT-IR of NiCl(CCl=CC12)(PPh3) 2 Figure 4. HPLC of reaction products of DBT/K!TI:IF/Naph.

Figure 5. HPLC of reaction products of DBT/K!TI:IF

Figure 6. FT-IR of Coal-105 THF Extracts

Figure 7. FT-IR of reaction products of Coal-105/K!TI:IF

Figure 8. FT-IR of reaction products of Coal-105/K!TI:IF/NiCl(CCl=CC1z)(PPh3) 2 Figure 9. FT-IR of Coal-106 THF Extracts

Figure 10. FT-IR of reaction products of Coal-106/K!TI:IF/NiCl(CCl=CC1z)(PPh3) 2 Figure 11. FT-IR of Coal-108 THF Extracts

Figure 12. FT-IR of reaction products of Coal-108/K!TI:IF/NiCl(CCl=CC1z)(PPh3)2 Figure 13. HPLC of reaction products of DBT/NaBHJFe(CO)/BuOH

Figure 14. HPLC of reaction products of DBT/NaOH/Fe(CO)/BuOH

Figure 15. HPLC of reaction products of DBT/NaOH/Fe(CO)/BuOH

Figure 16. HPLC of reaction products of DBT/NaBH/Fe(CO)/EtOH

Figure 17. HPLC of reaction products of DBT/NaBH/Fe(CO)/EtOH

Figure 18. HPLC of reaction products of DBT/NaOH/Fe(CO)/EtOH

Figure 19. HPLC of reaction products of BT/NaOH/Fe(CO)/BuOH Figure 20. HPLC of reaction products of BS/NaOH/Fe(CO)/BuOH

Figure 21. UVNIS of reaction products of Sg1Bu4NOH/CH3CN

Figure 22. UVNIS of reaction products of Sg1Bu4NOH/DMSO

Figure 23. GC of reaction products of DBT/Bu4NOH/DMSO

Figure 24. GC of reaction products of DBT/Bu4NOH/CH3CN

Figure 26. GC of reaction products of DBT/Bu4NOH in H20ffoluene

Figure 27. GC of reaction products of DBT/Bu4NOH in MeOHffoluene Figure 28. GC of reaction products of DBT/KOH/n-BuLi/18-crown-6/foluene

Figure 29. GC of reaction products of BPS/KOH/n-BuLi/18-crown-6/DMSO

Figure 30. GC of reaction products of DBT/KOH/n-BuLi/18-crown-6/DMSO

Figure 31. FT-IR of unknown compound from reaction DBT/NaOH/Fe(CO)/EtOH

Figure 32. Be NMR of unknown compound from reaction DBT/NaOH/Fe(CO)/

EtOH

Figure 33. FT-IR of iron pentacarbonyl in CH2Cl2 Figure 34. Be NMR of iron pentacarbonyl

Figure 35. Cyclic voltammetry of DBT

Figure 36. Cyclic voltammetry of elemental sulfur Table of Content

Abstract

Table of Content

List of Tables

List of Figures

Chapter I. Introduction and Background ------1

Chapter II. Experimental ------15

Chapter III. Results and Discussion ------30

Chapter IV. Conclusion ------46

Reference ------48

Appendix. Tables and Figures Chapter I Introduction and Background

The United States has about a third of the world coal reserve that can be utilized for several hundred years, in contrast with the resources in the U.S. It can be expected that the future will see the increasing use of coal as a substitute for oil as fuel supply. However, this shift from oil to coal is hampered by the high sulfur contents in the coal. According to current and pending U.S. Federal regulations, the burning of high­ sulfur coal will require either pre-combustion removal of up to 90% of the sulfur in the coal or the use of post-combustion stack gas scrubbing. Since the latter choice is both difficult and expensive, a major breakthrough in cleaning of high-sulfur coal mainly depends on the pre-combustion desulfurization.

Sulfur forms in coals are scientifically classified into: (1) pyritic sulfur, (2) sulfatic sulfur, and (3) organic sulfur. However, as the names imply, an understanding of sulfur compo­ sition in coal, especially at the molecular level, has not yet been achieved. The procedure for determination of the sulfur content in coal is according to ASTM D-2492. 1

Through the research of previous workers, great success has been achieved in the removal of mineral forms of sulfur (mainly ) from coal. For instance, various mechanical methods for coal cleaning now in use or near commercialization are able to remove 80% or more of the mineral sulfur from coai.2-4 However, mineral forms of

1 sulfur often constitute only half of all sulfur present.5•6 So, in order to achieve the neces­

sary degree of cleaning of coal, pre-combustion desulfurization must remove both miner­

al and organic forms of sulfur. Unfortunately, because of the lack of a chemical strategy

for the selective cleavage of the -sulfur bond in the matrix of coal, the removal of organic sulfur from coal for the purpose of pre-combustion desulfurization still remains a

very serious challenge.

Unlike the mineral forms of sulfur in coal, organic sulfur, which is chemically bonded to

the matrix of the coal, can not be removed from coal by simple physical cleaning or

solvent extraction.7 In earlier work at Eastern Illinois University,7 simple solvent extrac­ tion methods were shown to be unable to selectively remove the organic content of sulfur from coal. Through research on perchloroethylene extraction of coal, it was shown that pyrite, not organosulfur compounds, is the source of the S0 extracted by perchloroethyl­ ene. And, within experimental error, almost no organic sulfur was removed by perchloro­ ethylene extraction.7 Therefore, selective chemical reactions will be necessary for pre­ combustion desulfurization.

Various methods have been investigated for the removal of the organic sulfur from coal.

A very severe desulfurization process involves molten caustic leaching of coal. 8 In the first step, the coal is leached with molten hydroxide or -potas­ sium hydroxide mixtures at 370-390°C for several hours. During this process, most minerals in the coal are converted to soluble alkali-metal salts and the sulfur-containing

2 organic components of coal are converted to soluble sulfides.9 After leaching, the caus­ tic-treated coal is washed with water, dilute , and then again with water to remove the soluble sulfides. There is a 90% reduction in the sulfur content. 8 Another chemical method for desulfurization exploits the chlorinolysis of coal. 10 The coal is mixed with carbon tetrachloride and water and is heated at 65-70°C in the presence of dichlorine.

The chlorinated coal is hydrolyzed at 70-80°C for 2 hours and then dechlorinated at 350-

4000C in the presence of steam. The sulfur content of the coal sample is decreased about

50% by this method. 10 Another recent publication describes a desulfurization reaction that employs alkoxides in refluxing .11 The coal is treated with sodium alkox­ ides in aliphatic or benzylic alcohols for a short time and then washed thoroughly with hot water. These reactions are carried out at atmospheric pressure. Sulfur removal from the four Indian coals from the Makum Coalfield, Assam, India, approached 50%. 11

Further progress in the area seems to be contingent upon the elaboration of new chemical strategies for selective desulfurization. Accordingly, Stock and his co-workers have investigated an alternative mild and selective approach for desulfurization that is based upon the well-known concept that single electron transfer (SET) reactions of a variety of sulfur compounds occur readily and that the carbon-sulfur bonds in the anion radicals that are obtained in these reactions are fragile and cleave, (1). 4 There is considerable prece-

PhSPh + K ---> K+ + PhSPh- ---> K+ + Phs- +Ph· (1) dent for the employment of this kind of strategy. 12-22 To illustrate, dibenzyl sulfide and benzyl phenyl sulfide undergo cleavage by potassium in dimethoxyethane. 18 The main

3 products of reduction of benzyl phenyl sulfide with potassium in dimethoxyethane are

, toluene, , and , (2). 18 Similarly, , benzo­

thiophene, and dibenzothiophene also react with alkali metal. 14-19

K/DME H+

PhSCH 2Ph ------> ------> PhH + PhCH 3 + PhCH 2CH 2 Ph + PhSH (2) For example, dibenzothiophene undergoes carbon-sulfur bond cleavage with potassium in tetrahydrofuran to form thiophenol and biphenyl, (3). 19 In the single electrontransfer desulfurization reactions carried out in Stock's group (in which tetrahydrofuran was used as reaction solvent, potassium metal as single-electron reducing agent, and was used as electron transfer agent), organic sulfur contents of three kinds of pyrite-free coals were reduced by 50-90%.36

Although the desulfurization of coal with potassium metal and naphthalene in tetrahy- drofuran had achieved great success, the usage of potassium metal, which is both expen­ sive and difficult to handle, limits its economical feasibility on a commercial scale.

Recently, hydroxide ion has been indicated to be an effective single-electron reducing agent in a suitable reaction medium.23•24 In aprotic solvents, hydroxide ion reacts with elemental sulfur to give the trisulfur anion radical s3·-, (4).

(4)

In this case, hydroxide ion acts as a single-electron donor and elemental sulfur functions

25 26 as the electron acceptor. • Major peaks attributed to S3·- in the visible absorption spec-

4 trum were observed (in Me2SO, 618 nm; in MeCN, 612 nm; in DMF, 618 nm) when tetrabutylammonium hydroxide was combined with elemental sulfur.25 Also, it has been reported that, in aprotic reaction media ( or ), hydroxide ion reacted with anthraquinone to form a semiquinone anion radical, ( 5,6 ).25 HO o- kl AQ + OH- <======> (5)

0 k2 ~ AQ + AQ(OHt ------> AQ-· + ~ ---> 0

[AQ(OH)]

1/2 [AQ(OH)]2 ---> AQ + 1/2 H20 2 (6)

Because of the great success of alkali metal single electron transfer reactions for desulfur- ization of coal and the chemical and economic appeal of simple hydroxide ion as single electron transfer reagent, the idea of replacing the potassium metal by inexpensive hy­ droxide ion reagent as the single-electron donor in desulfurization has been systematical- ly investigated in this study.

Desulfurization reactions using soluble metallic reagents also appear to be a promising chemical strategy for pre-combustion coal desulfurization. The removal of organic sulfur from thiophenes in the petroleum industry by catalytic is a mature technology. However in this reaction system the desulfurizing reagent needs to be able to

5 penetrate into the coal matrix. The catalysts used in the petroleum industry were heterog­ enous, and were unable to penetrate along with the reaction solvent. So this kind of homogeneous systems has been investigated in several groups.21-30 However these systems either require very expensive late transition metals such as Rh, Ir, or Pt or have not been shown to be capable of carrying out every step of the desulfurization process with a single reagent.

"Nickel Boride" reagent has drawn great attention for the purpose of desulfurization of organosulfur model compounds. ~In the Wynberg group, "Nickel Boride" reagent was

31 prepared by treating NiC1z with NaBH4 in aqueous alcohol, and it converts dialkylthio­ phenes to cis/trans mixtures of alkenes, (7).

t7J

In terms of the mechanism of the "Nickel Boride" system for desulfurization, C.A. Brown considered the actual reagent prepared by NaBH4 reduction of nickel acetate to be N~B, perhaps an alloy of metallic nickel and boron which acted as a catalyst for the addition of gaseous hydrogen added from an external source.3233 In the Truce group, the "Nickel

Boride" reagent was prepared from NiC1z and was considered to be finely divided metal­ lic nickel coated with molecular hydrogen generated in situ.34 In contrast to the method developed by Wynberg in which the "Nickel Boride" reagent was generated in the

6 presence of desulfurization substrate without an external source of hydrogen, Brown and

Truce isolated the prepared nickel boride and used it with the addition of gaseous hydro­

gen added from an external source. An X-ray diffraction study showed the composition

of material formed by the Truce procedure to be amorphous, and after recrystallization at

250°C it gave an X-ray pattern for Ni3B containing some metallic nickel.The actual desulfuring "Nickel Boride" reagents are presumed to be nickel-boron alloy with different

compositions of nickel and boron. The nickel boride reagent developed by Wynberg was

more interesting to us because it can be generated in the presence of a reaction substrate

without the addition of gaseous hydrogen from an external source.

In addition to the "Nickel Boride" reagents developed by Wynberg, Brown, and Truce et

al., a homogeneous nickel reagent formed by LiAlH4 reduction of nickellcene (biscyclo­ pentadienyl nickel(O)) has recently been shown to desulfurize dibenzothiophene and other

organosulfur compounds under mild conditions. 35 Based on the idea of the homogenous nickel reagent, in this study, a soluble chlorovinyl nickel complex

[NiCI(CCl=CC12)(PPh3) 2] has been developed, which might be considered to be an effec­ tive precursor for a desulfurizing reagent. The soluble chlorovinyl nickel complex can be formed when NiC12 is reduced with NaBH4 and carbon tetrachloride in the presence of triphenylphosphine in ethanol, (8), or can be formed in high yield from NiC1z(PPh3) 2, (9) and (10). And the relationship between the chlorovinyl nickel complex with the actual

CH3COOH NiC1z *6H20 + 2 PPh3 ------> NiC12(PPh3)2 (8) room temp.

7 EtOH/reflux NiCl 2 *6H 20 + 2 PPh 3 ------> NiCl 2 (PPh 32) (9)

EtOH/N/50°C . ------> NiCl(ClC=CC12)(PPh3)2 (10) desulfurizing reagent (nickel boride as developed by Wynberg) is currently unclear.

Even more attractive than nickel-based systems for coal desulfurization are those based on iron or aluminum reagents which might be generated in situ from minerals already present in coal. Rauchfuss has recently shown that Fe3(C0)12 can desulfurize dibenzo­ thiophene under certain conditions. 29 The significance of this work is that it demonstrates that low valent iron compounds are capable of desulfurization reactions. So, in this study, the possibility of a Fe(C0)5-NaBH4 or NaOH system for desulfurization has been investigated. Dibenzothiophene, benzothiophene, benzyl sulfide were used as desulfuri­ zation targets.

8 Chapter II Experimental

A. General Considerations

Materials. The reagents used in this work such as dibenzothiophene, benzyl phenyl

sulfide, elemental sulfur, iron pentacarbonyl, tetrabutylammonium hydroxide in water or in methanol were obtained from Aldrich Chemical Company. Dibenzothiophene was recrystallized from ethanol. Elemental sulfur was recrystallized from toluene. Coal

samples were obtained from the Illinois Basin Coal Sample Program (C. Kruse, Illinois

State Geological Survey). Coal samples were preserved in a glove bag under nitrogen.

Coal tetrahydrofuran-soluble fractions were prepared following the procedure described by Buchanan.37 The solvents that were used for the reactions were carefully purified before use. Tetrahydrofuran was distilled from sodium metal and benzophenone under nitrogen; toluene was distilled from sodium metal. Dimethyl sulfoxide was dried over calcium hydride and vacuum distilled. Elemental analyses were done by Galbraith

Laboratories, Inc.

