The Role of N-Terminal Domain of RAD54 in Branch Migration of Holliday Junctions

Total Page:16

File Type:pdf, Size:1020Kb

The Role of N-Terminal Domain of RAD54 in Branch Migration of Holliday Junctions The Role of N-terminal domain of RAD54 in Branch Migration of Holliday Junctions By Nadish Goyal April 2017 A Dissertation Submitted to the Faculty of Drexel University College of Medicine in partial fulfillment of the Requirements for the Degree of Doctor of Philosophy April 2017 iii ACKNOWLEDGEMENTS I would like to thank my mentor, Dr Alexander Mazin, for allowing me to work in his lab and for his patience, belief and untiring support throughout my tenure as a graduate student. It has truly been a pleasure having insightful discussions leading to exciting research with such an enthusiastic advisor. I would also like to express my deepest gratitude to Dr. Olga Mazina for her immense support and assistance on various experimental techniques, and for the all the conversations we have had that made my experience a memorable one. I would like to thank the members of my thesis advisory committee, Dr. Simon Cocklin, Dr. Patrick Loll, Dr. Paul McGonigle, Dr. Eishi Noguchi, and Dr. Christian Sell, for their time, encouragement, and thoughtful inputs given to me during the preparation of my dissertation. I would also like to thank my friends, current and previous members of the Mazin lab, all of whom have been extremely generous with their time and knowledge. I would also like to extend my gratitude to fellow colleagues who provided help during my coursework. Finally, I would like to thank my family, especially my parents, for all their love, support, and encouragement showered upon me throughout the course of my academic career. Thank you for all the love, support, patience, and always willing to do absolutely anything you could to help me reach my goals. I am very grateful to them for the work ethic that they instilled in me. It is by their example that I continued to put in consistent and persistent efforts. I would also like to iv thank my sister for providing all the help whenever needed. I would also like to thank all of the people who have helped me over the past six years. v TABLE OF CONTENTS LIST OF TABLES ................................................................................................... ix LIST OF FIGURES ................................................................................................. x ABSTRACT ............................................................................................................ xiii CHAPTER 1. Introduction ....................................................................................................... 1 1.1 Multi-protein complexes involved in Eukaryotic Homologous recombination repair ...................................................................................................................... 4 1.1.1 Proteins involved in pre-synaptic resection of double-strand break ends ............................................................................................................. 5 1.1.2 Role of RAD51 recombinase and RAD54 helicase-like protein during Homologous Recombination ........................................................................ 7 1.2 Functions of RAD54 in homologous recombination .......................................... 10 1.3 Structural features of RAD54 protein ................................................................ 13 1.4 Biochemical activities of RAD54 protein ........................................................... 18 1.4.1 RAD54 has ds-DNA dependent ATPase activity ................................ 18 1.4.2 RAD54 translocates on ds-DNA.......................................................... 18 1.4.3 RAD54 promotes chromatin remodeling ............................................. 20 1.4.4 Functional interaction between RAD54 and RAD51 ........................... 22 vi 1.4.5 RAD54 promotes branch migration of Holliday junctions .................... 25 1.5 Role of RAD54 branch migration activity in homologous recombination .......... 31 1.6 Resolution of Holliday junction .......................................................................... 33 1.7 Regulation of RAD54 activities ......................................................................... 35 1.8 Protein regulation based on its oligomeric state ............................................... 37 1.9 Small-molecule inhibitors of homologous recombination proteins .................... 38 1.10 Summary ........................................................................................................ 41 2. RAD54 N-terminal domain: a DNA sensor that couples ATP hydrolysis with branch migration of Holliday junctions ...................................................... 44 2.1 Abstract ............................................................................................................ 44 2.2 Introduction ....................................................................................................... 45 2.3 Materials and Methods ..................................................................................... 48 2.4 Results.............................................................................................................. 58 2.4.1 The RAD54 N-terminal domain is essential for branch migration of Holliday junctions ......................................................................................... 58 2.4.2 RAD5496-747 retains DNA translocation activity ................................... 62 2.4.3 The N-terminal 95 aa truncation changes DNA binding preferences of RAD54 ..................................................................................................... 