New Reagents and Reactions for Desulfurization of Coal Shan Wang This Research Is a Product of the Graduate Program in Chemistry at Eastern Illinois University

Total Page:16

File Type:pdf, Size:1020Kb

New Reagents and Reactions for Desulfurization of Coal Shan Wang This Research Is a Product of the Graduate Program in Chemistry at Eastern Illinois University Eastern Illinois University The Keep Masters Theses Student Theses & Publications 1992 New Reagents and Reactions for Desulfurization of Coal Shan Wang This research is a product of the graduate program in Chemistry at Eastern Illinois University. Find out more about the program. Recommended Citation Wang, Shan, "New Reagents and Reactions for Desulfurization of Coal" (1992). Masters Theses. 2143. https://thekeep.eiu.edu/theses/2143 This is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact [email protected]. New Reagents and Reactions for Desulfurization of Coal (TITLE) BY Shan Wang THESIS SUBMITIED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF ~­ Master of Science in Chemistry- IN THE GRADUATE SCHOOL, EASTERN ILLINOIS UNIVERSITY CHARLESTON, ILLINOIS 1992 YEAR I HEREBY RECOMMEND THIS THESIS BE ACCEPTED AS FULFILLING THIS PART OF THE GRADUATE DECREE CITED ABOVE DATE .w~-- - DATE ~~~i·~~:::~··~~~.·~·~~~·~~.:..;~~~1<';,.o:,,..~,~_,-,,·1-ii.~~"~:,:fiJl.·•::~;7;i,:.Z:;c·i~:;· I ' , NEW REAGENTS AND REACTIONS FOR ~ESULFURIZATION OF COAL Thesis Approved by: )ate ··~ ... Dr. T. H. Black Date Thesis Title: "New Reagents and Reactions for Desulfurization of Coal" Author: Shan Wang Thesis directed by: Dr. David H. Buchanan Abstract Searching for new reagents and reactions for pre-combustion desulfurization of coal was the goal of this work. In this study, modifications of mild desulfurization reactions, which were found to work with organosulfur model compounds, have been investigated systemetically for improvements in sulfur removal and reduction of reagent cost. The screening of reagents and new reactions utilized substituted thiophenes plus aryl sulfides as the initial models for organosulfur compounds in coal. Tetrahydrofuran extracts of Illinois Basin Coals were also used as second generation targets for desulfurization reac­ tions. Dibenzothiophene was converted to biphenyl using potassium metal/tetrahydrofuran without the addition of electron transfer agents. Similar desulfurization reactions of tetrahydrofuran extracts of Illinois Basin coals gave up to an 82.8% reduction in organo­ sulfur content. A soluble chlorovinyl nickel complex added to the reaction increased the desulfurization to 85.6%. Attempts to produce active desulfurization reagents from iron pentacarbonyl with reduc­ 1 ing agents in alcohol solvents (conditions for the production of [H-Fe(C0)4r ) did not lead to useful desulfurization of dibenzothiophene, benzothiophene or benzyl sulfide. Tetrabutylammonium hydroxide in aprotic solvents is known to react with elemental sulfur to produce trisulfide anion radical by the single electron transfer pathway. Reac­ tion of tetrabutylammonium hydroxide with dibenzothiophene in aprotic solvents led to large amounts of unreacted starting material and gave no evidence of hydrocarbon products. Desulfurized products bibenzyl, biphenyl, and 2-phenyl phenol were produced by reac­ tion of benzyl phenyl sulfide using potassium hydroxide/n-butyl lithium/18-crown-6 in dimethyl sulfoxide. No desulfurization of dibenzothiophene was observed using the same reaction system. Acknowledgement I would like to thank my advisor Dr. David H. Buchanan for his great patience and help during this work. Also I would like to thank those who gave me supports in many respects during my staying at Eastern Illinois University. List of Tables Table 1. Desulfurization of coal THF soluble fractions Table 2. Desulfurization of organosulfur model compounds using iron pentacarbonyl Table 3. Desulfurization of dibenzothiophene using tetrabutylammonium hydroxide List of Figures Figure 1. 