Instrumentation. The products of single electron transfer reactions of elemental sulfur with tetrabutylammonium hydroxide in methanol were analyzed with a Shimadzu 3100-

UVNIS Spectrophotometer (with CPS-260 Cell Positioner and CPS Temperature Con­ troller as accessories). The products of desulfurization reactions of organosulfur model compounds using potassium metal/tetrahydrofuran system and iron pentacarbonyVsodium hydroxide or system were analyzed with a Beckman High Pressure

9 Liquid Chromatograph using a 250 x 4.6mm Alltech 5U C18 reverse phase column pro­ tected by a 40 x 4.5mm guard column and was connected to a Beckman Model 112 pump, a Rheodyne 125 injector and a Schoeffel Spectroflow Monitor SF 770 variable wavelength UV detector set at 254 nm. The eluent used was 75% methano~O with a flow rate of 0.90 mL/min. The reactions of dibenzylthiophene or benzyl phenyl sulfide with hydroxide ion were analyzed with a Hewlett-Packard Model 5890 Gas Chromato­ graph (30m x 0.53mm Alltech SPB-5 column and flame ionization detector using nitro­ gen as a carrier gas). The temperature program for dibenzylthiophene was: initial tem­ perature, 100°C; initial time, 1 minute; ramp, 20°C/minute; final temperature, 200°C; final time, 1 minute. The temperature program for benzyl phenyl sulfide was: initial temperature, 50°C; initial time, 1 minute; ramp, 40°C; final temperature, 210°C; final time, 1 minute. All nuclear magnetic spectra were recorded on a General Electric Model QE-300 FT-NMR Spectrometer. All infrared spectra were recorded on Nicolet 20DX-B Infrared Spectrometer. The cyclic voltammatric data were obtained with a EG & G PARC Model 173 Potentiostat/Galvanostat connected with a PARC

Model 175 Universal Programmer. Platinum electrodes were used as working and auxil­ iary electrodes, and saturated sodium chloride electrode (SSCE) was used as reference electrode. All melting points were determined with Fisher-Johns Appara­ tus.

B. Synthesis of NiCliPPh3)2

(i) Method 138

10 A solution of NiC12 *6(H20) (2.3961 g, 10.080 mmol) in water (2 mL) was diluted with glacial acetic acid (50 mL), and triphenylphosphine (5.2906 g, 20.171 mmol) in glacial acetic acid (25 mL) was added at room temperature. The dark-green mix­ ture was stirred for 24hours, and then filtered and washed with glacial acetic acid to produce dark green crystals. The reaction product was dried in a vacuum desicca­ tor at 250 Hg/um and room temperature overnight. Product weight: 5.3251 g; yield: 80.7%; decomposition point: 246-248°C; (lit. 249°C).38

(ii) Method II39

NiC12 *6(H20) (2.9758 g, 12.518 mmol) was dissolved in absolute ethanol (40 mL), and the solution was concentrated by rotary evaporatoration to dryness. This procedure was repeated once more and then the residue was dissolved in absolute ethanol (150 mL) and treated with triphenylphosphine (6.5506 g, 24.975 mmol) at room temperature. The mixture was heated to reflux and stirred for 3 hours, cooled to room temperature, filtered, washed with absolute ethanol to give dark green crystals, which were dried under vacuum at 250 Hg/um and room temperature overnight. Product weight: 5.4986 g; yield: 67 .2%; decomposition point:249-250°C; (lit. 249°C).39

C. Synthesis of NiCl(CIC:CCl2)(PPh3)2 from NiCl2(PPh3)2• NiC12(PPh3) 2 (1.0052 g, 1.537 mmol) and tetrachloroethylene (1 mL, 9.787 mmol) were dissolved in ethanol (20 mL), the solution was stirred, nitrogengas bubbled through it for one half hour and then

NaBH4 (0.2462 g, 6.478 mmol) was added to the solution while keeping the temperature

11 around 50°C. After the addition, the mixture was stirred for 1 hour. The product was cooled, filtered, washed with ethanol and recrystallized from dichlo romethane/ethanol(l: 1). Product weight: 0.4709 g; yield: 40.8%; decomposition point: 187-188°C. (no literature value of the decomposition point is available) Elemental analy­ sis: Found, C 61.22%; H 4.36%; Cl 18.96%. Calculated, C 60.93%; H 4.04%; Cl

1 31 18.93%. H NMR (CDC13 as solvent): Two multiplets 7.4 - 7.75 ppm (Figure l); P

4 NMR (CDC13 as solvent): Singlet 22.0 ppm (Figure 2), (Lit. 22.0 ppm). ° FT-IR as a

KBr pellet, strong bands at: 1483, 1434, 703, 696, 523, 513 cm- 1 (Figure 3).

D. Desulfurization of dibenzothiophene using potassium metal/tetrahydrofuran. A general procedure for two desulfurization reactions of dibenzothiophene using potassium metal/tetrahydrofuran is described. One reaction is with the addition of naphthalene (0.2020 g, 1.576 mmol) and another is without any addition of naphthalene. Dry, dis­ tilled tetrahydrofuran (100 mL) and potassium metal (2.90 g, 74 mmol) were placed in a

3-necked 250 mL flask. After 30 minutes of stirring under nitrogen, the reaction mixture became greenish black. The organosulfur model compound was added and the reaction mixture was heated to reflux under nitrogen for 24 hours, after which the reaction mix­ ture was cooled in an ice-bath and acidified with saturated ammonium chloride solution to pH 6-7. The tetrahydrofuran was evaporated off, the residue was extracted with methylene chloride, and the combined organic layers were dried overnight with anhy­ drous sodium sulfate. The reactants and products were analyzed by HPLC (Figure 4 &

5).

12 E. Desulfurization of coal tetrahydrofuran soluble fractions using potassium

metal/tetrahydrofuran. A general procedure for the desulfurization of coal tetrahydrof­

uran-soluble fractions using potassium metal/tetrahydrofuran is described. The substrates

were tetrahydrofuran extracts of the Illinois Basin Coal-105, -106, and -108. Naphtha­

lene was added in some of these reactions. Dry, distilled tetrahydrofuran (50 mL) and potassium metal (1 g, 27mmol) were placed in a 250 mL 3-necked flask together with coal tetrahydrofuran-soluble fractions (around 0.4 g). The reaction mixture was heated to reflux under nitrogen for 24 hours, where upon fresh potassium metal (1 g, 27 mmol) was added and the reaction mixture kept at reflux for another 24 hours. After a total of 48 hours of reaction, the reaction mixture was cooled in an ice bath, acidified with saturated ammonium chloride solution to pH 6-7, and tetrahydrofuran was removed. The residue was extracted with methylene chloride, and the combined organic layers were dried with anhydrous sodium sulfate overnight. The solvent was evaporated and products were vacuum-dried at 250 Hg/um and 100°C overnight. Reaction products were analyzed by

Ff-IR (Figure 6-12) and elemental analysis (Table 1).

F. Desulfurization of organosulfur model compoundsusing iron pentacarbonyl with sodium borohydride or sodium hydroxide. A general procedure for desulfurization of organosulfur model compounds using iron pentacarbonyl with sodium borohydride or sodium hydroxide is described. The organosulfur model compounds used in these reac­ tions were dibenzothiophene, benzyl sulfide, and benzothiophene, respectively. To a stirred mixture of the reducing agent (NaOH or NaBH4: 7.6 mmol) and the organosulfur

13 model compound (1 mmol) was added iron pentacarbonyl (7 .6 mmol); gas evolved in­ stantly, and the reaction mixture became orange and finally violet-red. The reaction mixture was heated to reflux for 24 hours under nitrogen, whereupon the reaction mixture was acidified and the reaction solvent was removed. The products were extracted with methylene chloride and the combined extracts were dried over anhydrous sodium sulfate.

The reaction products were analyzed by HPLC (Table 2 and Figure 13-20).

G. Single electron transfer reactions of elemental sulfur. A general procedure for the single electron transfer reactions of elemental sulfur with tetrabutylammonium hydrox­ ide is described. The reaction solvents used were acetonitrile and dimethyl sulfoxide, respectively. The solvent (20 mL) and elemental sulfur (0.0010 g, 0.031 mmol) were placed in a 50 mL round-bottom flask. After the reaction solvent was degassed with dinitrogen for about 30 minutes, tetrabutylammonium hydroxide (1 mL, IM in methanol) was injected and the reaction mixture became greenish blue. The reaction mixture was stirred under nitrogen for 5 minutes, then 2 mL of the reaction mixture was taken out by syringe for UVNIS analysis (Figure 21-22).

H. Desulfurization of dibenzothiophene using tetrabutylammonium hydroxide in methanol as the reducing agent. Dimethyl sulfoxide and acetonitrile were used as solvents, respectively. The solvent (30 mL) and dibenzothiophene (1 mmol) were placed in a two-necked round-bottom flask. After the reaction solvent was degassed with dini­ trogen for about 30 minutes, tetrabutylammonium hydroxide in methanol (3 mL, 1 M)

14 was injected. The reaction mixture was heated to reflux under nitrogen for 24 hours, whereupon another 3 mL of tetrabutylammonium hydroxide in methanol was injected, and the heating was continued for another 24 hours. After a total of 48 hours of reaction, the reaction mixture was acidified with dilute HCl and extracted with methylene chloride.

The combined extracts were washed with water and dried over anhydrous sodium sulfate.

The products were analysed by gas chromatography (Figure 23 & 24).

I. Desulfurization of dibenzothiophene in toluene using tetrabutylammonium hydroxide in water. Toluene (40 mL) and dibenzothiophene (1 mmol) were placed in a two-necked round-bottom flask equipped with a Dean-Stark trap. After the reaction solvent was degassed with dinitrogen for about 30 minutes, tetrabutylammonium hydrox­ ide in water (6 mL, 9 mmol) was injected. The reaction mixture was kept at reflux under nitrogen. Water was collected in the Dean-Stark trap during the reaction period. After 24 hours the reaction mixture was cooled and washed with dilute HCl three times, and the organic layer was dried over anhydrous sodium sulfate. The reaction products were analyzed by gas chromatography (Figure 25).

J. Desulfurization of dibenzothiophene using tetrabutylammonium hydroxide in methanol as reducing agent and toluene as solvent. Toluene (40 mL) and dibenzothi­ ophene (1 mmol) were placed in a two-necked round-bottom pot flask of a simple distilla­ tion apparatus. After about 30 minutes of purging with nitrogen, tetrabutylammonium hydroxide in methanol (10 mL, 10 mmol) was injected. The reaction mixture was heated

15 to reflux under nitrogen with the initial temperature of vapor recorded at 64°C. After

about 30 minutes at reflux at 65°C, the temperature of the reaction system dropped with a small amount of liquid being collected. The reaction apparatus was switched to that for normal refluxing. The reaction mixture was kept at reflux under nitrogen for 24 hours, cooled and washed with dilute HCl three times, and the organic layer was dried over anhydrous sodium sulfate. The reaction products were analyzed by gas chromatography (Figure 27).

K. Desulfurization of organosulfur model compounds with potassium hydroxide/18-crown-6/n-butyllithium. A general procedure for desulfurization of organosulfur model compounds with potassium hydroxide/18-crown-6/ n-butyllithium is described. The organosulfur model compounds were dibenzothiophene and benzyl phenyl sulfide, and the solvents used were toluene and . The solvent (40 mL), organosulfur model compound (0.5 mmol), potassium hydroxide (5 mmol), and

18-crown-6 (5 mmol) were placed in a three-necked round-bottom flask. After the reac­ tion mixture was degassed with dinitrogen for about 30 minutes and cooled below 10°C, n-BuLi (1 mL, 2.5 Min hexane) was injected. The reaction mixture was stirred for 1 hour under nitrogen at room temperature, heated at reflux for 24 hours, cooled, washed with dilute HCl three times, and the organic layers were dried over anhydrous sodium sulfate. The reaction products were analyzed by gas chromatography (Figure 28-30).

L. Cyclic voltammetry of elemental sulfur and dibenzothiophene. The working

16 electrode (Pt) was polished and cleaned before use. Acetonitrile with 0.1 M tetrabu­ tylammonium hexafluorophosphate (TBAH) in it was used as the working solvent.

Before scanning, the solvent was purged with nitrogen. The system worked with a scan­ ning speed at 100 mV/sec. and a scanning cycle from 0 to -2 V, then finally to 0 V.

Cyclic voltammetric data of elemental sulfur and dibenzothiophene were obtained

(Figure 35 & 36).

17 Chapter III Results and Discussion

A. Desulfurization of dibenzothiophene and coal tetrahydrofuran soluble fractions using potassium metal/tetrahydrofuran.

Single electron transfer desulfurization reactions presumably proceed by a radical reac­ tion pathway as follows, (11)-(16).36 initiation

electron donor-<==> donor+ e- (11) ArSAr + e- <==> ArsAr-- (12) propagation ArSAr·- <==> Ar· + Ars- (13) Ar- + Nuc- --> ArNuc·- (14)

ArNuc·- + ArSAr <==> ArSAr·- + ArNuc (15) termination

Ar-+ H donor--> ArH +donor (16)

In the initiation step of the single electron transfer reaction the electron coming from the electron donor reagent is an one-electron reductant. So the concentration of the solvated electron is as important as that of the electron donor reagent to the efficiency of the elec­ tron transfer process. In the single electron transfer desulfurization reactions of pyrite­ free coals using potassium metal/tetrahydrofuran carried out by previous workers, there was a great difference between the reactions with and without the addition of naphtha-

18 lene. 36 The addition of naphthalene had obviously increased the reduction of the sulfur content of the pyrite-free coal samples. The desulfurization reactions of coal using potas­ sium metal in tetrahydrofuran without the addition of naphthalene were unsuccessful presumably because of the low concentration of the solvated electron in the reaction system. According to Sternberg, the naphthalene added to the reaction system acted as an electron-transfer agent to shuttle the electrons from solid potassium to the insoluble coal, (17), (18);41 in other words, the naphthalene anion radical replaced the solvated

K(s) + C10H8(1HF) <==> K+ + C10H8·-(THF) (17)

K+ + C10H8·-(1HF) + coal(s) <==>

coal(sY + K+ + C10H8(1HF) (18) electron as the actual electron donor in the reaction system. Potassium metal/tetrahydrof­ uran system at 67°C for 24 hours followed by quenching with ammonium chloride solu­ tion completely converted dibenzothiophene to biphenyl (Figure 4 & 5). The addition of naphthalene as an electron transfer agent was unnecessary for desulfurization of dibenzo­ thiophene using the potassium metal/tetrahydrofuran system. Compared to the great importance of naphthalene in the desulfurization of coal by the potassium metal/tetrahy­ drofuran system,36 obviously dibenzothiophene, or biphenyl which is the desulfurized product of dibenzothiophene, was acting as the electron transfer agent. Table 1 summarizes the desulfurization reactions of tetrahydrofuran soluble fractions of Illinois Basin Coal-105, -106, and -108. The potassium metaVtetrahydrofuran system was ap-

19 plied to the tetrahydrofuran soluble extracts of Illinois Basin Coal-105, one reaction being

with the addition of NiCl(CCl=CC12)(PPh3)2, and the other without, Table 1. The addi­ tion of the chlorovinyl nickel complex did increase the percent of sulfur removal from

tetrahydrofuran extracts of coal from 82.5% to 85.6%. This indicates that the major role of the chlorovinyl nickel complex was likely as a possible catalyst precursor, which

maybe related more to "nickel boride" chemistry than as an electron transfer agent. The

coal compounds in the tetrahydrofuran extracts may act as electron transfer agents by

themselves. This is reasonable since the coal compounds in the tetrahydrofuran soluble fractions have a significant aromatic content. 42

B. Desulfurization of organosulfur model compounds using iron pentacarbonyl with

sodium borohydride or sodium hydroxide.