66 2.4.4 The RAD54 N-terminal domain binds preferentially to branched DNA substrates .................................................................................................... 67 vii 2.4.5 Mutations that separately inhibit N-terminal domain oligomerization or DNA binding ............................................................................................ 69 2.4.6 The N-terminal domain mutations inhibit RAD54 branch migration .... 74 2.4.7 N-terminal domain phosphorylation by CDK2 inhibits RAD54 branch migration but not its stimulation of RAD51 strand exchange ........................ 77 2.5 Discussion ........................................................................................................ 82 3. Characterization of the RAD54 promoted annealing activity ........................ 89 3.1 Introduction ....................................................................................................... 89 3.2 Materials and Methods ..................................................................................... 93 3.3 Results.............................................................................................................. 97 3.3.1 RAD54 promotes annealing of complementary ssDNA strands .......... 97 3.3.2 Effect of nucleotide cofactors on RAD54 promoted annealing ............ 98 3.3.3 N-terminal domain is necessary but not sufficient for annealing activity of RAD54 ......................................................................................... 100 3.3.4 DNA binding by N-terminal domain, not oligomerization, is required for ssDNA annealing promoted by RAD54 ................................................... 101 3.3.5 RAD54 promotes annealing of ssDNA and ssRNA strands ................ 103 3.4 Discussion ........................................................................................................ 104 viii 4. Identification of small-molecule inhibitors of RAD54 .................................... 107 4.1 Introduction ....................................................................................................... 107 4.2 Materials and Methods ..................................................................................... 109 4.3 Results.............................................................................................................. 113 4.3.1 High-throughput screening for RAD54 inhibitors ................................. 113 4.3.2 Validation of hits identified by high-throughput screening ................... 114 4.3.3 Analysis of compounds in DT-40 chicken cells ................................... 117 4.3.4 Screening of second generation inhibitors of RAD54.......................... 119 4.4 Discussion ........................................................................................................ 122 5. Conclusions and future directions ................................................................. 125 6. Bibliography ...................................................................................................... 137 Appendix A Targeting BRCA1- and BRCA2- deficient cells with small- molecule inhibitors of RAD52 .............................................................................. 161 A.1 Abstract ............................................................................................................ 161 A.2 Introduction ...................................................................................................... 162 A.3 Materials and Methods ..................................................................................... 165 A.4 Results ............................................................................................................. 176 A.4.1 High-throughput screening for RAD52 inhibitors ................................ 176 ix A.4.2 Analysis of RAD52 inhibitors in human BRCA1- and BRCA2- deficient cells ............................................................................................... 185
Recommended publications
  • The Escherichia Coli Ruvb Branch Migration Protein Forms Double
    Proc. Natl. Acad. Sci. USA Vol. 91, pp. 7618-7622, August 1994 Biophysics The Escherichia coli RuvB branch migration protein forms double hexameric rings around DNA (DNA helicase/three-dmensonal reconsuctlon/dectron microscopy) ANDRZEJ STASIAK*, IRINA R. TSANEVAt, STEPHEN C. WESTt, CATHERINE J. B. BENSON*, XIONG Yul, AND EDWARD H. EGELMANO§ *Laboratory of Ultrastructural Analysis, University of Lausanne, CH-1015 Lausanne, Switzerland; tClare Hall Laboratories, Imperial Cancer Research Fund, South Mimms, Herts. EN6 3LD, United Kingdom; and *Department of Cell Biology and Neuroanatomy, University of Minnesota Medical School, Minneapolis, MN 55455 Communicated by Philip C. Hanawalt, April 22, 1994 (receivedfor review February 25, 1994) ABSTRACT The RuvB protein is induced in Escherichia MATERIALS AND METHODS coft as part of the SOS response to DNA damage. It is required for genetic recombination and the postreplication repair of Preparation of RuvB-DNA Complexes. The RuvB protein DNA. In vitro, the RuvB protein promotes the branch migra- was purified as described (18) and incubated (at 150 pg/ml) tion of Holliday junctions and has a DNA helicase activt in for 5 min at 370C with relaxed 4X174 DNA (10 pLg/ml), 15 mM reactions that require ATP hydrolysis. We have used electron MgAc, and 1 mM adenosine [y-thio]triphosphate (ATP[y-S]) microscopy, image analysis, and three-dimensional reconstruc- in a 20 mM triethanolamine acetate buffer, pH 7.5. tion to show that the RuvB protein, in the presence of ATP, Eleron Miroscopy. The samples (either RuvB-ATP(y'SJ- forms a dodecamer on double-stranded DNA in which two DNA complexes or RuvB-ATP[(-S]) were stained with 2% stacked hexameric rings encircle the DNA and are oriented in uranyl acetate, and images were recorded under minimal-dose opposite directions with D6 symmetry.