1H NMR of NiCl(CCl=CC12)(PP~)2 31 Figure 2. P NMR of NiCl(CCl=CC12)(PPh3) 2 Figure 3. FT-IR of NiCl(CCl=CC12)(PPh3) 2 Figure 4. HPLC of reaction products of DBT/K!TI:IF/Naph. Figure 5. HPLC of reaction products of DBT/K!TI:IF Figure 6. FT-IR of Coal-105 THF Extracts Figure 7. FT-IR of reaction products of Coal-105/K!TI:IF Figure 8. FT-IR of reaction products of Coal-105/K!TI:IF/NiCl(CCl=CC1z)(PPh3) 2 Figure 9. FT-IR of Coal-106 THF Extracts Figure 10. FT-IR of reaction products of Coal-106/K!TI:IF/NiCl(CCl=CC1z)(PPh3) 2 Figure 11. FT-IR of Coal-108 THF Extracts Figure 12. FT-IR of reaction products of Coal-108/K!TI:IF/NiCl(CCl=CC1z)(PPh3)2 Figure 13. HPLC of reaction products of DBT/NaBHJFe(CO)/BuOH Figure 14. HPLC of reaction products of DBT/NaOH/Fe(CO)/BuOH Figure 15. HPLC of reaction products of DBT/NaOH/Fe(CO)/BuOH Figure 16. HPLC of reaction products of DBT/NaBH/Fe(CO)/EtOH Figure 17. HPLC of reaction products of DBT/NaBH/Fe(CO)/EtOH Figure 18. HPLC of reaction products of DBT/NaOH/Fe(CO)/EtOH Figure 19. HPLC of reaction products of BT/NaOH/Fe(CO)/BuOH Figure 20. HPLC of reaction products of BS/NaOH/Fe(CO)/BuOH Figure 21. UVNIS of reaction products of Sg1Bu4NOH/CH3CN Figure 22. UVNIS of reaction products of Sg1Bu4NOH/DMSO Figure 23. GC of reaction products of DBT/Bu4NOH/DMSO Figure 24. GC of reaction products of DBT/Bu4NOH/CH3CN Figure 26. GC of reaction products of DBT/Bu4NOH in H20ffoluene Figure 27. GC of reaction products of DBT/Bu4NOH in MeOHffoluene Figure 28. GC of reaction products of DBT/KOH/n-BuLi/18-crown-6/foluene Figure 29. GC of reaction products of BPS/KOH/n-BuLi/18-crown-6/DMSO Figure 30. GC of reaction products of DBT/KOH/n-BuLi/18-crown-6/DMSO Figure 31. FT-IR of unknown compound from reaction DBT/NaOH/Fe(CO)/EtOH Figure 32. Be NMR of unknown compound from reaction DBT/NaOH/Fe(CO)/ EtOH Figure 33. FT-IR of iron pentacarbonyl in CH2Cl2 Figure 34. Be NMR of iron pentacarbonyl Figure 35. Cyclic voltammetry of DBT Figure 36. Cyclic voltammetry of elemental sulfur Table of Content Abstract Table of Content List of Tables List of Figures Chapter I. Introduction and Background - - - - - - - - - - - - - - - - - 1 Chapter II. Experimental --------------------------- 15 Chapter III. Results and Discussion -------------------- 30 Chapter IV. Conclusion ----------------------------- 46 Reference -------------------------------------- 48 Appendix. Tables and Figures Chapter I Introduction and Background The United States has about a third of the world coal reserve that can be utilized for several hundred years, in contrast with the petroleum resources in the U.S. It can be expected that the future will see the increasing use of coal as a substitute for oil as fuel supply. However, this shift from oil to coal is hampered by the high sulfur contents in the coal. According to current and pending U.S. Federal regulations, the burning of high­ sulfur coal will require either pre-combustion removal of up to 90% of the sulfur in the coal or the use of post-combustion stack gas scrubbing. Since the latter choice is both difficult and expensive, a major breakthrough in cleaning of high-sulfur coal mainly depends on the pre-combustion desulfurization. Sulfur forms in coals are scientifically classified into: (1) pyritic sulfur, (2) sulfatic sulfur, and (3) organic sulfur. However, as the names imply, an understanding of sulfur compo­ sition in coal, especially at the molecular level, has not yet been achieved. The procedure for determination of the sulfur content in coal is according to ASTM D-2492. 