Table 2 summarizes the desulfurization reactions of dibenzothiophene, benzothiophene, and benzyl sulfide using iron pentacarbonyl with sodium borohydride or sodium hydrox­ ide in alcohol solvents. It has been shown that both NaBH4 and NaOH in alcohol sol­ vents reacting with iron pentacarbonyl lead to the active H-Fe(C0)4- species, (21, 22).43 This is an appealling idea in that the minerals found in coal (such as iron

Fe(C0)5 + BH4- --> Fe(C0)4CHo- + BH3

Fe(C0)4CHQ- --> HFe(C0)4-+CO (21)

Fe(C0)5 +OH---> Fe(C0)4COQH-

Fe(C0)4COQH- --> HFe(C0)4- + C02 (22)

20 salts) might be transferred into homogenous reactive desulfurization reagents in situ. The fact that simple and inexpensive hydroxide ion could serve as the reducing agent to produce an iron based reagent makes this idea even more attractive. In this study, both sodium borohydride and sodium hydroxide have been used as reducing agent which reacted with iron pentacarbonyl to produce the iron-based reagent; dibenzothiophene, benzothiophene and benzyl sulfide were used as desulfurization targets. In no case was there any significant conversion of organosulfur model compounds to desulfurized hydrocarbon products (Figure 13-20); most of the starting materials were recovered.

Unknown peaks were observed on HPLC graphs when dibenzothiophene was used as the starting material (Figure 13, 14, 16-18). These unknown peaks have the same retention time on HPLC graphs and were thought to be belong to a same unknown compound. The unknown compound had been separated from dibenzothiophene, which appeared to be a green crystal. The unknown compound turned from green to brown when it was heated to around 84°C, and it began to be shiny when the temperature reached 150°C. The FT­

IR and Be NMR data of the unknown compound were obtained. The FT-IR (CH2Cl2 as background) had major bands at 2048, 2021, and 1994cm-1 (Figure 31). The Be NMR

(CDC13) had only one peak at 211.713 ppm (Figure 32). Comparing to the FT-IR and Be NMR data of iron pentacarbonyl (the FT-IR of iron pentacarbonyl had bands at 2021 and

1 1 1994 cm- , but without the band at 2048 cm- (Figure 33); the Be NMR (CDC13) of iron pentacarbonyl had one peak at 210.200 ppm (Figure 34), which was slightly apart from the peak of the unknown compound in chemical shift), the unknown compound is thought

21 to be probably some kind of iron complex with high symmetry (only one peak in 13 C

NMR) or just an inorganic iron salt with traces of iron pentacarbonyl contamination.From the HPLC data of the desulfurization reactions of organosulfur model compounds using iron pentacarbonyVsodium borohydride or sodium hydroxide(Figure 13-20), no desulfur­ ized or partially desulfurized products were observed. No effective interaction (electron transfer process) between the iron based reagent and the organosulfur model compounds was thought to have occurred.

C. Desulfurization of dibenzothiophene using tetrabutylammonium hydroxide.

The chemistry for hydroxide ion ("OH) includes the single electron transfer reaction whereby hydroxide ion acts as a one-electron reducing agent, (23).-44 The redox potential of the ·oHlOH couple is largely influenced by the solvation energy of the -oH anion.

~

OH· + Acceptor <===> OH + Acceptor- (23)

The increase in the ionization energy for -oH from 1.8 eV in the gas phase to 6.2 eV in water45 attests to its large solvation energy and to its dramatic deactivation as a base and in water.46.47 Howe~er, the situation improves in aprotic solvents.23 Hydrox­ ide ion is a stronger base and a better single-electron donor in acetonitrile and dimethyl sulfide than in water, because these aprotic solvents give solvation energies for the hydroxide ion that are 20-25 kcaVmol (around 1 eV) less than that in water.48 Thus, reduced solvation of the hydroxide ion decreases its ionization energy and causes it to

22 have a more negative redox potential and to be a stronger electron donor (the solvation energies of the hydroxide radical ·OH are small,45 so that the large changes in redox potential are due primarily to the solvation of the anions).

In aprotic solvents, hydroxide ion has been shown to be an excellent single electron trans­ fer agent in which elemental sulfur acted as the electron acceptor.25 Trisulfide anion radical (S 3·-) could be easily produced when tetrabutylammonium hydroxide was mixed with elemental sulfur (Figure 21 & 22). The major absorbances for S3·- were at 618.5 and 612.5 nm for the solvents dimethyl sulfide and acetonitrile, respectively (lit.: dimethyl sulfide, 618 nm; acetonitrile, 612 nm).25 The facility of this reaction is illustrated by the use of methanol or aqueous solutions of tetrabutylammonium hydroxide as the source of

OH-. These are not strictly aprotic conditions, yet the single electron transfer reaction occurs.

The hydroxide ion reagent was studied as a possible desulfurization reagent for organo­ sulfur model compounds. It had been expected that the organosulfur model compounds could accept an electron from the hydroxide ion as did the elemental sulfur, (23), which could then react further, following the reaction sequence depicted by (13)-(16). Table 3 summarizes the desulfurization reactions of organosulfur model compounds using tetrab­ utylammonium hydroxide. Few desulfurized products were obtained (Figure 23-27).

The strong solvation effects of the methanol and water, which were brought into the reaction system by the tetrabutylammonium hydroxide reagent (the tetrabutylammonium

23 hydroxide reagents used in this study were purchased as solutions in methanol or water),

have been thought to be the cause for the failure of these desulfurization reactions. Ef­ forts were made to improve the situation. A Dean-Stark trap was used to remove the

water when tetrabutylammonium hydroxide used was in water solution; methanol was evaporated from the reaction system when tetrabutylammonium hydroxide in methanol was used. Despite these efforts, the desulfurization reactions using tetrabutylammonium hydroxide still failed.

Pertaining to a single electron transfer reaction, the feasibility of the electron transfer process depends mainly on the relative stability of the donor and the acceptor; more

strictly speaking, it depends mainly onboth the relative redox potential of the donor­ /donor- couple and that of the acceptor/acceptor·- couple,(24). Donor-+ Acceptor <===> Donor+ Acceptor- (24) The more positive the redox potential of the donor couple, or the more negative the redox potential of the acceptor couple, the easier it is for the electron transfer process above (from right to left) to happen. When two similar electron transfer processes have the same electron donor and the same reaction solvent, the relative feasibilities of these two processes are controlled by the relative redox potentials of the acceptor/acceptor­ couples. The cyclic voltammetric data of both dibenthiophene and elemental sulfur in acetonitrile were obtained (Figure 35 & 36). Elemental sulfur was reduced at -0.93 V, but the cyclic voltammetry curve of dibenzothiophene showed no peak up to -2 V. The electrochemistry results indicate that elemental sulfur is much easier to reduce than

24 dibenzothiophene; in other words, elemental sulfur is a much better electron acceptor

than dibenzothiophene. The experimental results of electrochemistry and that of the single electron transfer reactions are very much in line with each other.

D. Desulfurization of organosulfur model compounds using potassium

hydroxide/18-crown-6/n-butyllithium system.

N-Butyllithium is known to be a very strong base.46 In Stock's group, n-butyllithium has

been used along with potassium tert-butoxide (in a ratio of 1: 1) as an effective C-alkyla­

tion reagent, which is conveniently designated as Lochmann' s base. 46 In this study, potassium hydroxide pellets were used in the desulfurization reactions of organosulfur

model compounds as the source of the single electron transfer agent and the n-butyllithi­

um was used as a drying agent, which could hopefully remove any trace of water brought into the reaction system by the potassium hydroxide pellets. The purpose for the addition

of 18-crown-6 ether to the reaction system was to try to accelerate the desulfurization

reaction by complexing the potassium cations and dissociating them from the anion radicals which were expected to form. Desulfurized products such as biphenyl, bibenzyl

and phenol were observed when benzyl phenyl sulfide was the starting material of the desulfurization reactions, (25). 18 In contrast, no desulfurized products were

K/DME H+

PhSCH 2Ph ------> ---> PhH+PhCH 3 +PhCH 2 CH 2 Ph+PhSH (25) obtained when the starting material was dibenzothiophene. The formation of bibenzyl from the desulfurization of benzyl phenyl sulfide is not surprising because of the great

25 stability of the benzyl radical,s1 if the benzyl radical is considered to be one of the reac­ tion intermediates. Dissociation energies (D values) of R-H bonds provide a measure of the relative stability of free radicals R. The higher the D value, the less stable the radical.SI According to the D values provided by Walling, so the D value of benzyl (77.5 kcal/mole) is much lower than that of phenyl (102 kcal/mole). The high stability of benzyl radical could be the explanation of the difference between the desulfurization reaction of benzyl phenyl sulfide and dibenzothiophene, from which a phenyl-like radical ( ) would form at the initiation step if the electron transfer process had happened.

26 Chapter IV Conclusion

Both dibenzothiophene and coal tetrahydrofuran extracts achieved great success in desul­

furization using potassium metal/tetrahydrofuran without any electron transfer agent.

The dibenzothiophene and coal tetrahydrofuran extracts act as the electron transfer agent by themselves.

[H-Fe(C0)4r produced from iron pentacarbonyl by reaction with sodium hydroxide or sodium borohydride in the presence of dibenzothiophene, benzothiophene, or benzyl sulfide, led to no desulfurization and large amounts of unreacted starting material.

Tetrabutylammonium hydroxide reacts with elemental sulfur in aprotic solvents to pro­ duce trisulfide anion radical, easily following a single electron transfer pathway. In contrast, reactions of tetrabutylammonium hydroxide with dibenzothiophene in aprotic solvents resulted in large amounts of unreacted starting material and gave little evidence that single electron transfer process had happened. The large, negative reduction poten­ tial of dibenzothiophene ( <-2.0 V) compared to that of elemental sulfur (-0.93 V) is a likely explanation for the difference between these two systems.

27 Desulfurized products were produced by the reaction of benzyl phenyl sulfide using potassium hydroxide/n-butyllithium/18-crown-6 in dimethyl sulfoxide. On the other hand, no desulfurization of dibenzothiophene was observed using the same reaction system. The relative stabilities of benzyl radical and phenyl-like radical, which are considered to be the single electron transfer reaction intermediates, are thought to cause the difference.

28 Reference

1. '1982 Book of ASTM Standards', Part 26, Method D-2492, American Society for

Testing Materials, Philadelphia, PA, USA.

2. Kuhn, J. K.; Kohlenberger, L.B.; Shimp, N. F. Environ. Geo!. Notes 1973, 66.3.

Westgate, L. M.; Anderson, T. F. Anal. Chem. 1982, 54, 2136.

4. Stock, L. M.; Wolny, R.; Bal. B. Proceedings: Thirteenth Annual EPRI Conference

on Fuel Science and Conversion; Electric Power Research Institute: Palo Alto, CA,

1989; p 4-1.

5. Lee, S.; Kesavan, S. K.; Lee, B. G.; Gosh, A.; Kulik, C. J. Fuel Science and Technol­

ogy Intl. 1989, 7_, 443.

6. McGowan, C. W.; Markuszewski, R. Fuel 1988, 67, 1091.

7. Buchanan, D. H.; Coombs, K; Hackley, K. C.; Chaven, C.; Kruse, C. W. Proceed

ings: Fourteenth Annual EPRI conference on Fuel Science; Electric Power Research

Institute: Palo Alto, CA, 1990; p 8-1.

8. Meyers, R. A.; McClanthan, L. C.; Hart, W. D. Proc. Pittsburgh Coal Conf. 1985, 112.

9. Richardson, R. G.; Chriswell, C. D.; Markuszewski, R. Fuel Process. Technol. 1989,

22 (198), 217.

10. Hsu, G. C.; Kalviniskas, J. J.; Ganguli, D.S.; Gvalas, G. R. ACS Symp. Ser. 1977,

64, 206.

29 11. Mazumdar, B.; Saikia, P. C.; Saen, B.; Baruah, B. P.; Borodoloi, C. S. Fuel 1989,

68, 810-813.

12. Truce, W. E.; Tate, D. P.; Burdge, D. N. J. Am. Chem. Soc. 1960, 82, 2872.13.

Kraus, C. A,; White, G. F. J. Am. Chem. Soc. 1923, 45, 768. Sown, F. J.; Arcadi, Vo

G.; Nieuwland, J. A. Ind. Eng. Chem., Anal. Ed. 1936,.8., 49.

14. Birch, S. F.; McAllan, D. T. Nature 1950, 165, 899.

15. Birch, S. F.; McAllan, D. T. J. Chem. Soc. 1951, 2556.

16. Krug, R. C.; Tocker, S. J. Org. Chem. 1955, 20, 1.

17. Huckel, W.; Nabih, I. Chem. Ber. 1956, 89, 2115.

18. Gerdil, R.; Lucken, E. A. C. J. Chem. Soc. 1963, 5444; Ibid. 1964, 3916.

19. Ignasiak, T.; Kemp-Jones, A. V.; Straus, 0. P. J. Org. Chem. 1977, 42 ill. 312.

20. Ebert, L. B.; Mills, D. R.; Scanlon, J.C. Prepr. Pap.-Am. Chem. Soc., Div. Fuel

Chem. 1987, 32 ill. 419.

21. Stock, L. M. In Coal Science; Academic Press: New York, 1982; Vol. 1.

22. Birch, A. J.; Slobbe, J. Heterocycles 1976, .5.. 905.

23. Sawyer, D. T.; Roberts, J. L. Acc. Chem. Res. 1988, 21, 469-476.

24. Ashby, E. C. Acc. Chem. Res. 1988, 21, 414-421.

25. Sawyer, D. T.; Hojo, M. Inorg. chem. 1989, 28, 1201-2.

26. Sawyer, D. T. J. Am. Chem. Soc. 1985, 107, 4556-7.

27. a) Angelici, R. J. Acc. Chem. Res. 1988, 21, 387. b) Friend, C. M.; Roberts, J. T. Acc.

Chem. Res. 1988, 21, 394. c) Calhorda, M. J.; Hoffmann, R.; Friend, C. M. J. Am.

30 Chem. Soc. 1990, 112, 50.

28. a) Choi, M-G.; Angelici, R. J. J. Am. Chem. Soc. 1989, 111, 8753. b) Glavee, G. N.;

Daniels, L. M.; Angelici, R. J. Organometallics 1989, .8., 1856. c) Chen, J.; Daniels, L.