    [Show full text]
  • The Kinetics of Spontaneous DNA Branch Migration IGOR G
    Proc. Nat!. Acad. Sci. USA Vol. 91, pp. 2021-2025, March 1994 Biochemistry The kinetics of spontaneous DNA branch migration IGOR G. PANYUTIN AND PEGGY HSIEH Genetics and Biochemistry Branch, National Institute of Diabetes and Kidney and Digestive Diseases, National Institutes of Health, Bethesda, MD 20892 Communicated by Howard A. Nash, November 1, 1993 ABSTRACT An important step in genetic recombination is In addition to knowing the inherent rate of branch migra- DNA branch migration, the movement ofthe Hollidayjunction tion, it is also critical to know whether spontaneous branch or exchange point between two homologous duplex DNAs. We migration can traverse sequence heterology such as mis- have determined kinetic parameters of spontaneous branch matches, insertions, and deletions since homologous recom- migration as a function of temperature and ionic conditions. bination usually involves the exchange of DNA strands The branch migration substrates consist of two homologous between two similar but not identical duplexes. We recently duplex DNAs each having two single-strand tails at one end that observed that a single base mismatch was sufficient to slow are complementary to the corresponding singe-strand tails of the overall rate of branch migration (5). Moreover, this the other duplex. Upon rapid annealing of the two duplex attenuation by sequence heterology was more pronounced in DNAs, a four-stranded intermediate is formed that has a magnesium than in sodium, suggesting that branch migration Holliday junction at one end ofthe duplexes. Branch migration is influenced by metal ions. to the end of the results in strand To clarify questions concerning the intrinsic rate ofbranch opposite duplexes complete migration, we have developed an improved assay for branch exchange and formation of two duplex products.
    [Show full text]
  • The Role of Blm Helicase in Homologous Recombination, Gene Conversion Tract Length, and Recombination Between Diverged Sequences in Drosophila Melanogaster
    | INVESTIGATION The Role of Blm Helicase in Homologous Recombination, Gene Conversion Tract Length, and Recombination Between Diverged Sequences in Drosophila melanogaster Henry A. Ertl, Daniel P. Russo, Noori Srivastava, Joseph T. Brooks, Thu N. Dao, and Jeannine R. LaRocque1 Department of Human Science, Georgetown University Medical Center, Washington, DC 20057 ABSTRACT DNA double-strand breaks (DSBs) are a particularly deleterious class of DNA damage that threatens genome integrity. DSBs are repaired by three pathways: nonhomologous-end joining (NHEJ), homologous recombination (HR), and single-strand annealing (SSA). Drosophila melanogaster Blm (DmBlm) is the ortholog of Saccharomyces cerevisiae SGS1 and human BLM, and has been shown to suppress crossovers in mitotic cells and repair mitotic DNA gaps via HR. To further elucidate the role of DmBlm in repair of a simple DSB, and in particular recombination mechanisms, we utilized the Direct Repeat of white (DR-white) and Direct Repeat of white with mutations (DR-white.mu) repair assays in multiple mutant allele backgrounds. DmBlm null and helicase-dead mutants both demonstrated a decrease in repair by noncrossover HR, and a concurrent increase in non-HR events, possibly including SSA, crossovers, deletions, and NHEJ, although detectable processing of the ends was not significantly impacted. Interestingly, gene conversion tract lengths of HR repair events were substantially shorter in DmBlm null but not helicase-dead mutants, compared to heterozygote controls. Using DR-white.mu,we found that, in contrast to Sgs1, DmBlm is not required for suppression of recombination between diverged sequences. Taken together, our data suggest that DmBlm helicase function plays a role in HR, and the steps that contribute to determining gene conversion tract length are helicase-independent.