1 Through the research of previous workers, great success has been achieved in the removal of mineral forms of sulfur (mainly pyrite) from coal. For instance, various mechanical methods for coal cleaning now in use or near commercialization are able to remove 80% or more of the mineral sulfur from coai.2-4 However, mineral forms of 1 sulfur often constitute only half of all sulfur present.5•6 So, in order to achieve the neces­ sary degree of cleaning of coal, pre-combustion desulfurization must remove both miner­ al and organic forms of sulfur. Unfortunately, because of the lack of a chemical strategy for the selective cleavage of the carbon-sulfur bond in the matrix of coal, the removal of organic sulfur from coal for the purpose of pre-combustion desulfurization still remains a very serious challenge. Unlike the mineral forms of sulfur in coal, organic sulfur, which is chemically bonded to the matrix of the coal, can not be removed from coal by simple physical cleaning or solvent extraction.7 In earlier work at Eastern Illinois University,7 simple solvent extrac­ tion methods were shown to be unable to selectively remove the organic content of sulfur from coal. Through research on perchloroethylene extraction of coal, it was shown that pyrite, not organosulfur compounds, is the source of the S0 extracted by perchloroethyl­ ene. And, within experimental error, almost no organic sulfur was removed by perchloro­ ethylene extraction.7 Therefore, selective chemical reactions will be necessary for pre­ combustion desulfurization. Various methods have been investigated for the removal of the organic sulfur from coal. A very severe desulfurization process involves molten caustic leaching of coal. 8 In the first step, the coal is leached with molten sodium hydroxide or sodium hydroxide-potas­ sium hydroxide mixtures at 370-390°C for several hours. During this process, most minerals in the coal are converted to soluble alkali-metal salts and the sulfur-containing 2 organic components of coal are converted to soluble sulfides.9 After leaching, the caus­ tic-treated coal is washed with water, dilute acid, and then again with water to remove the soluble sulfides. There is a 90% reduction in the sulfur content. 8 Another chemical method for desulfurization exploits the chlorinolysis of coal. 10 The coal is mixed with carbon tetrachloride and water and is heated at 65-70°C in the presence of dichlorine. The chlorinated coal is hydrolyzed at 70-80°C for 2 hours and then dechlorinated at 350- 4000C in the presence of steam.
Recommended publications
  • 68 3 1 5"! Patent Request: Standard Patent/Patent of Addition
    Λ _ ___ _ KWU/lXHJIMI AUSTRALIA Patents Act 1990 68 3 1 5"! PATENT REQUEST: STANDARD PATENT/PATENT OF ADDITION We, being the persons identified below as the Applicant, request the grant of a patent to the person identified below as the Nominated Person, for an invention described in the accompanying standard complete specification. ,· Full application details follow. [71] Applicant: ADIR ET COMPAGNIE Address: 1 RUE cXrLE HEBERT, F-92415 COURBEVOIE CEDEX, FRANCE [70] Nominated Person: ADIR ET COMPAGNIE Address: 1 RUE CARLE HEBERT, F-92415 COURBEVOIE CEDEX, FRANCE [54] Invent»·* Title: NOVEL N-PYRIDYL CARBOXAMIDES AND DERIVATIVES, PROCESSES FOR THEIR PREPARATION AND THE PHARMACEUTICAL COMPOSITIONS WHICH CONTAIN THEM Name(s) of actual inventor(s): JEAN-MICHEL ROBERT, ODILE RIDEAU, SYLVIE ROBERT-PIESSARD, JACQUELINE COURANT, GUILLAUME LE BAUT, DANIEL-HENRI CAIGNARD, PIERRE RENARD and GERARD ADAM Address for service in Australia: c/o WATERMARK PATENT & TRADEMARK ATTORNEYS, of 290 Burwood Road, Hawthorn, Victoria 3122, Australia Attorney Code: WM :,.··. BASIC CONVENTION APPLICATION(S) DETAILS .... [31] Application Number [33] Country Country [32] Date of Application : Code 9406412 FRANCE FR 27 MAY 1994 Basic Applicants): ADIR ET COMPAGNIE • · · · • · · *· Di awing number recommended to accompany the abstract ............................... By our Patent Attorneys, WATERMARK PATENT & TRADEMARK ATTORNEYS ...CM&/.VV2...... ....... DATED this 25th day of May 1995,. Carolyn J, Harris Registered Patent Attorney i P/00/008b 12/11/91 Section 29 (η Regulation 3.1 (2) AUSTRALIA Patents Act 1990 NOTICE OF ENTITLEMENT We, ADIR ET COMPAGNIE of, 1 Rue Carle Hebert, F-92415 Courbevoie Cedex, France, being the applicant in respect of Application No.