M.; Angelici, R. J. J. Am. Chem. Soc. 1990, 112, 199.

29. a) Ogilvy, A. E.; Draganjac, M.; Rauchfuss, T. B.; Wilson, S. R. Organometallics

1988, 1, 1171. b) Ogilvy, A. E.; Skaugset, A. E.; Rauchfuss, T. B. Organometallics

1989, .8., 2739.

30. a) Eisch, J. J.; Hallenbeok, L. E.; Han, K. I. J. Org. Chem. 1983, 48, 2963. b) Eisch,

J. J.; Hallenbeck, L. E.; Han, K. I. J. Am. Chem. Soc.1986, 108, 7763.

31. Schut, J.; Engberts, J.B. F. N.; Wynberg, H. Synth. Comm. 1972, _2, 415.

32. Brown, C. A. J. Org. Chem. 1970, 35, 1900.

33. Brown, C. A.; Ahuja, V. K. J. Org. Chem. 1973, 38, 2226.

34. a) Truce, W. E.; Roberts, F. E. J. Org. Chem. 1963, 28, 961. b) Truce, W. E.; Perry,

F. M. J. Org. Chem. 1965, 30, 1316.

35. Chan, M-C.; Cheng, K-M.; Li, M. K.; Luh, T-Y. J. Chem. Soc., Chem. Comm. 1985,

1610.

36. Chatterjee, K.; Wolny, R.; Stock, L. M. Energy & Fuels 1990, .4, 402-406.

37. Buchanan, D. H.; Osborne, K.; Warfel, L. C.; Mai, W.; Lucas, D. Energy and Fuels

1988, _2, 163.

38. Venanzi, L. J. Chem. Soc. 1959, 719.

39. Michael, C.H.; Sortiris, J.; Edward, H. S. J. Org. Chem. 1989, 54, 3015.

40. Carvajal, J.; Muller, G.; Sales, J.; Solans, X.; Miravitilles, C. Organometallics, 1984,

31 J, 996-1002

41. Sternberg, H. W.; Delle Donne, C. L. Prepr. Pap. - Am. Chem. Soc., Div. Fuel Chem.

1968, 12 @, 13. Sternberg, H. W.; Delle Donne, C. L.; Pantages, P. Prepr. Pap. -Am.

Chem. Soc., Div. Fuel Chem. 1970 14 .ill, 87.

42. Vorres, K. S. Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem., 1990, 35, 523.

43. Keiter, R. L.; Keiter, E. A.; Hecker, K. H.; Boecker, C. A. Organometallics, 1988, 1.

2466.

44. Fomin, G. V.; Blyumenfel'd, L.A.; Sukhorukov, V.I. Dok!. Akad Nauk SSSR 1964,

157, 819.

45. Pearson, R. G. J. Am. Chem. Soc. 1986, 108, 6109.

46. (a) Bohme, D. K.; Mackay, G. I. J. Am. Chem. Soc. 1981, 103, 978. (b) Tanner, S.

D.; Mackay, G. I.; Bohme, D. K. Can. J. Chem. 1981, 59, 1615. (c) Evanseck, J. D.;

Blake, J. F.; Jorgensen, W. L. J. Am. Chem. Soc. 1987, 109, 2349.

47. Landini, D.; Maia, A. J. Chem. Soc., Chem. Commun. 1984, 1041.

48. Popovych, O.; Tomkins, R. P. T. Nonaqueous Solution Chemistry; Wiley: New York,

1981; Chapter 10.

49. Chatterjee, K.; Miyake, M.; Stock, L. M. Energy & Fuels, 1990, ~. 242.

50. Walling "Free Radicals in Solution", John Wiley & Sons, Inc., New York, 1957, p

50.

51. March, J. "Advanced : Reactions, Mechanisms, and Structure",

McGraw-Hill,Inc., 1968, p 155.

32 Table 1. DESULFURIZATION OF COAL THF SOLUBLE FRACTIONS

REAGENT IBC %C %H %S Relative Coal DAF' DAF' DAF' S Reduction

------None 105 78.79 6.47 3.76

K/fHF 105 79.26 9.28 0.67 82.8

K/fHF/NiLX* 105 69.02 8.53 0.54 85.6

None 106 79.89 6.55 2.01

K/fHF/NiLX* 106 68.99 7.46 0.33 83.6

------

* Here NiLX stands for NiCI(CCl=CC12)(PPh3) 2 # DAF means dry and ash free Table 2. DESULFURIZATION OF ORGANOSULFUR MODEL COMPOUNDS USING

IRON PENTACARBONYL

Substrate# Reagent/Fe(C0)5 Solvent Time{femp. Products* (mmol) (mmol) (mL) (hrs?C)

------

DBT (3) NaOH (7.6) n-BuOH (40) (2/118) DBT

DBT (3) NaBH4 (7.6) n-BuOH (40) (2/118) DBT/unknown

DBT (1) NaOH (7.6) n-BuOH (40) (24/118) DBT/unknown

DBT (1) NaBH4 (7.6) EtOH (40) c2n8) DBT/unknown

DBT (0.5) NaBH4 (7.6) EtOH (40) c24n8) DBT/unknown

DBT (1) NaOH (7.6) EtOH (40) c2n8) DBT/unknown

BS (1) NaOH (7.6) n-BuOH (40) (2/118) BS

BT(l) NaOH (7.6) n-BuOH (40) (24/118) BT

------

# DBT, BS, and BT stand for dibenzothiophene, benzyl sulfide, and benzothiophene, respective

ly.

* Reaction products were analyzed by HPLC. Table 3. DESULFURIZATION OF DIBENZOTHIOPHENE USING TETRABUTYL­

AMMONIUM HYDROXIDE

Substrate Reagent Solvent Products#

DBT [B?4N]OH DMSO DBT (1 mmol) inMeOH (30mL) BP"' (6 mmol)

DBT [B?4N]OH DBT (1 mmol) inMeOH BP"' (6 mmol)

DBT [B~,NJOH Toluene DBT (1 mmol) intt20 (40 mL) (9.3 mmol)

DBT [B?4N]OH Toluene DBT (1 mmol) inMeOH (40 mL) (10 mmol)

#Reaction products were analyzed by GC. * Only very small amount of biphenyl appeared. ,....N M ,.c:: ~ ~ -M -N t,)""' t,)""' i::::l t,) t,) II 2 .-1 Q_ t,) Q_ - t,)""' GJ 1-1 l::I ! - t,)""' ·l"i •l"i (\j ~"' .-1= :z [

I J 0 ) )

~I I (\j I ! ; I

!I ' ! -tj- • -\

c.o

0 - Figure 2 31p NMR of

NiCl(ClC=CCl2)(PPh3)2 GE NMI-~ Qf:-300 DHB. ·104 280CT90 N1 COM'LE)(

Ol'~HA1'0R: EAK ONE PULSE SEQUENCE

PULSF. WIDTH = 12. (\0 = 58 (J•· ~CQ. l'IME n: 819. 20 RECYCl.E lIME "' 2. e I

NO. OF ACQS. "" 33.f.93 OMA stzE "" n·r68 LINE OHOAONG "" .00 HZ SPIH RATE "" 24 RP

OBSERVE: FREQUENCY= 121.70576 srtc W1'.orn... 20000 HZ. GAJ;N =< 52 • l

DECOLIPLl:H: STANDAHIJ-lG MOI nlEr~llENr.Y •'-'XX . XXX Pf'M l'O'M]! '"' 2300/ 3000 HIGH l'O'M:R ON l-IIGH roYA:~H OUTPUT ::I. 61

f'LOT SCALE: :rn2. 06 HZ/CM 11 2. 4819 f'l'M/CM !' Fl!OM 36. 62 I TO -13.00 f'l'M

!

--~~~~~~------,--- -r - - -1 ---1 · --, 1--1---1--··-,----,----1-.,.-, ·-r-r-· ~ 1---r --,--·--1-·-1-· 30 20 10 0 -10 PPM Figure 3.· FTIR of Nic1(cc1=cc12> (PPh3)2·

I I

0 Ill... !" NtCl (ClC-CClZ)

u ID" pj Ill

Ill ID 0 ~

!JI u..,, CV ... IO .I:<. Ill... ~ N :z ~ I- H 0 n.. ...d

~ Ill.. ..; I

Ill a u oi ------·---···-1------i --t- ---t ·--1-----1- 4000. 0 a177.B :Z4il5S. 9 1008. 7 1455.n 1044.4 818.87 011.11 409.99 tzoo.co WAVENUMBERS CCM-1) DYSC APPLIGRATIDN SYSTEM c1983 Dynamic Solutions Corporation

E~;!:;TC)i--.! I LL I l\ID IS UN J \lEi=-:S I:·,,

.-. .~-::-·L•- ·-·· Figure 4 HPLC for desu1furization Prods .

.,.-~!----.-. -( bL'~ :·· :::,;". ~ DBT/K/THF/Naph.

3.817 4.817 ?CE

8.467

!S:l !:::. 1::::::1 !::::J 1:::1 - i:::I r·:_:. .J;:.. er·, !:O

SkMFLE: 45--sa ~5:~5 RE?G~r: 45--Sa 45:85

:~------: : Unknown Sa1ple : :------:

Run: 1 H+ .. .1r-i-· -,, \!1'.W""' '! .., .. ~ .... iI~E RELAE'JE PK .'1t".tH :" ~. ~:::-:: HEIGHT re CAUcRATI~N RES?Or~SE CONC rEM'. flM~:. I.,,.,",- p ... l ..... ,. ~!N! (.;,,:,}:_ ... _____ ht.: :r~E \'.fG\..T -Mr~n (','CL.7i z wM;::;i FACTOR Gil ------. ~. ·. ;). 1 .. ... ~ ! 7 4::: ~). 000 } .. .. ,.. ... -·.. '· ••w 1' • 40: SC ~1miE t:~iU.lG;.i!-i ~ ~- - .), ~ c;~ - "O '4 ~ :-r: 4. S! Q. :.::~ --· -· .j, =~? :. .. :, ,/ aa ~~OSE f "·;'' ·' ~~,J -- ' . -.t .. -~· •• .,vv v. ~.J.; • .... -· ;..,' • .: ! . 6c.'15l OB ~G~lE JNKNQ;.;li F~. ------DYSC APPLIGRATION SYSTEM c1983 Dynamic Solutions Corporation

F·w-r: l sr-.ecj Li:.c:e.-· Lj ce;ise to c:;:\;-;-rn.i I l_L I NCJ IS u;··.J I 'v'EF:S IT'/ Figure 5

HPLC for desulfurization Prods.

DBT/K/THF

·.::! '~'

' I,,,., '!, ••N 4.833 PCE

====-- -'.3 8. 233 8 p

1=:1 i=! l~I r· •..:i -- 1J"·1 co

SAMPLE: 45--88 45:85 REPORT: 45--~8 45:85 :------: : Unknown Sa~ple : : ------:

~f+ Seri es: 1 F:un: ! Hf

J.J,...... '""' l" i TIME H~:.;-;- RELATI\iE PK .:..::o;~H AREA p~: .. t~tln I ' .. ChLI5RHiIQN RESPONSE CONC PEAK ~lA~E I~l ~ ... ,. ·' .~."" EE7 TI~E tvc:_:-~I~tJ ~ i:VCLT) ~ _..... ::1"!.::.: FAC:GR Sil ...... __ ------4. :::j ·' !} • 0.'.::04 o.0c1~·~ ...... ; .~ •JS: 4.568 EE ~iG~,~ U~KNOWN ?:-: 4 ,..,,.,t ,;l:- ··:::..;.; .'. I --- :1. :s1 .j. ~ ~.:~ . . 0. .,.'..'1 16. :::0 ;: tl,.i.t:. PCE ...... ; .!C~ ,·, e '"'"' !.%0 L'.~::~ ..--· '. J "• ~43 78 . .:82 ·- SC1E U~KNO:..IN Vi. ------0. ~ 14 :z IG0.'.j00 L ! o~ 100.000 Figure 6. IR oi Coa1-105 THF Extracts

0 111 0 ... IHP -1 OlJ' J5~TRflcr fitl.G'1§fic 'Y/I0/91 ~ -, 07.'1 n ·a~ t 1, ..t"h r·:c. n II

'I ii Ill ~ I : +

I!) !' ~ t I ;

I' I l\l ,'lj 1:J - ~ ID , i ~ ~. CJ. ...;.I I ~ : I ,. ~ ! • W: (\ ! I ·: 4 ci I-

OI u

m VI ... I u +- .. 4COO. 0 ·+-- ...... ····}·--··--·-·- '·- - .. +-·-·-·-·· ----- .. --t--- ...... -----·I- --·-·· ...... -·-+··· ...... -...... f-...... _.. , .... . --t-- 05/2S/941516a119

..,N Ill UI...

Ill ..,...... N.