    [Show full text]
  • Recombinational DNA Repair in Bacteria: Postreplication
    Recombinational DNA Secondary article Repair in Bacteria: Article Contents . Introduction Postreplication . What Leads to Recombinational DNA Repair? . Proteins Involved in Recombinational DNA Repair Kevin P Rice, University of Wisconsin-Madison, Madison, Wisconsin, USA . Pathways . Replication Restart Associated with the SOS Response Michael M Cox, University of Wisconsin-Madison, Madison, Wisconsin, USA . Summary Recombinational DNA repair represents the primary function for homologous DNA recombination in bacteria. Most of this repair occurs at replication forks that are stalled at sites of DNA damage. Introduction fork (including DNA polymerase III and the DnaG and Deoxyribonucleic acid (DNA) damage is a common DnaB proteins) processes in each direction from that occurrence in all cells. A bacterial cell growing in an origin. The forks eventually meet, yielding two identical aerobic environment will suffer 3000–5000 DNA lesions copies ofthe bacterium’s genetic material. per cell per generation (most ofthem oxidative in origin). Recombinational DNA repair ensues whenever a Most of this damage is faithfully repaired by specialized replication fork is halted by DNA damage prior to normal DNA repair systems; however, replication forks will replication termination. There are at least two major types occasionally encounter unrepaired DNA lesions. Because ofdamage and corresponding pathways fortheir repair DNA polymerase is usually unable to bypass DNA (Figure 1). Ifthe forkencounters a DNA strand break, a damage, the complex breaks down in what is best described double-strand break that separates one branch ofthe fork as an enzymatic train wreck. Under normal cellular growth from the rest results. Alternatively, the fork might conditions, nearly every bacterial replication fork will encounter an unrepaired DNA lesion, leaving the lesion suffer this fate.
    [Show full text]
  • Assembly of the Escherichia Coli Ruvabc Resolvasome Directs the Orientation of Holliday Junction Resolution
    Downloaded from genesdev.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press Assembly of the Escherichia coli RuvABC resolvasome directs the orientation of Holliday junction resolution Alain J. van Gool,3 Nasser M.A. Hajibagheri,1 Andrzej Stasiak,2 and Stephen C. West4 Genetic Recombination Laboratory, Imperial Cancer Research Fund (ICRF) South Mimms, Herts EN6 3LD, UK; 1Electron Microscopy Unit, Imperial Cancer Research Fund, London WC2A 3PX, UK; 2Laboratoire d’Analyse Ultrastructurale, Universite´de Lausanne, Lausanne, Switzerland Genetic recombination can lead to the formation of intermediates in which DNA molecules are linked by Holliday junctions. Movement of a junction along DNA, by a process known as branch migration, leads to heteroduplex formation, whereas resolution of a junction completes the recombination process. Holliday junctions can be resolved in either of two ways, yielding products in which there has, or has not, been an exchange of flanking markers. The ratio of these products is thought to be determined by the frequency with which the two isomeric forms (conformers) of the Holliday junction are cleaved. Recent studies with enzymes that process Holliday junctions in Escherichia coli, the RuvABC proteins, however, indicate that protein binding causes the junction to adopt an open square-planar configuration. Within such a structure, DNA isomerization can have little role in determining the orientation of resolution. To determine the role that junction-specific protein assembly has in determining resolution bias, a defined in vitro system was developed in which we were able to direct the assembly of the RuvABC resolvasome. We found that the bias toward resolution in one orientation or the other was determined simply by the way in which the Ruv proteins were positioned on the junction.