    [Show full text]
  • TRU President Alan Shaver, List of Publications
    Alan Shaver President and Vice-Chancellor of Thompson Rivers University PUBLICATIONS 127. A. Shaver, B. El-Mouatassim, F. Mortini and F. Belanger-Gariepy, “The Reactions of η5- 5 C5Me5Ir(PMe3)(SH)2 and η -C5Me5Ir(PMe3)(SH)(H) with Thionylaniline (PhNSO) to give Novel S3O and S2O-Iridium complexes” Organometallics 26, 4229-4233 (2007) 126. A.Z. Rys, A.-M. Lebuis, A. Shaver and D.N. Harpp, “Rearrangement of Molybdocene tetraoxide + Cp2MoS4O4 to Give (Cp2MoS2H)2 : A Novel Hydrogen-bond Stabilized Molybdocene Disulfide Dimer”, Inorg. Chem. 45, 341-344 (2006) 124. I. Kovacs, F. Belanger-Gariepy and A. Shaver, “Synthesis and Characterization of the First Mononuclear Iron Silanethiolate Complexes Containing an Unsupported Fe-S-Si Bond System. X-Ray Crystal Structure of CpFe(CO)2SSiPh3 and Its Reaction with SO2”, Inorg. Chem.42, 2988-2991 (2003). 123. Y. Song, I.S. Butler and A. Shaver, “High Pressure Vibrational Study of the Catalyst Candidate cis- dimercaptobis(triphenylphosphine)platinum(II), cis-[(Ph3P)2Pt(SH)2]”, Spectrochimica Acta A 58, 2581- 2587 (2002). 122. A.Z. Rys, A.-M. Lebuis, A. Shaver and D.N. Harpp, “Insertion of SO2 into the S-S Bond of Cp2MoS2 and Cp2MoS2O to give Molybdocene Dithiosulfates and Bis(O-alkylthiosulfate), Respectively”, Inorg. Chem. 41, 3653-3655 (2002). 121. B. El-Mouatassim, C. Pearson and A. Shaver, “Modeling Claus-like Chemistry: The Preparation of Cp*Ir(PMe3)S4 from Cp*Ir(PMe3)(SH)2 and SO2”, Inorg. Chem. 40, 5290-5291 (2001).. 120. A. Shaver, M. El-khateeb and A.-M. Lebuis, “Insertion Reactions of (PPh3)2Pt(SR)2 with CS2, where R = H, CMe3, CHMe3, 4-C6H4Me; the Structure of (PPh3)Pt(S-4-C6H4Me)(S2CS-4-C6H4Me)”, Inorg.
    [Show full text]
  • Sodium Borohydride (Nabh4) Itself Is a Relatively Mild Reducing Agent
    1770 Vol. 35 (1987) Chem. Pharm. Bull. _35( 5 )1770-1776(1987). Reactions of Sodium Borohydride. IV.1) Reduction of Aromatic Sulfonyl Chlorides with Sodium Borohydride ATSUKO NOSE and TADAHIRO KUDO* Daiichi College of Pharmaceutical Sciences, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815, Japan (Received September 12, 1986) Aromatic sulfonyl chlorides were reduced with sodium borohydride in tetrahydrofuran at 0•Ž to the corresponding sulfinic acids in good yields. Further reduction proceeded when the reaction was carried out under reflux in tetrahydrofuran to give disulfide and thiophenol derivatives via sulfinic acid. Furthermore, sulfonamides were reduced with sodium borohydride by heating directly to give sulfide, disulfide and thiophenol derivatives, and diphenyl sulfone was reduced under similar conditions to give thiophenol and biphenyl. Keywords reduction; sodium borohydride; aromatic sulfonyl chloride; sulfonamide; sulfone; aromatic sulfinic acid; disulfide; sulfide; thiophenol Sodium borohydride (NaBH4) itself is a relatively mild reducing agent which is extensively used for the selective reduction of the carbonyl group of ketone, aldehyde and (carboxylic) acid halide derivatives. In the previous papers, we reported that NaBI-14 can reduce some functional groups, such as carboxylic anhydrides,2) carboxylic acids3) and nitro compounds.1) As a continuation of these studies, in the present paper, we wish to report the reduction of aromatic sulfonyl chlorides, sulfinic acids and sulfonamides with NaBH4. Many methods have been reported for the reduction of sulfonyl chlorides to sulfinic acids, such as the use of sodium sulfite,4a-d) zinc,5) electrolytic reduction,6) catalytic reduction,7) magnesium,8) sodium amalgam,9) sodium hydrogen sulfite,10) stannous chlo- TABLE I.