.., m w .., uz [II . < a m D'. 0 111 m < UI Ul Ul ID ci

ID N ID Ill a

ID [II IDa

cl 4000. 0 aeoo.o a2oo.o 2600.0 2400.0 2000.0· 1eoo.o lZOO.O eoo.oo 400.00 WAVENUMBERS CCM-1> Figure 8. IR of Products of Reaction Coa1-105/K/THF/NiC1(C1C=CC12)(PPh3)2

m Ill .... m COAL CPBl PROO-CH2CL2SOLUBLE> ... OS/«'6f/94 1~1381 10

Ill ...N Ill ...:

... m a N .... '

m Ill w a uz m . < 0 m a: a Ill m < 'Of N 0 IO ci

... m m N ci

(Tl 'Of 8 ci 1--~~~~~f--~~--~~1-- ,------,I I ,------,I I I 4000. 0 aeao,o :a 2 o o. 0 ~eoo.o 2400.0 2000.0 1000.0 1200.0 BOO. cm 400.00 WAVENUMBERS CCM-1) Figure 9. IR of Coal-106 THF Extracts

Ill ..."OJ .... THF-106 EXTR/\CT R2C4S!50 B/7/gl OB/07/94 1110!5149

0 0 m OJ 0

'ot N Ill "cl

m 't w 't uz Ill . < 0 m 0: a Ill m < Ill N "11) cl

m "...a cl

OJ "...0 0. I I =il - -t--·--·---1---··-· ···-···-··-f--- 4000. 0 ::ieoo.o :9200.0 2900.0 Z400.0 2000. 0 1600. 0 1200. 0 BOO.CO 400.00

W~VENUMBERS CCM-1> Figure 10. IR of Products of Reaction Coa1-106/K/THF/NiCl{CC1~cC12){PPh3)2

m N N N THF~10ft-~p R2~4S50 B/7/Q1 SW OB/07/841114811Q NT

I ui I

..m -t "...:

m Ill w a u .. z . < .. m a: a U1 m < ~ I

~ +I

...a Ill Ill a

Ill.. a.. a. ______j I I r--- 4000.C :aeoa. o :a 2 o a. a 2BOD.O 2400.C 2000,0 1eoo. o 1200. 0 BOC.OD 40a.aa WAVENUMBER& (CM-1> c :::J 0 ~. ..r-J

---··------0 c ::.I ~.... ro

c 0 lg ,.. C/l ! N .. ~ ;-.. tJ fP. "l: rt! u c ~""" !I ~ a :r ~ ··' 0 0 :c l" ~ ::i" -1.. '( ::; ::i:: r~ z ~ c \;J ' > tO :-.. <. 0 c:: >: ~ I r-l 0 rt! ci 0 ~ I 0 C) ...l _) ..L !!) N

~ G"" 0 D -===::::=====~===------~.---- ~ ' 1-1 7 :-...' 0 !J 0 ~ E ~ II' -+- .• : (I ~ ~ "{" 0 QJ N Q(. ::s""" ... 1:71 u a •r-1 "'::: ~ ~ a t- a ~ ...._ \~ . -J: 'CS> D r- I I!.- ::r:. t- a ~--- .. ---t------{- c·-----+------+-· - --,-- -- -· - seeL ·o BlLo·c osss·o /

3::1 . ._ C!-:C5G•' Figure 12. IR of Products of Reaction Coal~l08/K/THF/NiCl(CCl=CCl2)(PPh3)2

Ill" PQO P~OUJ~T tC4~~-~ ~O-JO-L l ~\CTTO~> D7'2~'e4 tQ,~s.zz ,.,; .. ' . 1\1 ..~ J

"m I ...~ I

.., Ill u.11 ".. '." . I < ... Ill 'J' u If r.i < .. ~ II.' m Li .J

"'D Ul" CJ

.. I

~ ...... ,_ ... 1--- ..... !-·-·-·---······ -··· !--·-•"••·····-··· ...... J-·· ...... 1--··· - ""·----· t---- ~ U·~ .L- -4000. 0 ".1000. 0 3200.0 2900,0 2-400. 0. 2000.0 1noo. o 1200. o eoo.oo 400.00

WAVENU~BER9

Figure 13

HPLC of Products -··---- :..::, :...= ,;... .-- ~ :·~, .. DBT/NaBH4/Fe(C0)5/BuOH >

.,_.

. ,, 8.850

-.::.- =~~-~~~~ ; : ..... ::··:.---· .·.·-·.·.·.·-·.·--.·-·-·.·.·-·.- .·.•.• .. ·~:··. ····.·:.::_.:_:·:·-.-.'._. ·------_"""\.!... ~ .. . _-:_:=,:.:.:-=:=::=:5:<=>=:=~=~=-=""zz:~'"'""·- - -__,. .. -.-:-:·:-:-::-:.------:-.-----.---- ~;;.:..;;---~~~- ·t<-:B-/u ~L~;'.>~312~~=~

I:~:~: ,..;,;