    [Show full text]
  • Human RECQ1 Helicase-Driven DNA Unwinding, Annealing, and Branch Migration: Insights from DNA Complex Structures
    Human RECQ1 helicase-driven DNA unwinding, annealing, and branch migration: Insights from DNA complex structures Ashley C. W. Pikea,1, Shivasankari Gomathinayagamb,1, Paolo Swuecc,1, Matteo Bertib, Ying Zhanga,2, Christina Schneckea, Francesca Marinod, Frank von Delfta, Ludovic Renaultc, Alessandro Costac, Opher Gileadia,3, and Alessandro Vindignib,3 aStructural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom; bEdward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104; cCancer Research UK Clare Hall Laboratories, South Mimms EN6 3LD, United Kingdom; and dStructural Biology Laboratory, Sincrotrone Trieste, Trieste 34149, Italy Edited by Karl-Peter Hopfner, Ludwig-Maximilians-Universität München, Munich, Germany, and accepted by the Editorial Board February 19, 2015 (received for review September 11, 2014) RecQ helicases are a widely conserved family of ATP-dependent the RMI1 and RMI2 accessory proteins (10–12). These findings motors with diverse roles in nearly every aspect of bacterial and lead us to hypothesize that the specialized functions of each hu- eukaryotic genome maintenance. However, the physical mecha- man RecQ protein in HJ resolution and reversed fork restart arise nisms by which RecQ helicases recognize and process specific DNA from key structural properties that are unique to each protein. replication and repair intermediates are largely unknown. Here, we In this work, we determined the first X-ray structures, to our solved crystal structures of the human RECQ1 helicase in complexes knowledge, of two DNA-bound forms of human RECQ1. These with tailed-duplex DNA and ssDNA. The structures map the inter- structures complement earlier DNA-free forms that we de- actions of the ssDNA tail and the branch point along the helicase termined of the RECQ1 catalytic core (2.0-Å resolution for the and Zn-binding domains, which, together with reported structures ADP-bound form) (13).
    [Show full text]
  • Working with Molecular Genetics Chapter 8. Recombination of DNA CHAPTER 8 RECOMBINATION of DNA
    Working with Molecular Genetics Chapter 8. Recombination of DNA CHAPTER 8 RECOMBINATION OF DNA The previous chapter on mutation and repair of DNA dealt mainly with small changes in DNA sequence, usually single base pairs, resulting from errors in replication or damage to DNA. The DNA sequence of a chromosome can change in large segments as well, by the processes of recombination and transposition. Recombination is the production of new DNA molecule(s) from two parental DNA molecules or different segments of the same DNA molecule; this will be the topic of this chapter. Transposition is a highly specialized form of recombination in which a segment of DNA moves from one location to another, either on the same chromosome or a different chromosome; this will be discussed in the next chapter. Types and examples of recombination At least four types of naturally occurring recombination have been identified in living organisms (Fig. 8.1). General or homologous recombination occurs between DNA molecules of very similar sequence, such as homologous chromosomes in diploid organisms. General recombination can occur throughout the genome of diploid organisms, using one or a small number of common enzymatic pathways. This chapter will be concerned almost entirely with general recombination. Illegitimate or nonhomologous recombination occurs in regions where no large- scale sequence similarity is apparent, e.g. translocations between different chromosomes or deletions that remove several genes along a chromosome. However, when the DNA sequence at the breakpoints for these events is analyzed, short regions of sequence similarity are found in some cases. For instance, recombination between two similar genes that are several million bp apart can lead to deletion of the intervening genes in somatic cells.