    [Show full text]
  • Rising Importance of Organosulfur Species for Aerosol Properties and Future 2 Air Quality
    1 Rising Importance of Organosulfur Species for Aerosol Properties and Future 2 Air Quality 3 M. Riva1,#,¥,*, Y. Chen1,¥, Y. Zhang1,2, Z. Lei3, N. E. Olson4, H. C. Boyer Chelmo5, S. Narayan5, 4 L. D. Yee6, H. S. Green1,‡, T. Cui1, Z. Zhang1, K. Baumann7, M. Fort7, E. Edgerton7, S. H. 5 Budisulistiorini1,†, C. A. Rose1, I. O. Ribeiro8, R. L. e Oliveira8, E. O. dos Santos9, C. M. D. 6 Machado9, S. Szopa10, Y. Zhao11,§, E. G. Alves12, S. S. de Sá13, W. Hu14, E. M. Knipping15, S. L. 7 Shaw16, S. Duvoisin Junior8, R. A. F. de Souza8, B.B. Palm,14 J. L. Jimenez14, M. Glasius17, A. 8 H. Goldstein6, H. O. T. Pye1,18, A. Gold1, B. J. Turpin1, W. Vizuete1, S. T. Martin13,19, J. A. 10 5 3,4* 1* 9 Thornton , C. S. Dutcher , A. P. Ault , and J. D. Surratt 10 Affiliations: 11 1 Department of Environmental Sciences and Engineering, Gillings School of Global Public 12 Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. 13 2 Aerodyne Research Inc., Billerica, MA, USA. 14 3 Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA. 15 4 Department of Chemistry, University of Michigan, Ann Arbor, MI, USA. 16 5 Department of Mechanical Engineering, University of Minnesota-Twin Cities, Minneapolis, 17 MN, USA. 18 6 Department of Environmental Science, Policy, and Management, University of California, 19 Berkeley, CA, USA. 20 7 Atmospheric Research & Analysis, Inc., Cary, NC, USA. 21 8 Escola Superior de Tecnologia, Universidade do Estado do Amazonas, Manaus, Amazonas, 22 Brasil.
    [Show full text]
  • Risto Laitinen/August 4, 2016 International Union of Pure and Applied Chemistry Division VIII Chemical Nomenclature and Structur
    Approved Minutes, Busan 2015 Risto Laitinen/August 4, 2016 International Union of Pure and Applied Chemistry Division VIII Chemical Nomenclature and Structure Representation Approved Minutes of Division Committee Meeting in Busan, Korea, 8–9 August, 2015 1. Welcome, introductory remarks and housekeeping announcements Karl-Heinz Hellwich (KHH) welcomed everybody to the meeting, extending a special welcome to those who were attending the Division Committee meeting for the first time. He described house rules and arrangements during the meeting. KHH also regretfully reported that it has come to his attention that since the Bangor meeting in August 2014, Prof. Derek Horton (Member, Division VIII task groups on Carbohydrate and Flavonoids nomenclature; Associate Member, IUBMB-IUPAC Joint Commission on Biochemical Nomenclature) and Dr. Libuse Goebels, Member of the former Commission on Nomenclature of Organic Chemistry) have passed away. The meeting attendees paid a tribute to their memory by a moment of silence. 2. Attendance and apologies Present: Karl-Heinz Hellwich (president, KHH) , Risto Laitinen (acting secretary, RSL), Richard Hartshorn (past-president, RMH), Michael Beckett (MAB), Alan Hutton (ATH), Gerry P. Moss (GPM), Michelle Rogers (MMR), Jiří Vohlídal (JV), Andrey Yerin (AY) Observers: Leah McEwen (part time, chair of proposed project, LME), Elisabeth Mansfield (task group chair, EM), Johan Scheers (young observer, day 1; JS), Prof. Kazuyuki Tatsumi (past- president of the union, part of day 2) Apologies: Ture Damhus (secretary, TD), Vefa Ahsen, Kirill Degtyarenko, Gernot Eller, Mohammed Abul Hashem, Phil Hodge (PH), Todd Lowary, József Nagy, Ebbe Nordlander (EN), Amélia Pilar Rauter (APR), Hinnerk Rey (HR), John Todd, Lidija Varga-Defterdarović.