i::::i 1:::1 ::.:::1 l~ :::1 r-.) - ;:r·. 0) (S:l DYSC APPLIGRATION SYSTEM c1983 Dynamic Solutions Corporation

~~~nished under License to EAS~ON :L~INOIS UNIVERSI7Y Figure 14 SUL:=-UR I·-··!-!:-"'LL. .--. HPLC of Products

DBT/NaOH/Fe(C0)5/BuOH I

._:....

.-. .. .·~: •....;...· -~ er·,

== ---=> vn~-....J h a.e:o

:~ - f

14.200

•"'="'"•

r· ..:. i:r·, CC• Figure 15

HPLC of Products (with M~thyl Benzoate)

DBT/NaOH/Fe(CO)s/BuOH

((i-jr-!=I·:= 7

i_;..• •=I ?S: ' l:;:!

(:;:) ; - .+:.. 0:·1 '-'·'

l 7~7 "t • .;;..;;.:; 5.233 PCE I f.-.. ! I ....::.. j >---; ! _.__ i f- .-- - i -i i rn :_:) i I .._._ r' (~1 ! ! i ! I ! i I r-- I '! ! L I

1::::::1 (~1

!:::1 er·,

-S~MPLE: 4~--88 45:85 RE?ORT: 45--88 45:85

.1 ------, • : Un~~awn Sa~ole : ------~

tt--t Seri es: l Run: 1 Hf

liHE HEICHT IC CrlL!BRATIDN . I CONC ! ';,-,; ~ ·. ~:ET TI~E ·. n'"°': CGDE BASIS GIL

.,) . - ·.. .::

j j. ~) ..:.. "':-.: ...... · J.-.; ! -..' 81.26~ :: NGNE Figure 16

...::.- ;,_; .~ .~ ~-· ,' ·. ( HPLC of Products (With Methyl Benzoate)

. . . ~- ··- ._DBT /NaBH4/Fe (CO) 5/EtOH ·.. •.•-!; '·--····- { G' i (.".~; ·::.·

.., .... ,_,_. ------.--·•. ! ---·------·------..,.-! ----

L.== 4.367 ;:' ~ ~.. =-~-- ; ;

f:> ~ ~ ·~

-; 8.417 fT1 ((1

•_:..; (::r '~ (S) >-'-

r-...:i ..i::.. 1:r·J (!) ~::::::!

.. SA~PLE: 45--88 45:85 REPOF~T: !------: : Unknown Sa~ple i

H': Series: 1 Run: 1 H+

-.-1 ::.T.,.1:~ :",C.L~I ! ·;:. PK HGHT IC CALicRATION RESFONSE PE~K NAME ~ .-.. , ... ______!VOLTl i. CODE. BASIS FACTGR Ci!...

...... ~ '._:-}"f .) 1 ii•) 0.049 2.841 BB NONE ~ -~- ...... ; .... ii. 620 36. 145 bB :~o:;E 8.417 0. 164 9. 578 BB NGf;E UNKNG~ii FK 13. 233 0.533 51. 437 BE NmE UNKNO~N ?K DYSC APPLIGRATION SYSTEM Dynamic Solutions Cor~oration

Figure 17 HPLC of Products

DBT/NaBH4/Fe(C0)5/EtOH

4.400

13.283 .DB T

:::;:.i !'.S) i::::: ;...-;.

~ CT·1 (0 :~ DYSC APPLIGRATION SYSTEM c1983 Dynamic Solutions Corporation

~urni~Med unoe~ License t~ EASTON ILLINOIS UNIV~25!7Y

~ ~ ;-l: :-= r- '·-· L. Figure 18 HPLC of Products

DBT/NaOH/Fe(C0)5/EtOH

;:;:_ co ·-·- ---·---­. . -----~---~----~

r !

! ;: i :~· i :: i ;: i'. : ~

i'i ~~j~;~jtifilL\jlliJillt@Jk:z~wP·Z··-·:~:····::':.. -~ .....::::;: .. ·-~· .. ··::::!·····:::····-:::;:: .....~....,...... ,...... ,_. -

::::::.,.""'' :=. r- f~ ;_;..;:

: :

•: ~ e.-. ~":'a• w;.,· i~.~ll.! .. ,~jjill1::@jy~ff1faJf@b/ :: ·.. ~;~w-.=w- ... _

i :\Y L ;/" i

r·.) o:r·, •S:• DYSC APPLIGRATION SYSTEM c1983 Dynamic Solutions Corporation Furnished under License to EASTON ILLINOIS UNIVERSITY

SULFUF: HF'LC Figure 19

HPLC of.Products

Reaction BT/NaOH/Fe{C0)5/BuOH

t.f:i-I r ,=,·==

(::::l (~i 1:::::i 1S) 13:1 ......

;=1 r·.;. ~ .:r·. (0 ~·

4.367

6.SS3

. i.

::::1 c:::• ::::i ::::::1

::::i r·.) ..;:;.. cr·i DYSC APPLIGRATION SYSTEM c1983 Dynamic Solutions Corporation ~~rnished unde~ Lic~nse to EASTON ILLINOIS UNIVERSITY

SULFUR HPLC Fi~ure 20

HPLC of Products of Bl.lF'FEF.: .1. Reaction BS/NaOH/Fe(C0)5/BuOH

i:.0-1 r ·=··==

(:!:I 13) 1::::1 1::::::1 ...... ·~· 1::::::i r·.). ..j::.. cr·, ((! •3:1

4.367

5.650

I -> 11.200 . '

-> 12.267

C:::• 1;:::, ...... ·~ ·=::a r·.) er·, co Figure zi. UV/VIS spectra :ror "Produc~ao I . . . SET RFACTION OF SULFUR

.t' 1 CPE~KJ • ·-- -( Asg ) .. ·- ·-r.vA1:L1 EYJ·---~~­ c,0 t. WAVELENG fH VALUE WAVELENGfH VAJ_L 0

~ 1 : 612.5 1.668 1: 517.5 r 2: 452.0 0.760 2: 425.5 VI - . - 3: 259.5 2.641 0 - 3 0 - 0 - I

DN 0-. - Ill 0 1 ...... 0 0 I

...... - 2 0 - 0 I 0 - I J 2 I 1 0 - I. '- - .. I . I I . I - I I -- I . I I I --·· • I 1 .. I - - 1.- .. - 600 0 0 l..''00 400 ~ i 0 Cnm)

',{ll·ff'I f '.~11 /Ul Jt, ~Wfl IN Cll3CN REFTf~ENCE CH3Cl'I SPF.ED FAST SLIT ?.O DATF. 2/L,/92

ANALYST : SHAN WANG Figure 22. UV/VIS Spectra for Products of Reaction So/Bu4NOH/DMSO 1.u I I Q_;'_ _:•_IJ-C--'--;..-;.+.;__:'_'t....;.I +-i..+l-1+:..+-'!...!.'-11+..:.1-:le-µll+Hll-+-H '++-'''-'-'+- l;_:_...:_w..:'-!-'-1--l1--1_LL!__:__ I ' '_J ' I ' !-i11 I i ' 1 0 . I I ! i I I I 1 I II i ! I I I i I I I I ' 1-'~-"-- :f-'-:;.....;.1-'-1 -1--1 1--r-t '7f-tt- :tr· _.,_,_~i._.._;,.1-::.1-::.-::.1~~-=--=-·-=--l;_t~~f-+'----'-i-'-l--'-l-'·--'-i-'''-+-.C.1_'--'ll-1-...;l44-1.;_.j--'-'-'l-!--i1-.._,ll'-+1+.;.'-IH-+4-"-l-!--il· I I ' I ! ! i I I ~tJ:::1J.'I i L _ I I ! i I I L ; '----!--"--'! I I ,\ 1 I I I I i I · I i j r+L:--'--'-'-l'---1-.,.-~l-__._-T -- -_-I::::1 -+--' -II_.._j' -~le-I I·• 11 Ii I tll ii T ;, :!I! J..!-l\- -+-•-.;-1 ..._,_·_,'-H-!-' Figure 23 G• ii} 1 1 1 1 Figure 2 (b) • i · 1 1 +h ~! ...-;- '+t:IT :i ::: I ;_, ,1 11 I! Ii -l : !I I 1 I l I i I I I -+1-._._1:...+--'--,+tt-'° 1 1 , 1 , ... iiTi ~c for Prq1 Jiucto::1, GC. for P.:r;oducts I I . ! 0-~- r-- -'---1--"-.;....;,....;.-1--'-"-'--1-'--'--'-. - - . ~ -- ..- 1: ;; I I, 1---t-tn--·-·"41-'--'-'..._ -l....L..1-1 I I Ii I I 'I I! t--.:..' I··;~· . · , : 17[ - --n::- --+t+-''-'-·-' . . I I ,, ; I i I I I I ...LL!.J.... ' ! • I ' ' . ' ' ~ i -·--· 1'1L ; 1 ': · - >---,----of Reacti•.. • • 1' , 1 1 1 1 1; : of B1ank Rcaa:y;,Lcm:, ~ :!:Jf -~._i _i ___:_:_ : • L!- . I • I I I i ! I I i i : I .. " . :...LL_. ~·-+-'----+·---'-"""-+---- : ' I ; 1 q i ! . : 1 L.--. I 1 ri: : I I • ! • i I t I ··-=-t- - 1 I 1 ; • ·- ·:--,-,-i- ...0-!i _ -[: ; . \~: ~ DBT/Bu4N0~. 1 ; • : : : : ' ! : : ; : Bu4NOH/DM.u'"'',L-..'. .i-:....:__-1~ _._._. _, _•_;__:__ ~It ~-f2 'ii --i-l-gl-.4----'-~::...-l-'1...;I'--'-+-':..!...;.·-'--1-"-!-'l-"-'\I-!---''- ltl t ' I l: ! _±::: +,L:-.· :_ :, - ,__. _._ . LIT I I ~ i ~ I I i 1 • I . ! I i i 1 ...;._! -·-,,'+i---~---t-f't-(0 1 1 , I J I i I .J I i i : ; ' II . ~.•', -"-,r--.,-f··H-0=- I ! J ! : J f ' I I l I ·-+·-c-'--"'-+-,._..;.---C-f-'...L', I:: I :c::ir 1-'--__.r...... _._ l--'---'-l-'-4·~-'-+"-'--l1_,'_-!--'-'' -1~..._1 ~1 :...... 4---'---"-1--'-'--'-'--1-' - '-"4 +Hl-.-1-_,_--+--~- ~ ; ! I : : : : I I : 1 1 I ~t I i 11 +t-t+- ---7-:- -.-I I : I ~ I I : : ~ ! i ~·-;-·f----l'-t+-'--:-c-+---:--+--''-'--'-+-lr-+i-f'f-t------'--'--t-'-'i-+i-'-t--~'~'~f-.J.·-f-;·-+1-+-+----'l--.....;:'-+1-f--'--_;'..;.'_+----l----i'_;_·-+--'--'-_;_i..__..;. __J_ ii' Ii IT! 1--, I ' I I i I I i I I I LLL +i j i! iii 'I ! I : I I I 11 I r. 11 i I I' ''-L -:-nr ' I I . I I I I I I I ! ! i ' t-:1 ...!..t _:_1T;,.·+-t==~~=~~====~~~~-'....J-:-_-_-;_-1~c.--_-_-_-_-;_-++---_;_-;_-_-'.;..-}f--!;_+;_-l:+1-::.· ~-=--=--=--=--=-~-=-t~·:~I :1'-._-_-.,.-_-_-;_-= ..1:~~i'--l+-_:'- 1'-..;..,.,-::_'-1,_"'.:..i-::.t-::.-::.~:-=-~~:~~:-:;:.._1'--l.;_:,.:_-'.;..-_'-_-_--l~f-L.:~-"";_-_-1~--:~:-.i._-_;--l4-:-::.:-::.-::.-::.~-=--=--=-•~._~.:_l:,_1~ I I I; 0 I I i I "I I I 1 I I · 1'1 J Tl' I , , 1 1 1 , , r i li 1 1 , 1 1 1 1 1 1, 1 l_Lf I ii I 1111 11111 I I I 1.. •I 'ii I ii I I i '! i 111:1!;1 II t I I till it I I • ! I ' I I ii• I !I I I ' I 1 l I : t I i I I ' I 1.i i : i ! I I I I .~, 'YL..l.. i I I ; I I ; i i I I I I ,r- , i • , 1 I 1, , ~, i... y,. ··I , I , , 1 r I , • ·1,, , , 1, , ii I i! !!I I -. till •I Ii I I 11 !!II 1,11 ,~,,I! 1l.1-t-:--i-'.....:..-+--~--t-l;;:--~i.:..i-!--'-c-'-+-t---7-+-r-+~l-+-tt'-t-~-:--t-~1-+1._.;r-,-1-+-"--i-1+:~1-!-+-'~+-'ll-t--'--·..;1'-t-l-t-!1-+-l-~-"l'-l---~'-''--'-f--l-·-!1-'--!l-l--+i'_l~-+-~l~'r+-i-1 T l\ ~ I ! l i I ! :: -I I I 1 I l : ! ! ! ; ! , ! I I I Ii I D : i ! ! i I I I I' I,,' I i I , , I I I;. I I H-H I ! i •I ! I I ; 1 J 11 t 11! i 'I 11 111 · i 1 I I 111 111 I I : I I I I I I. I I I i l! i I I I 'I I! : I I ! i I I i I I ~LlJ;i-1rl--l_.l,_...1_.._t--~-r-~·•-~-'-+-'--'--'-+--'-+i-t-+1..._1-1--r--~1-+-l~+-i-+.,_~l•~i-r-,,-+->-+-t1--'--'~'H-+4-r;·-1-1-+~-'-1----'-_.._~_,._..;-1-·o.1-1-i..i'4!_.•~!~. i L. • l 'i Ii j ! 1; I lfli I! ·~ 1 ; i1 ~!I

.!...LI I I L -------i-----'--+---.-4-+--1·~·~~-l--"---+-.;-.,'-+-1_ _.._H~1-1-~·~l-+-l-+-"'"-'--IH-+-ll-+;'-"4i_,_,1 __+--~-+-.,.....:-+-i--+-~1.'-;_._,: L "".L.l-,'T" ·~ I t ! i I ' :ij_.__.._,_.~+--'---"1--"-...... _.._,_..___ ~. I _:LI: :~~-~ - ., ___ _,______,___~_ +.- - _1. __ J...LL-'-:+-~'.;;...'~' +ili.. i' -+--·-'--~~1..i.-1 ...::,....;..ll -++-,; ~- _-_. ~-- ~+.·, i.: r-,~=-.; :.·lL,-~, ~I:· 1 ,_._ _...... , ___~--+--+---r- . - IT' 1 • • 1 1 r r 1 -;- LLL...:T_u_ ~r-1 -~~1---- ·1 ' I ! J ...!_ I i I l I I I i l ! I : ' I I i I ~ f - ! i ; . - '-~ - '- ·~ : -! t-t---'---lf---'-·-+--,ft,~,++-t--++---+-H'-1....;..+-H,-'-..,.---+--"'"-'-+-'-+-i_.;..-+-.....;;_;_·_;.· - -j-r-t- . I : I I 1: I I . I ,__.,.-. - I r~ ,_+--_____,,__ _ _..__,. __ f!T+-~-'--l----+~H-+·+r-'-1 ·l-+-'--1 ---"---!---'-,~:-1-7"°~ -+-+- I I '--··,·_,_ic: _J._: _, 'TT! ~-, 1 ~ -8--~-~ • _Lf.i--+---+---+--~1~'-'i-4--'--'--lf----1 i-.- -+-f.-1-~--+--...:._~--'---+---'-'-+--..-.....'i-4 1-"-'rl+lH--i-t-'-\--; ;... I L ~+-----''---'-!-~-!-.:.' +-....:..~.:....•----'~~l--f.--+-----+---- f---.,--"-+-~ I ..u ! I ! ' .. 71 ! I ! ; I 21

1 .____, - __ ;..:._L ___- -- . ,_;___ 1 ~[El ~.'; ",----1'--"--·-!---t-- !-"-:--· -~. I ' --1 _--!,__±.-:.....-~ _ , . I . i~- --:- -':""·-·--~-~~-~: ___._ -- --- ._:__ t-- ~_:_~ ___: i~ i-----lf--~--•-·--'+--1 -~ L..____ ------~-! ----t----~ J--t---r------:- 1-+------ll---- -~-~~ -i- __ ,,__ __ _,. __ -, ---.- -·-1-----·-'- f---1~_+-_-__-_-_'""'1~---. -+-;-+µ.TJ ___ +- __ _j__;-' ,....!....:... ..__,__ ___._ ___ f--i -~--- =1. ! ' -'--.:~ ;-~-~ -~--~-- -:,. ____._ __ _, ___ ·_._1._·_ .... _,. ____, ____ ,,_~--,__.---_..---~·-'--•-'-- -=------=-.. -~~ ~ -- -~- i i t I ; _ _.__-1--'--H-+--.-,--If---~-+--'-·------·- l-'-~---1r-..,.: -r-1- ~ ,-,- 1--·----<1--+--+--•~--"--i----i--·-H·- ·H-+-,---lf--i----1--11--+-'--,-',--!----~+-4...;1--:.'4-' I : ; : ~~ -t-~·i

I- ----1 ----; ---l -- ' - -~-'.- ! . - t -- ! - ! . t··-- ---. -- - - -.--1' - ! r : -~ l -- . t --\-: --1 I. 1 - : -- r -1 ,.._--+·-..-----..;...1 ~--.. --:------1-,....J \ - f __ ! ' - ~~:....~"'"'."""=-~.;.,_~·..,c~-~•· +:....:..:..:...:...:.~~ I- ·-- - I ; -- . --- \ . i I ------~---- - ··j -1 -i 1

-! --- j : ,1 ! - ~ ! ! t------~Cl __. ______.______._ __ -+----'--·------'------'----'--- NO. LNR O!CJ-J·~25

, 1 , , 1 , . , , , , 1 1 1 , 1 .,.' -11-+-'rl-1-111_+--"11-1_1 1 1 1 , 1 , i o-;-.- . • •1 ii 111 '111 I ii I 1111-TT"'i'l'""TT!TT\Tj- ~ -1-,.1 ---i----1--1 -.-.11 -1------t-~i--,-~~1_,.1 -,1-t-+-·t-,-1 ~1 -H11 -+~1 -+1 ...:.---i...._..,;_..1 _._+-llTT""