    [Show full text]
  • Ruva Is a Sliding Collar That Protects Holliday Junctions from Unwinding While Promoting Branch Migration
    doi:10.1016/j.jmb.2005.10.075 J. Mol. Biol. (2006) 355, 473–490 RuvA is a Sliding Collar that Protects Holliday Junctions from Unwinding while Promoting Branch Migration Daniel L. Kaplan1* and Mike O’Donnell1,2 1Rockefeller University, The RuvAB proteins catalyze branch migration of Holliday junctions Laboratory of DNA Replication during DNA recombination in Escherichia coli. RuvA binds tightly to the New York, NY 10021, USA Holliday junction, and then recruits two RuvB pumps to power branch migration. Previous investigations have studied RuvA in conjunction with 2Howard Hughes Medical its cellular partner RuvB. The replication fork helicase DnaB catalyzes Institute, Laboratory of DNA branch migration like RuvB but, unlike RuvB, is not dependent on RuvA Replication, New York, NY for activity. In this study, we specifically analyze the function of RuvA by 10021, USA studying RuvA in conjunction with DnaB, a DNA pump that does not work with RuvA in the cell. Thus, we use DnaB as a tool to dissect RuvA function from RuvB. We find that RuvA does not inhibit DnaB-catalyzed branch migration of a homologous junction, even at high concentrations of RuvA. Hence, specific protein–protein interaction is not required for RuvA mobilization during branch migration, in contrast to previous proposals. However, low concentrations of RuvA block DnaB unwinding at a Holliday junction. RuvA even blocks DnaB-catalyzed unwinding when two DnaB rings are acting in concert on opposite sides of the junction. These findings indicate that RuvA is intrinsically mobile at a Holliday junction when the DNA is undergoing branch migration, but RuvA is immobile at the same junction during DNA unwinding.
    [Show full text]
  • Activity in Vitro (Recombination/DNA Repair/Holfiday Junctions/Branch Migration/Strand Exchange) IRINA R
    Proc. Nati. Acad. Sci. USA Vol. 90, pp. 1315-1319, February 1993 Biochemistry RuvA and RuvB proteins of Escherichia coli exhibit DNA helicase activity in vitro (recombination/DNA repair/Holfiday junctions/branch migration/strand exchange) IRINA R. TSANEVA, BERNDT MULLER, AND STEPHEN C. WEST Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Hertfordshire, EN6 3LD, United Kingdom Communicated by Howard A. Nash, November 5, 1992 (receivedfor review September 18, 1992) ABSTRACT The SOS-inducible ruvA and ruvB gene prod- intermediates (15-17). Biochemical studies provided support ucts ofEscherichia coli are required for normal levels ofgenetic for this notion by demonstrating that RuvA and RuvB to- recombination and DNA repair. In vitro, RuvA protein inter- gether promote the branch migration ofHollidayjunctions in acts specifically with Holliday junctions and, together with vitro, leading to the formation of heteroduplex DNA (14, RuvB (an ATPase), promotes their movement along DNA. This 18-20). The way in which RuvA binds specifically to syn- process, known as branch migration, is important for the thetic Hollidayjunctions (19) led us to propose that it targets formation of heteroduplex DNA. In this paper, we show that the RuvB ATPase (21) to the junction where it provides the the RuvA and RuvB proteins promote the unwinding of motor for branch migration (18, 19). Recently, the direct partially duplex DNA. Using single-stranded circular DNA interaction of RuvA and RuvB has been demonstrated both substrates with annealed fragments (52-558 nucleotides in in solution (22) and by the formation of RuvAB-Holliday length), we show that RuvA and RuvB promote strand dis- junction complexes (C.A.
    [Show full text]
  • Implications of Metastable Nicks and Nicked Holliday Junctions in Processing Joint Molecules in Mitosis and Meiosis
    G C A T T A C G G C A T genes Concept Paper Implications of Metastable Nicks and Nicked Holliday Junctions in Processing Joint Molecules in Mitosis and Meiosis Félix Machín 1,2,3 1 Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; [email protected] 2 Instituto de Tecnologías Biomédicas, Universidad de la Laguna, 38200 Tenerife, Spain 3 Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain Received: 22 October 2020; Accepted: 9 December 2020; Published: 12 December 2020 Abstract: Joint molecules (JMs) are intermediates of homologous recombination (HR). JMs rejoin sister or homolog chromosomes and must be removed timely to allow segregation in anaphase. Current models pinpoint Holliday junctions (HJs) as a central JM. The canonical HJ (cHJ) is a four-way DNA that needs specialized nucleases, a.k.a. resolvases, to resolve into two DNA molecules. Alternatively, a helicase–topoisomerase complex can deal with pairs of cHJs in the dissolution pathway. Aside from cHJs, HJs with a nick at the junction (nicked HJ; nHJ) can be found in vivo and are extremely good substrates for resolvases in vitro. Despite these findings, nHJs have been neglected as intermediates in HR models. Here, I present a conceptual study on the implications of nicks and nHJs in the final steps of HR. I address this from a biophysical, biochemical, topological, and genetic point of view. My conclusion is that they ease the elimination of JMs while giving genetic directionality to the final products.