    [Show full text]
  • Synthetic Turf Scientific Advisory Panel Meeting Materials
    California Environmental Protection Agency Office of Environmental Health Hazard Assessment Synthetic Turf Study Synthetic Turf Scientific Advisory Panel Meeting May 31, 2019 MEETING MATERIALS THIS PAGE LEFT BLANK INTENTIONALLY Office of Environmental Health Hazard Assessment California Environmental Protection Agency Agenda Synthetic Turf Scientific Advisory Panel Meeting May 31, 2019, 9:30 a.m. – 4:00 p.m. 1001 I Street, CalEPA Headquarters Building, Sacramento Byron Sher Auditorium The agenda for this meeting is given below. The order of items on the agenda is provided for general reference only. The order in which items are taken up by the Panel is subject to change. 1. Welcome and Opening Remarks 2. Synthetic Turf and Playground Studies Overview 4. Synthetic Turf Field Exposure Model Exposure Equations Exposure Parameters 3. Non-Targeted Chemical Analysis Volatile Organics on Synthetic Turf Fields Non-Polar Organics Constituents in Crumb Rubber Polar Organic Constituents in Crumb Rubber 5. Public Comments: For members of the public attending in-person: Comments will be limited to three minutes per commenter. For members of the public attending via the internet: Comments may be sent via email to [email protected]. Email comments will be read aloud, up to three minutes each, by staff of OEHHA during the public comment period, as time allows. 6. Further Panel Discussion and Closing Remarks 7. Wrap Up and Adjournment Agenda Synthetic Turf Advisory Panel Meeting May 31, 2019 THIS PAGE LEFT BLANK INTENTIONALLY Office of Environmental Health Hazard Assessment California Environmental Protection Agency DRAFT for Discussion at May 2019 SAP Meeting. Table of Contents Synthetic Turf and Playground Studies Overview May 2019 Update .....
    [Show full text]
  • 1 Abietic Acid R Abrasive Silica for Polishing DR Acenaphthene M (LC
    1 abietic acid R abrasive silica for polishing DR acenaphthene M (LC) acenaphthene quinone R acenaphthylene R acetal (see 1,1-diethoxyethane) acetaldehyde M (FC) acetaldehyde-d (CH3CDO) R acetaldehyde dimethyl acetal CH acetaldoxime R acetamide M (LC) acetamidinium chloride R acetamidoacrylic acid 2- NB acetamidobenzaldehyde p- R acetamidobenzenesulfonyl chloride 4- R acetamidodeoxythioglucopyranose triacetate 2- -2- -1- -β-D- 3,4,6- AB acetamidomethylthiazole 2- -4- PB acetanilide M (LC) acetazolamide R acetdimethylamide see dimethylacetamide, N,N- acethydrazide R acetic acid M (solv) acetic anhydride M (FC) acetmethylamide see methylacetamide, N- acetoacetamide R acetoacetanilide R acetoacetic acid, lithium salt R acetobromoglucose -α-D- NB acetohydroxamic acid R acetoin R acetol (hydroxyacetone) R acetonaphthalide (α)R acetone M (solv) acetone ,A.R. M (solv) acetone-d6 RM acetone cyanohydrin R acetonedicarboxylic acid ,dimethyl ester R acetonedicarboxylic acid -1,3- R acetone dimethyl acetal see dimethoxypropane 2,2- acetonitrile M (solv) acetonitrile-d3 RM acetonylacetone see hexanedione 2,5- acetonylbenzylhydroxycoumarin (3-(α- -4- R acetophenone M (LC) acetophenone oxime R acetophenone trimethylsilyl enol ether see phenyltrimethylsilyl... acetoxyacetone (oxopropyl acetate 2-) R acetoxybenzoic acid 4- DS acetoxynaphthoic acid 6- -2- R 2 acetylacetaldehyde dimethylacetal R acetylacetone (pentanedione -2,4-) M (C) acetylbenzonitrile p- R acetylbiphenyl 4- see phenylacetophenone, p- acetyl bromide M (FC) acetylbromothiophene 2- -5-
    [Show full text]
  • Irfifil'icf-E
    Patented Nov. 15, 1949 2,488,479 er I PT, n irFiFil'iCf-E ' 2,488,479 ‘SEPARATION 9F PHENGLS ,FROIVI THIOPHENOLS Hans ‘Schindler, Pet-rolia, Pa., iassignor ‘to T'Ehe Pure iOil ‘ Company, Chieagoglll, a ‘corporation of Ohio No Drawing. Applicationseptember 2%,..1948, Serial No. 51,123 19 Claims. (01. 260-609) "1 2 This invention relates to a method of separat ring sulfur, wherein: the oxygen and‘sulfur are ‘at ' ing phenols from thiophenols and, in particular, it ‘:tached rclirectly 1‘ to: the nucleus. relates to an adsorption process of separating “In accordance :with- my invention, EI prefer to phenols from thiophenols whichhave' closely re ‘filter the'mixture of a “phenol and thiophenol lated ‘structures. 