-.-'.-~ ~~~.__;- I : '"j I I ; I I I : I I l I 11-,..,,-1--;!-1--·-~ ~~I ,ii :Tlr il1l :1 till 11 11 ii ,;1 11 1111 11 ii J....!.__!__L. ·· ' i I ----t--·--+--'·--l-+_-_...._-_+ _ _.~_+1-----""_1:1:.::~:.:.-,_r_•_ .. +-:__-_+1:_1,__~1::~::1:::1~-+! _.l_,...i -i1:.:-:.:.:.:.1:.:.1'=!,._._.ll-'-l_.:~i --'-'-'-1--~-+------1---'..,'_...-1-..._-'_'_+--.....,_._-+-__1__...... 1_..._.;...;l,__..l_+-rl-1-i1- 1_1-+l-1..._.l-+-'-'-'l--"-lt-..,__1._:...._:... •I I I Ii I I I: I I' i I I I Ii i I -,-,-t----+-+--1~1-'--t--;l-.;.-,-+--+_.._-i-f-.,-...... _--i>--~..-<-+j-,-l :.-:_-:_-_-:_-:_-..;:-:..-:..-:..-:_-_-:_-i,.,..._-:_-:_-:_-_-_+-l---_-t-1--'-.:::~;:::::1::.~::::_:-; :.:;::.:-::1 ::::•:.:-! ::.:-:::::::::::;:::::::;_o_...;I'-' ~ ----..---.----·Fi gurri~r 7~ ; ' ' -;-+-1, -+-t--'-!~-'-1 +-+, +-1...,--+----+-+-:-'-: ...:., +---! ----+-----Jf----·-~:-.---·-:-.~·~....,.:-:-+:-+-1-.~.-.-,-+-.,--,,--:-,+-,.....;1_;..!-:-+...... +--,-:-,-i-•,-1.~1-.-t-:--1-,...... 1-,-1 GC for Product~...... "'t"l\...... _.r'...,.....,-+-+- 1 +-1-;-1+...,...... ,--r-~-•...,;-:-'-,.--' ==r· ! j= I . : 1-':: 'I . . ' I i: :: ! I I '! .·-.-' -. 1 : · -i=-- .DBTJBu4 NOH ~,_;,;,.::a;....--}'.-,;,,; 1 ':"';"1 ~--:1:r-t::~1J+w,;;·;....;11·~-:-,_,,_-+_.,_:-~~;:;~1 -:1,_...:.-...,+--'~-1-ru°"'-:_,-..,.-11 .~;-1 I' -t--'-··-'L-+-·-·-...,.•-+-...._--1------+----+-c)~ ,_____;_: __. _____ .• •• I I : : : I I • • : ' ' : : 8_: : :.·~·~:.':.-',_-_-_-_...+---_--'---~: ...: ~:'::_:"::_"::_:_~1'::_.'-1_;_-'-1~,-1,_-_;"::_·::::'::_~·::1~-=.:-,-, +,-' ... :-+---' -:~;-+--:-:-i_,1,.... 1---'-+-~: . ; _,_! _ ___,11-'-!,__,._~_~:~1_,.1..,1-+-'-,.'-!-+-i-+-L....,.-';....+-'-'-'-'-+-11--+--1'1---1 ! I I I I I I ! i I I

I' : ~ i ' ,..._ .....,., •. IJ1I ... II' ' ,. ' I I I I ; l ' I I I i j I i I I ! I I I I ~ I I ! I I 1----,-,-+-..---"--'-t--r-c-l--,'-+-,,rl----+-~,-;.-·-,-~------+-1-.;.-1-1-,,-t-,,,-+-t-+-l'+,~,-1-...... -l-l,....,.j-+~l....,..l~+-i

I! '; I l i 11 111 ii u jl r--+,....;..;-+-'-'--+---'----l---'----l----+-+,-i-"--+--;-,-.t-.+-.-'--l,+-,-+-l-.;.,-,...... ;.-1-+i....;.._l_l-+----+-c:i""T"I

' : I ' I ! i I i l I II i i ' i I I I I I ' I I I I I t--1_,_l.+-l+-++-1-+-.'.:, I'.: t--"---+-,..--'-t-+l-+--!.,.'-,..-7t-.-~l;l-,.-+1_,•_,..f~l...,....+-1-t-"11-'l'-t-+l-t-+l-+-t-+-+-~+'·+-.....,._ll~l~+--il-~+--ill_I;--+1 Iii • I I I' I I I I ! I I I I I I I I I I I I I ! I I ! I I I I I ! I I II I I 1 I I I I 1 i i I i I II I i I I I I I I I I I i I I I 1 I '' 'I I• Iii' II I ! II 1111 1!11 :1 1t !Ill 111 I I I 1!11 1111 I , ! 1 I I I i I I I I I 1 II I I I I II I I I I ! I 1------i-.-i-'--t-----i--'.....,.l-+-_1;__ t-1_:_1_1-+-_ 1_1.....,.1_1+---.--i'+-1-+-'_.._1,.....,.-+-+-1--+-l...... +1-l-!_,.•-l-+-.Z:,. I! i I 1 I '·i ''.I i 111 ',, i I I' Ill II 1111 O!T ' I : ; I ! I · I ! I I i I I I 11 1 I 1 I I . ! L_• __: __!...i.j__'-+-~--1--'-'1--+-+-+----+-.._,-+:_:-+--~'.,.'---1--+-+'..,'.,..._+-+1_11-1-+-+-...... +'-+·+'-1- ..'-..'~1-"-''-++;,_.._,1-+ l,- .. 1' :. i '·~-+---1--'-'+'-...-+-....;..-~+-..----'-....,11-_1-+l+i--+-+-l--'1t---+-ii-+--ill-++-t-+-+-1-l1_,_! ...... ,...... 11--+-+-il-t-1-i-I •! ill! ii! Iii 11 111 111 'I ' ! I i 'i I I! : I I Ii I I I j I

~1·:.- ~._:-.. I~~~ --,-1,.-.-+----..,.._..L...... ;_l_:__,._1_1_•_·-+-.,.1·-+-,- ...... ,....,_.,....,:_,.-,-+,-:--:, ...... -1-;-+1:-,-1 ...... ::-:-1 ....

: ! ~ , , : 1 1 1 1 1 en : i --...... :.l-.-.+----"-f----t---.-l-+----1---1+,-+---'-,--+-,....,.-t'-;--+--'-,---:-l-+-+---il-+""'1...... ;..-1;....;.-+C>----r --T-:-T ..,-:-----1----~--+--'-'-->.--'-;·t-----+-....;..,+l-+,-+---'--+~-+---l1--,1--+,....._+-1--+1-:"'1-+..-,.....;-+-t-~l~I-~·~ . I: -'.-' -~----·--r-'--.,._,--r+---+---'--+-,-...,....1--f-.,--~.... +-i-.,.-i-t--!--,....+-i_,.-t-~,_,j,..-,.j--11-i-+l-J-il-t

-,-.-i ~---;-, ~:-~-'. I I I I j I I I I --.--,- -:-~ --.- ---,-,- I I : I I ; i;: --.- _..:__---;- ----~---i--r-'f--- +--'--+-·T-----!l....,-+-11--1...... +-+--+ ..._...... ~l-t----....,..+-~, -.1··~-· "":-; ~---;-~-~~- ! I It I! . __ ,. ___ __.__ ----+----+------+---~--·tt--+----+--+--t-----<...... -~-+ _:___~~-,:+----+---+-+-----i-+-'-.,.'-li-+--...... -l·--ff-+---l-+-'--~-_...... ,...+-1,....,....,.....,.----1-~11_•~1-I ' I 0\ , I ----+---+---+----+----1----+--,--t---tt-f-----+----+-----+C)~ --~------'--+--·---+---~--+----·-r--....---i--"...,-+

---.--'------t-~----•,·----+---+--'----+---+--i+-•--11-<-1-+----+----t----+------i --·--:------"+----+--~"-f-.,----t----+-----t----!Jt-;---!--t~..----+----t-...... ,...... -1

---- ~---...------.·+-----i----+------+,----t------,-,----·+ ~- --....-·+·-....--+---+----+

i-1::::'::_--+_. __ ;:...:..,...._-·_·_-:::+-_:_: -·-+-~::.··:::::;::::::·~======~====~,=~~::::::;:::::::.;::::::~-25-·= : ! I --+-....---1----l-~-.-+----+---ll'-+-....,-;"';-~--'--.,_J,-...--+-i-=-- t--~l-l-+:---:-TI ·---+----+----+---~-1----1-....-;~-+----,-.~i--+-r-;7 ...... ·1---.....-·1-;-1--t

!• I ! J ·-----i---,ij+----t-----1-----+--,--+----t---1t-i---1-·t----t-----t-.,_.,...__ ~

·-,.-.-: --~ . ; ~-1-----:-f--- ' -- t ' -- t:: ' ~ ' ~=n~==- ~~-:-. -- _._·::::::_~,_-__-:_·---_--+ ... _-_ .. ,,_ ..._---_-_- __...... ~~----· ____ .....:..._•_-!_, ----i---.....---+----+----.-----1-.;.---+---tt--+----1---- ..... ---~°'~ _:-_-_)!J'i =------. -----I I 0 ··--·! f - . --1 ---· --.- ---.-- - . -; 1- -- --r------··-· . • :, I '. O_ ·.· I l • .· "-.· 1·.· 1 I 1 I • ' ; I I 1 L:. L I I I I I -~Ir-' I 1 I , I . ; i. -lj_+-H' ! i I I I I 1 _!__Lj _L I : --'-'- ·I -·-·--_J±S ' · ' ___ !_l__.:,_~; f-RilliI I _ ~.lol=F- _ ~!._ ' • I I I 1 I I I I I -W-I I 1 1 1 • -~-L.1 : ;10 -~-;--.-·-:_ .. !_l--:_!_L. Ii I l 1 Ii I f _Till _I I: ! '. 1' I;-, !_I i_l I !f__Ll_LI 1 ; ! , ri-;- -,-,-,---1 J -·-·-·-'-· L___ ~_, __:_:_·_.-i. 11 i : ; I JI ! : I I 1 11.I ! 'I I: T-1-· 'I -t--T-;-~-;....--;-;-~---. ' : ; : • ' '. : ! : ~: ; • I • T GC for products_ ·of React; n'ih' :r.- +-r,- --.-, +~ i ! -- ~~-.-:--J ___ 7---. Ii i I - -, .!... -r--r- I I , • I I ' , r I ~_,....;;_;...+---'-.'--1-i...L;-:--i: 11 '. H;t. .. ~:)~~· NOA' :i'.~ l~~l!i~-4 ~LU~ : I I!_:__'.._~~· i 1--~~-1------1--'---·-'-i- ~I ~I '-:'"ft~ ,4 ' ' T"Tii I -~..,. 11 ;-0--:-:-:-·-1.:; 1-----+-0 1 i • ; ! , r -.~,-,-;- -, , , , , I ,1· ! ; • i -T i 1 1 1 : , l Ti

' -~- : . . : : : ;: -H-W- -~-i-+--7- I . . I I i I I I H+I I ' . . ; : ,. . ' : -·------______;_· _L -·-'--' 1_L_:._J._,__, I::, ;_J_ ·=t~'--;-'~1_1_~ j'-:-·'._!_...;.._, 0 _t =;;,,:., : __ • ~1 -' • -~_ c_:_1; ...,_., i I 1 ' .\'...... _._! i, • . -·. : . ·.. :. .1 . I rff-·-p=~II - _._.~~ _._:__ .. _.,__ :__ __:- ·' i I ; I I 1 I -- -- +-----T------~--·. ! _. ~ _..:__:_~; it t.-h '-~ I .. I . ~ ! I I I I . __:__:_'. ; ' ! : . : i I -- Ii j j i j ! I I;' ; : ! ~ I' ;-:- ~ --t-.:.__ _Jm•I: ·~·'L; I :1 ·r· !l'i '!Ii bb= ··!· ,;, ,, :· · =:=--:-~' ~=-'=t=t=': : : , .: : -+ tr+n_:: • 7:-;r--:::: =ti :=pf;:: ~:n t== . ,M • ·_ : :-~ : • : : . -_ r.. : ! 1 , 1 , 1 , !.....LLL 1 , , • : , , . , " 1 , . IV ~ [ i ! I'! Ii I I Ii I! :-~ I ; -+ : I0 • - I '. : : ' . :· : I : .,.-+' I ! ' I I I I i . I ' ' ,____ · ' : ; -:-_·_-I i r t I i ,1 : ; I 1 I t 1 • , • 1.• ' I L_!.J_j_ J.J--W- : : ! -:-:-r . 1 ; 1 , , • , _J~-, 1 , , , • I~8 , 1 ._- , , 1----~-'I--~-: "~~=q=f-, I ! ~-'- ~ ! ~ i : ~ H- I:!. : ; : : ---:-:-. ~µ ....:~ I ; : ' I : I. _L.l I ; 8-++1 ' l ! : ' I I : • ' ! I ! : I I I I i : I ~!.,___--+---'--.,--1µ.:-:'---, . :1' ! ~t. :ii· r;_ ;,---t-r,::. I '.·; ~-. -r-~.:·.: ~,l :. :.~ I I .JJ....LLt-LL..!- -.-.-,-- I ' 1--"~,.;...-+---""-'--I-' - : -+-+ I I i I I i I I ' ; 1---_.;.I-'--_~_. -I-;;--~- -; I !! 1 1 Ii! iii!- jl 1•1 ii -fl f-+ ~-...:...~~o~--::-i-:--:~-r-'-;-'~;-;'-t-t'-:--:-....~'·-t-~'~+-'~-';.-..:.t-r1+-t-:-:-'~'....:.-t-~....:..""'.'""+-'.....:....:....;,..jf-7'-:-11_~1-+-'~'~....!..'~--+-._.Jf....:...... _'~:-l-..:...~·~·--~-'J~_-~·j~J..:j'-1.~J--r.L' <--·-~'~'--t-"'-·~..,.-1-·-'-:-·-· l ! ' : I i : • ; 1' I ' I I " " ;I I I ' ' ' : : ' ' ' ' : ' I .l' : :1i;-r-r-;f1 I ii I 11 !1! I 11 ii 1lii -t-i . I-:--:~- I i I • I I I i I i I i ! ! ! I I 1 I ' ·.J. I: 'l ii I I~ I I I ! I! I ~- I I I I I i I : i'I iii ! I I! ' I ' i I I - I I l I I 1 1 i : , , ~ i ,' I· ill~ : : : : I : : : ! I : i : I ; : : : : ; : : 1 Gf;----;:: ~ I ! i i I : :: ~ : : : ! : ; i : ~ : I -1:: : I i 1 I ! -r:- : : : : I :: I I . I ' I! 1-n-t-.'! .,' I i I : I I I i I I I i I !Til'Tt 1----.. b. ' I ; I~ I : I ' I I ! ~~r-1 1 l Q ,--;- ++-c...... : ' ! I :±-++ : :: : : ;: : : ! i : : : : I I : -l-T- ++ L . : --"-.:...l._.._;,_L __J.....__• " i I i .Li.!....!... I I i I I I I ' ; L -- ; 1__ __i_! ' i. ill.: j ! I j i I l I j ! i I I 1 I i ~ l --i~ I I,. : 'I' ! I: i 11 I! I I ; I 11 l : l i ! 'I +t I . ' ----'~-- ! ' I: ffi_F'I -L. I : . I ' I I I I I : - I r:-~;= ~~.:.::~=-- : ' . Li -h I ! --W-i--L + ' ' ;: i I I --r~-1--'-~-~-H C'--- _ -~ --+- i ' i ~-.i-f. ~+ !.-J...j....µ_ -;~ I i~--;-t° I I 1 I i I j_}J_!._'::-~~ tt i---:..:....:.- - :.~...:. ____ l..!.....:... "'~ _ 1'. -l---4 \- __ u_:_1 _.._ ___ -:-. , !. • ; ' :T7 '-1....1 T 1-t-+-- .. , , L· -n· . . vi ' . 1 I • : I I 1 ! 1 : L : . • -11 ~ TT n~ ---:-r-r- ~I ~ ;- -l- r

1---~·9. . - . - '_L~.i, -:++' '+++ .L .-'.~ · • ' ., " " l+LJ < <> · " · " r--~ --~-~ -~--:---·t'--. -•-: ~. ++--~~ -:---+-~ : : 1 : _ -.-.-,- ;:-;r-~n--:- i 1 ''R·n:~:r-J.._ ~r: ~= }1- ,-----·· - ·-·---~-- -~--- ;-:---:-- -:--~h ~1-~- ··:ii--; : , ' '-+- _. _,_._? .J_J_ ~ ! ~ I I : J....!_L_~~-~.:_ _:f r----T----. r:--- --::- -;-:---t' -r-1t,-l-i-r--+;<--'.-:--- , i:; i.: :+' , .. ,. '.~, r

!. -'- l -- . .___: --1, -----1: _...:.__;=F-1.c. _.....,_,: ----'- ' - .' -, I ------F . ~--' ' I --~-+-- .. ~'----- ~·-·--- ~ ==-=- =· L- t--~- '--- - ~ !; I : ' I : ! _p:::-!...--: : ' : ~ -h-----: ---·- --' ·------;_ c=-.:_ ------+- !-~ ___ J ~-"- =++:=- ~= - I • ' -r--;-t· r-----'---·-;------,------• I g t' '~·' i': ' :' ' I ' • ' . ' - ' I : T -;~- - ~-- ....._ ___ ,__. ;_ 1·-- -1- --. t -·-- . -- - ~r-- -~:...-:-'""----t-:-~t~ 'j_ " " ·------·-~ -·------' ,__ -- J__._ ~ ' ·:' - ++ r-:-="----:= -::::.-:- ~ r::::.:,_~·,1 =~=--=t, ==!·==-,--- ~-=;,:_--~i_...:.._~ -=--...,.-j ' ' . . I i -"111 ~ ------'----·-- --- 1 I I ~-L--: , 1--r-- --- '------~ o,, 1·,,. 1 H . 1 , 1 1 , . · ;_,_~:1 'f' ·l-i-~ ±-'JT'.Jl' .l..l_,.J.. ._~:-1-l Ll-!-1---:-;~ I""· ____ ---~.. u...:_t_;_ o---1·-·-· Tt '' ,_ __ •. : ! t_:J I '-L- -LLH _ J_t __ u J..J I l ...... 1 ' : .. 1-Ll ~-- :_1 __ ,_:,.~-.Lei .. L H- o --µ. • L__ I ±i _L l:rr'-'-l •. ~,Lr '•LL-! ···--'-----Le_;_____ . T t . I I I ! . -;· 1 •I I ' . ' I ... ~ ::;,,.I ·1 :·H·:;·li_,.::™.:~ :n:.+=1-+-i;p·:+· __ ·:,L:l,··:-:,_. ::·l :-:- --:-·-----~ .. -----l_- .;. I; ti·• _ i 1-~l--t-,-1 11 t--n-~-,-L -t-f-tJ . t-r-- __;._i_,_ ·--J""7-: -'-~-!-j- ·---~---~- ---·T·~--, · -.· .,. , • -~: I • 1 •• --.-.-.-. ~ : • • , 1 , ~rt-rt;-.., - -L1:- !_ _.:_ . --r-- 11-t-:· -- ___!__ -~ ------1-r- -:--t=- :== Fiqure 28 -(a) ' r-=i-q:.i* . , 1 1 ~ 1 1 :- 1 F;~gµ,r~ 28 (b), --"+~!--::::= ~o · . , , . 1 · · ---:-r-: . ~v .. . . . , ,, , I I ! , , . ; . • . I I I . . , , • _ 1. . . +-- ., a , (;-~ f~r Pr~d:b_ri~sr~ Ff -rrn~!±~jj-f 7· ·rra:~-~c1 ~~-·~~~~~t~~ =--= -1-- .. .J...-----t---"-+----f--'-c.--,.-•i--·-·•7....!...:.. ·....:..-L..,, Tl w..+ _; • : I , ..L.. -- r-r1-1-~-L:-L. -·---'- ---- ___ 11--. _;_. --- ·-t--- ;- I . ! . ~ . l ! '. ! l I I ! ~ i i ! I ! I I I I . ! ' ~ I i ' • :

l -l-R-eaf--t-i-Gh DBT/-K.Ofltn---.BlfLf M8f=u.-!~m·JI : ' 1-~-C-l-~-tH~n.K tJ;

-4------t-.,-,--r----r---rT-..,...... ,.,...... ,.--r-,.,.-;1-r·Vl _ _..; ___...,.... ______--; ___ 1--'; -c-i--r-1 __ ,_1-1'-r-1' ,..-.., ~...,..1 ~ -,L ; i u..1· .Lrr-~r-r-t-1T·1:-t~i !1 I ! I I ! I ! ~ I:I : L[ : ~'._,_L-==: : -;"' : -~-• I -J L_,----- I 1 1 ··;-r- 1 _____ -o I I I I . .l.. I LL._ ; I I tl±' L .d+.L ~.-~.•.. -·-.--L ' ' S'--~ -4------t-.,.---r----:-r--~t-"'"''-1 -;-I ~·,...-...,...,.,....,1-r+-t-t--t-r-Tl-t- I i I 1: TrTT i I ' - ++· -+-J-Ll__:__:_: _·. --'-- ·--;-r- ' ! +----'--+-----l-''·-'-'-"1~.i--'--i-1-'--l-+-il--+-+-l-++-lf-i- + LL i• I l : : ! I , I I L +Rt:! i i ; ! : ' ~' I I I : ~ -4---.-+-.,....-+----+-'--'--1-+---+---'-'-;--H1--++-t-t--+-i-+-+- ,...i r 1 1 1 1 ·;-r-1 1 1 1 t:;... 1 . ' , , ' ..L.:.-~ __.!..l.. ______!.. -4----t---+----,..---r--'-,...'-'--ir--'--- 1 +-i1-1--.-t-t--;--,-'..,.• ~ I ' I: I I I ' i i I 'TTT1 . I i rm: . . ' ' . ; I • ; ' ! I I I i ' I ; I I I I I i I I I I i i I I ++H- _L_j ' ' I ' ' ' i . I : ! I i I I I I I I I . I ' I I I I ! I I i ++:t-+ i : ' i ~-'-J_I_ ~W-!.- -4----1---+----'-+-=-=-=-~~~+-_-.-"-, -i,·-'-t-T-',-r-'-,+-l-+1:~1-1-+-,f-+-+-H ..L ' I r- I I ' I ! • 111 ;_, -' 1_j_!_~-~-·-·- ~~:::::::::::::::~::::::::::::::::::: -+------t----1------+------+-~...... 1...... I IT ~ I I -:TlT i ilL Jl: I ..'._i...;_._ _i..l : : • ::.. ______, _. ____._, _,______1_1....,...1 ---- -r Tl . , ~r T 1 1 1 1 1 rr , . , · , , , 1 ' ·a-_ __,_.;.__ -o , : : , . : : : ' '+t +±t htt: : : : : ; : : : ~'tf- H-i+"'~ : : : 0 I i -+---+----t-~1_1-,...+----,-+--'-...... 1:--+--!-t-' _:-+---+-+·',._-r-'1-1--;--~1 .1- 11r . , 1 • 1 1 t i...w.+.- -L!J....l... _, · • · L-U.L __. ___....:....J.. _... ____, __,_,_+---~----+--'·-~~1-i....:..: I i I ! , 1: •: I I i I I · ..Ll.LL j_j__!...l..'..._;..~..:-•_· ~-:__• ..:....:...... -+----+---+----+----;..-"----+----t-'1,...;.._,_;-+1..,...... ,.,'"'1_ -r ~, r , 1 , 1 , 1 -rn , i ! i 1 , I , • ; , ! ! • : 1 -+-----t-.,...--,-+---·-1--~·-- : ._, ; ; ' ' ; I I I I I I i - I I l 1: I I I ' ' I I L .J..l.! l I i I I I I ; ' ' . . ' I ! . ! ' I 7 - I :.. ~·--·---2~=:1--!_j_r--h-rr1 nrr Lli t~ -4-~.-~-! .. L!1JJI"IITLTI::~=~ --=~~t~-- . ' I 1 · · ·1 1 , .• , ·- • - 11 ~ · •1 u···· .. , · •· · · ---·r . - -~-- ---~H-~-·--r- ...,...1.t-~ ·-' _1 L ;. -l- .:...L~.i.. i-t+· . .p ..W...:..- '----· ___ ..J..J. -----"--- +---~r--- --·-· l..:...;....:...._:.._;_._:...-+ :..w. +;..Lt f [1 ...' JlTT ..:.L ~J.. !... • ..:-1_ u+; ...ic. --~---- __ ;_, __ ~ 1 ! ' I • ! I 1 - f. ,I '. ~ : • : I I I ! i : ! : ' ' '. ' : ' ' : : :_g , · . · , , : · ' , 1 $g, : -+---+--·---<>----+--'-,...._r-+~:~_-: : --:.. 7· H-t+l+H+ +--tt ;.1 -~r+: -:...t+r_~H-H- -+1~c 1;-ty-;-;-:..-=:·4 == -··.. -- _,____ -- . .:. - :~- :_ __._,_ J-++L P=t1J= :rl .i... LI :rt :r, 111,'''.. ~~-P.-, ·m'H- 8, IL i....._._,; :. : _L.+- --~ r-1 ~- ·-·-:- 1 1 r-----+-----lf----+-----:-.....:....:+- ~-....:.... ~w... ~~.1 ~.:, , , , 1 r r _ _ __ T -.-,- ;t T. : . I I ! 11 I I ' ' ! : """Ii-:-~-- -- i ' ' ' I E= ._,. : ! i; I t+++"; ... ; ' _l · ~· · 1. ~W.I' .I-Rt'1 i -~ · ' ~' -+- = ~- ... ~· ~ ..:..~:...· I. I .. .!...!..-- t M- -;J~u-! ·:..+++=µ+t+ ,_ J-~~:;· --~C..-.~ -=._!.I =-~ :.. :- ~- 1. --~~--·-· ~ -L.!...L!_ 1-:r -t . . . +-H- . u..' Ti , .. , • • . • I C\ I i--,--- .:. .:._. -t--~ ..!-+~ ++-H- ri ..p:: ; th- =rt== ·+H :~ -~H~F ~~ -=---= ~:=:+ :~=- ---, +9--+--~=t . . . ,_.:_ !-+f- -H-~+ -+- . ,· --H-;- ~;...~-:- -~+ +:-4... ; .· ....:.· ~ Q ~. ·r---· -----! -·-- --~--- --, -~-'-;- .,-r,-1 I -1..~ __ .;. -'-..,.- -~..L..:...L ~+IL-~-·--I------__, , ~- ~ -t ---t--1----'--:------7 ~ C-7" ;-t-:-r ~t. -r- i l I ....Li-' ~LL l __~ " : ---- ' : ~ .

~=;:~i~t~~~~~ _-.;..r....·~_-:...:_; .... ++·~-~_=..:· ~-~-~--: ... -_~..:~--~-:=_--1•f--~..:'.-..:i_:_: =-=-1· _:"-LJ-~'"'.-'"'.~-~-+:_f_=_~_~_-_:+-t1 -_~_=_~_~_::_-r:---~-:~_~_-~_.L7"iT:~t~ 1;_9 -L--.i--t-- --!----~---- __ ~.___ ··"-. ;. ·-'-~- , . i' t ..... L c;: ___ L_ ___ _ lrr!-----t----r,: -=-lr-,-==·= :~~-~~r~ ·+ h fu -~~ n~-'.:-?=f f ~-~;:--:~:~t~-~h- =='=-~ t· t ' ' · ' I ' 1 •• j- -:;-· I I : ".Ii' ! i I · I Pi f--;-ti"T t · · I : : I - . ' 1w~-:t -1 r-s~D:-~~~ -~-~--- · H=~7 ~-.~~t:4~=-=~--j;= t r--::>--:- ----!--- i ------· , - :re-· '..!.:1 t·-··-r ...... _J ___ ._..:_ --~ ...... ~- ----·- - -- r---~ --- -- '.L;:-~----~_-_:.~,·-~~-== t... -_- -~-~-· :_],~. ~-~ _---~ f-_~_.-_:.~-.~-- · -_-_- -- :~- -~-.- ~ ~ -::=f:::d_ ~~--~1i__ ~:=::l. :==:.: t::::.: ~~ l:=:~ ~------· _____.__ ..._1 __-+-_·_.-_- ... -_:_:_-::_T_~_L~+-'._' _f_· L..- _,_: ...• j .. ~: ~ .. .Ll ,_.:.. >l l i------1 --· - . t - - : --- --f ---- j: --; .j. l - L. -:-- -·-- l- ! '.: . : : ! .. -· . i : 1-: I-: : I : i . :. l. l: . I ' .:.:_-..'.) · I frr · 1 1 1 1 !;:: _____ l c_ t · ... · · -1 - · · ·: · · · · i •· · -- l !LJ! I ~' . i.. W ..;..it..f;' ..... · __..._ _ _..1_. -.·~'------!-:--. · t - ...... ~~ I ·- -:-~ l . ; I . . '· I - . . . . . ·r=:::;::::;.:_:, .. :::i:::: ::·· L_·i_··- . I I I - i t :.. r - i I t- i -!O •· ... -".0 ! I I =I i c

;,.•_· ,·:~ '' ..;.5.A. CHART NO. V•R 'J1~.J :J25

: 11 I Figure 31. IR for Unknown Compound from Reaction DilT/NaOtt/Fe(C0}5/EtOtt

CH2Cl2 as nackground

P7~ PRODUCT tN C~2C~2 ,c42c~2 '~ O\C~cqo~~Dl 07/0\/04 Z010D140

(:2. .048)

( .::i. o.:i./)

191' lf) 1-- ---· -·· ··-~------·-·-···· ····-·---·-·· ··-.------·--- ·--···----f-·---·.. -----+-·---· .. ··--··-······-t--··------·-1--·-·"--·"-······--I z2ao.o 2 1 55. 9 21 1 1 • 1 2one. 7 2022.2 1977.B 1 g:aa. :a 1eaa. g 1844. 4 1000.0

WAVENUMB~R~

CHROMAT FRh.CT

orrn/\ TOR. OHR

ONE PULSE SEQUENCE

PULSE WIDTH = 6. 17 USE 30 DEG['{E ACQ. TIM[ o=i 8 19. 20 M:;E RECYCLE TIME = 1. 00 SE

NO. OF ACQS .:: 0 DATA STZE = 3 2'7 68 Llt~E RROADNG = .00 HZ SPIN R/\TE 19 RPS

OBSERVE: FREQUENCY= 75.607819 Mf SPEC WIDTH= 20000 HZ GAIN = 78 ,. 1

DECOUPLER: STANDARD-64 MOD0L1 FREQUENCY= 3.995 PPM PO\IER = 3000/ 3000 HIGH POv.fR Ot~ HIGH P0\1£R OUTPUT = 60 DB

PLOT SCALE: RGC). 07 HZ/CM 11. 4D45 rPMICM Fr\OM 2~ I. '.lO TO -?. . SG rPM ~W1MIJ!~t t~~(~ 1~1;,::1:i~~,i~~~~~~~~~·~1l/~-~:~l~1~~~1t~~l~~1t,~i~~~l~i1t~~J~11~~~~~,~~(i~;f~ I · 1 - , I --,--,--,-,1-.-1-1-ir-r-r- r-1r-·r-1-r-1

1 r 1 ' \ I \ I~ n n I' f' I'~ Figure 33. IR of Fe(C0)5 in CH2C12 (CH2C12 as background)

Pl" d TRnN P~NTAC~qon~(- TN CH2C-Z ~cHac~2 ~s a~c~CRD~N~l 07/02/Ql 1~140134 0 ~1------' I mll ~· II) - m I I I

"(' ('- f

UI u 0 ...z m f... I- " j ..... "f "In I ~ I <(' tr I- I t ~ In a l\J I Iii J " ! I \ \ \1 d (:1. 02/) I i Ill (199'-I) l'l Ill •I ~ .... ··- -·-··--t- ...... -- ... l •··-· f --+- ·-· ·-· 1-- . . ~ .. I .

.'>//(,' CE NMR QE-300 DHBSW. 7 1F 09JUL91 FE COS orrnATOl1: DHB ONE PULSE SEQUENCE

PULSE WIDTH = 6. 17 us 30 DEGl1 ACQ. TIME = 819. t.>O MS RE CYCLE TIME = 1. 00 s NO. OF ACQS. - 0 DATA SIZE = 32768 L1NE BROADNG = 3.00 HZ SPIN RATE = 23 RPS OBSERVE: ~REQUENCY = 75.607819 M SPEC WlPTH= 20000 HZ GAIN = 44 * 1 DECOUPLER: STANDARD-64 MODUL FREQUENCY= 3_qq5 PPM PO'M::l1 ~ 3000/ 3000 HIGH POYvER ON HIGH POYvER OUTPUT = 60 DB PLOT SCALE: 81ti.36 HZ/CM 11. 06 11:1 PPM/CM FROM 221.02 TO -. 19 PPM

Nl'lfMiW·f~--~

f' n ~ ~ ----~- ..... , IN '

i -

. -- -~' - ·-----·1-

,------t------!_:_--- -1 - r---·· --- ·: + !------.' -- .. ~-=-==r=------+------1 ------~ ---______- -- i------t----==+----t--=--=--it::__::-_ -- -; - --::_: :- - 1 .. ---t < ::l= ~ x: _:_-_r:: ___ - - - -- 0 ...... z LJ C"'i -LJ c:: ·r-1 ------4--·____ _- . ----·------.--~·

i------· r - --- . - ----~ -

I +----' > - _] I ----I

El==t====s===E--~=±-----j~---t-~ ~- .. I

-> =-l==-+--===t=------1·---f =:~-~-~~ N I I 0 .j.l -0 r---=:-_- r-- l -- --

I -1- . --j------j ------l - - -_1-: -: ~ - ----1- --- ·\:J Figure 36. Cyc1ic Vo1tammetry of Sa in CH3CN/O.l M TBAH, Pt,Pt,SSCE

( 0 to -2 V )

t . ~. I I I 1 j I I I 11 I I I' !' I ' I i I i • : ' ' i I ' ' I ! I i I I I 1 111 l'I : I I - I I I I ! I . . ' I i : ' :I .. I., I .. I I I 11 1' I 11 I ---·- I I '11'1 ,111'! I I . ' . I I I ! I I I '11'1~I .. ' IlL~ 'I~ I I I I I i

I 111 I ' . ' I ! I 11 I 11 I I I I 1 1 ' 1 • I i · · · ' I :™I -~~rr 1 ! l-H-;'\ ! -1 11 11 ! i .. :J111 _+_ I I i 1-v '·::. i -l-i'-l---·-'--~+--t--l--r1 -- 1 ! i 1 I 11 , ~: 11,11 1 , ,,i :,IJ_ni ... I 1 I I I I I 1 f'K-_ I '' .. ''''' i I I ! ' I ' I ! I i I I 1 • ' I i ; I ' ! 11 --: - .•. 11 I i ; ~-'-LJ.J.-(-ITT i I 1 I i i ! 1 1 11 1 ' ii l i 1I1 · -1 ! ·1 ! ! i Jli '1 I 1 I I 1 I I 11 ! t j~~~l~,4+1-,· 1 I 111b:J11 I I I 1_ ~i_j I I : I I I.I I I I ' I l,)--' I I I I ~ i(S' I J I I I ' . ' 1:;1iii mrl·1, I , >-~./ , I 11I t.J;'""' Il 111,I 1 :,1,!I I,,,,; •,I: '11 I I I•'il''··I . ·- -'--!-'- ' I I ' I I i I "'"' I I I i I ' 1 " I ' . " I 1 1 I I! I! I:! 11 ! II Ii,. ~, :I!i 4 1I UJ..1'I I ~Lt1 I _I __ I L_', ___ t' L ! IJ,t ~+ii .. +: 11 ~it~ _:-:_'._I I I I ' l I J i ·- - j- ·- - . k""I ' I I ' t I I I I ' I I I I I I I I • I ' I • ' • I ; L ; 1 :-1 ,- - >--- _.,, --1 1 ,-- :.. ' I T1- - +- I I I ! I I I 'I 1 1 I I I I : ! : i ! i : ; i " : ~:t! 1':1 ·' ''+rtl111'1 I I 111'1 I - I I ! 11 l!if 111 1::1 .;,,11- 11 I 1,.1, I 1'1 ·111 i:il 1!1, I I - I'; 'llilIt!':;;; i!l1 '"' I __; __ ;L _[' cl-. I -+ _,+ I ' ' I i I I i I i I I I I ! ; " : ' ! ' I ; 1 1 1 • : 1: 1 ,111 ·111 1 11 :111 .:·) l tm,, ,!,, __ ,,!!ii,, '1·:µ1[:1 I I I I I I rm,,,I I I ~, I ITT' I i I I + ' -'---'-t--i-· --·-,...... ,-1- I . . ' . i . I ' 'I I j . • . ! I I i I l ' . --r-r ·:- - I ' I . ! . I I ! ; ' I • • ; :I i .' I . . :' I I - I.__ -- --i.T.' .f . ' - -+' ·- I I' I; ;I I ' •' I ' '; .I I i. I ..t • 1 1 1 1 1!. ., .. t 1! . :, )Ji! .. ··'.Tl - 11-f --/1.ft i l) IJ!f1 fj,f 1 I - 1ffi 1 u!i i!!! i1l;1:·•: : I ' ·,. ; '1 I I ' . I I TiI I • ' I : I . - . 11 ' WJ i i I I I I ; I 1 I ·1 Ii ' I. ' II I I : I i . I I ' I • 1 . . I I ! ' ; I L1.....LL11 __ ::_ :.-LL.'-' ! I ._L...,..l_j__L.I ... ·-· ---·--·~---· - .. ·-~'------'--.. -