5 :through aibed of-silicagel until analysis: of the This application is a-continuation-in-ipart of e?luent‘liquid or '?ltratesshows that phenol‘ isl-no my'application Serial Number 547,989, now aban longer being iadsorbed zaon‘the-silica gel as indi doned, filed August “3, 1944. vcated lby-lthe ‘fact that'the- effluent has substan Phenols recovered ‘from 'coaltars ‘and petro tially thesamercomposition as thezcharge. The leum oils are frequently admixed with thiophe 10 asijlicargel-bed isitheniwashed with "a suitable-‘sol nols which occur naturally in the same media and vent, preferably 'a1.low'-'boiling hydrocarbon sol because of the chemical similarity .of the two =.vent, such as hexane?benzene or hydrocarbons types of compounds, separation is very dimcult fbo'iling :in the-gasoline range, ‘capable-of ‘remov when purely chemical means are used. This in 1mg unadsorbed :materiali held ‘in “the :?lter vbed, particular is "true when phenols are extracted 15111115 incapable of rextractingthe adsorbed con virom , their.naturallmedialbylmeans of caustical :istituents :from :the :silica gel; Following ithis vkali solution.
    [Show full text]
  • Homogeneous Models of Thiophene Hds Reactions
    HOMOGENEOUS MODELS OF THIOPHENE HDS REACTIONS. SELECTIVITY IN THIOPHENE C-S CLEAVAGE AND THIOPHENE REACTIONS WITH DINUCLEAR METAL COMPLEXES. William D. Jones,* David A. Vicic, R. Martin Chin, James H. Roache, and Andy W. Myers. Department of Chemistry, University of Rochester, Rochester, NY 14627 Received August 1, 1996 - Abstract: The reactive 16 e metal fragment [(C5Me5)Rh(PMe3)] inserts into a wide variety of thiophene C-S bonds. The structures of the thiophene, benzothiophene, and dibenzothiophene insertion complexes have been determined. While the thiophene complex adopts a planar 6- membered ring structure the other metallacycles are bent, and all molecules possess localized diene structures. The mechanism of C-S cleavage was found to proceed by way of initial sulfur coordination. 2-Methylbenzothiophene gives a kinetic product resulting from cleavage of the sulfur-vinyl bond, but then rearranges to cleave the sulfur-aryl bond. A number of substituted dibenzothiophenes were examined, showing little electronic effect of substituents, but showing a large steric effect of substituents at the 4 and 6 positions. 4,6-Dimethyldibenzothiophene does not undergo cleavage, but instead forms an S-bound complex. Reactions of a cobalt analog, (C5Me5)Co(C2H4)2 with thiophenes also lead to C-S cleaved products, and the use of a dinuclear iridium system produces a butadiene complex in which both C-S bonds have been cleaved. Introduction of these sulfur containing compounds prior to The hydrodesulfurization of petroleum is one treatment. Figure 2 shows how this original mixture of several steps in the hydrotreating of oil in which of compounds is changed upon HDS treatment at sulfur is removed from thiols and thiophenes as temperatures of 350 - 390 °C.
    [Show full text]
  • Dibenzothiophene/Oxide and Quinoxaline/Pyrazine Derivatives Serving As Electron-Transport Materials**
    FULL PAPER DOI: 10.1002/adfm.200500823 Dibenzothiophene/Oxide and Quinoxaline/Pyrazine Derivatives Serving as Electron-Transport Materials** By Tai-Hsiang Huang, Wha-Tzong Whang,* Jiun Yi Shen, Yuh-Sheng Wen, Jiann T. Lin,* Tung-Huei Ke, Li-Yin Chen, and Chung-Chih Wu* A series of 2,8-disubstituted dibenzothiophene and 2,8-disubstituted dibenzothiophene-S,S-dioxide derivatives containing quinoxaline and pyrazine moieties are synthesized via three key steps: i) palladium-catalyzed Sonogashira coupling reaction to form dialkynes; ii) conversion of the dialkynes to diones; and iii) condensation of the diones with diamines. Single-crystal characterization of 2,8-di(6,7-dimethyl-3-phenyl-2-quinoxalinyl)-5H-5k6-dibenzo[b,d]thiophene-5,5-dione indicates a triclinic crystal structure with space group P1 and a non-coplanar structure. These new materials are amorphous, with glass-transition temperatures ranging from 132 to 194 °C. The compounds (Cpd) exhibit high electron mobilities and serve as effective elec- tron-transport materials for organic light-emitting devices. Double-layer devices are fabricated with the structure indium tin oxide (ITO)/Qn/Cpd/LiF/Al, where yellow-emitting 2,3-bis[4-(N-phenyl-9-ethyl-3-carbazolylamino)phenyl]quinoxaline (Qn) serves as the emitting layer. An external quantum efficiency of 1.41 %, a power efficiency of 4.94 lm W–1, and a current efficien- cy of 1.62 cd A–1 are achieved at a current density of 100 mA cm–2. 1. Introduction efficiency, brightness, and durability.[4] In contrast, reports of the use of small molecules as electron-transporting materials [5] Organic and polymer light-emitting diodes (OLEDs and are still rare in the literature.
    [Show full text]
  • Portage of Various Compounds Into Bacteria by Attachment to Glycine Residues in Peptides
    Proc. Natl. Acad. Sci. USA Vol. 81, pp. 4573-4576, July 1984 Microbiology Portage of various compounds into bacteria by attachment to glycine residues in peptides (peptide transport/portage transport/oligopeptide permease/antimicrobial agents/bacterial transport) WILLIAM D. KINGSBURY*t, JEFFREY C. BOEHM*, DAVID PERRYt, AND CHARLES GILVARGtt *Department of Medicinal Chemistry, Research and Development Division, Smith Kline and French Laboratories, Philadelphia, PA 19101; and tDepartment of Biochemical Sciences, Princeton University, Princeton, NJ 08544 Communicated by Bernard D. Davis, March 26, 1984 ABSTRACT Synthetic di- and oligopeptides are described R that contain nucleophilic moieties attached to the a carbon of a 1 I CH X peptidase CH . glycine residue. These peptides are accepted by the peptide j transport systems of Escherichia coli (and other microorga- NH3-CH-CONH-CH-COO NH3CH-C00 + NH2-CH-COO a nisms) and are capable of being hydrolyzed by intracellular peptidases. After liberation of its amino group the a-substitut- X = NH, 0, S H20 ed glycine is chemically unstable (although it is stable in pep- R = alkyl, aryl etc. + CHO-COO + R-XH tide form) and decomposes, releasing the nucleophilic moiety. NH3 Thus, the combined result of peptide transport and peptidase FIG. 1. Structure of a-glycine-substituted peptides and their action is the intracellular release of the nucleophile. Peptides mode of breakdown after peptidase cleavage. containing glycine residues a-substituted with thiophenol, ani- line, or phenol are used as models for this type of peptide- recently (6, 7) described a method that allows the transport assisted entry and their metabolism by E. coli is described.
    [Show full text]
  • The Stinking Rose: Organosulfur Compounds and ‘2
    ______ Editorial See corresponding article on page 398. The stinking rose: organosulfur compounds and ‘2 David Heher In this issue of the AJC’N, Pinto et al ( 1) showed potentially leased, the allicin reacts rapidly with the amino acid cysteine important effects of aged garlic extract derivatives. S-allylcys- derived from protein in food consumed with the garlic. Much Downloaded from https://academic.oup.com/ajcn/article/66/2/425/4655750 by guest on 24 September 2021 teine and S-allylmencaptocysteine, on LNCaP prostate cancer work remains to be done on the metabolism of naturally de- cell glutathione and polyamine concentrations in vitro. This nived organosulfur compounds such as those found in garlic work adds additional support to the body of work in animals before we can be certain that the observations made in animals and cells showing potent effects of garlic in the inhibition of and in cell culture extend to humans. tumonigenesis. Some studies showed inhibition of carcinogen- Many different phytochemicals have potent activity on adduct formation as an important mechanism of action using carcinogenesis, risk factors for cardiovascular disease, and both garlic and selenium-enriched garlic (2-5). Another study aging in animals and humans. Why have plants evolved showed that the rise in polyamines seen after colonic irradia- substances that have potent effects in animal systems’? There tion could be inhibited by pretreatment with diallyl sulfide, an are at least two hypotheses. One hypothesis is that phyto- organosulfur compound found in garlic. However. the ultimate chemicals such as digoxin from the foxglove plant f’it the interest in garlic is as a dietary constituent or supplement.
    [Show full text]