    [Show full text]
  • Recombinational Branch Migration by the Rada/Sms Paralog of Reca in Escherichia Coli Deani L Cooper1,2, Susan T Lovett1,2*
    RESEARCH ARTICLE Recombinational branch migration by the RadA/Sms paralog of RecA in Escherichia coli Deani L Cooper1,2, Susan T Lovett1,2* 1Department of Biology, Brandeis University, Waltham, United States; 2Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, United States Abstract RadA (also known as ’Sms’) is a highly conserved protein, found in almost all eubacteria and plants, with sequence similarity to the RecA strand exchange protein and a role in homologous recombination. We investigate here the biochemical properties of the E. coli RadA protein and several mutant forms. RadA is a DNA-dependent ATPase, a DNA-binding protein and can stimulate the branch migration phase of RecA-mediated strand transfer reactions. RadA cannot mediate synaptic pairing between homologous DNA molecules but can drive branch migration to extend the region of heteroduplex DNA, even without RecA. Unlike other branch migration factors RecG and RuvAB, RadA stimulates branch migration within the context of the RecA filament, in the direction of RecA-mediated strand exchange. We propose that RadA-mediated branch migration aids recombination by allowing the 3’ invading strand to be incorporated into heteroduplex DNA and to be extended by DNA polymerases. DOI: 10.7554/eLife.10807.001 *For correspondence: lovett@ Introduction brandeis.edu All organisms have complex mechanisms to accurately replicate and repair their chromosomes to Competing interests: The maintain genetic integrity. In E. coli, the RecA protein promotes repair of DNA lesions directly authors declare that no through its role in homologous recombination (reviewed in [Persky and Lovett, 2008]). In addition, competing interests exist. it promotes repair indirectly by the recruitment of repair polymerases to damaged replication forks (Patel et al., 2010) and by activation of the SOS response, a transcriptional response to DNA dam- Funding: See page 19 age (reviewed in [Simmons et al., 2009]).
    [Show full text]
  • Direct Imaging of Human Rad51 Nucleoprotein Dynamics On
    Direct imaging of human Rad51 nucleoprotein INAUGURAL ARTICLE dynamics on individual DNA molecules Jovencio Hilarioa,b, Ichiro Amitania,b, Ronald J. Baskinb, and Stephen C. Kowalczykowskia,b,1 Departments of aMicrobiology and bMolecular and Cellular Biology, University of California, Davis, CA 95616-8665 This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2007. Contributed by Stephen C. Kowalczykowski, November 24, 2008 (sent for review November 8, 2008) Rad51 protein (Rad51) is central to recombinational repair of Although a basic understanding of Rad51 function exists, a more double-strand DNA breaks. It polymerizes onto DNA and promotes complete description of the concerted molecular events that un- strand exchange between homologous chromosomes. We visual- derlie the homologous pairing process is still unrealized. The ized the real-time assembly and disassembly of human Rad51 dynamics of Rad51 nucleoprotein filament assembly and disassem- nucleoprotein filaments on double-stranded DNA by single-mole- bly, and the interaction between the filament and homologous cule fluorescence microscopy. Rad51 assembly extends the DNA by target DNA, are poorly understood. Although ssDNA is the normal Ϸ65%. Nucleoprotein filament formation occurs via rapid nucle- substrate for Rad51-promoted DNA pairing, the interactions of ation followed by growth from these nuclei. Growth does not Rad51 with dsDNA are also biologically relevant. Rad51 binds continue indefinitely, however, and nucleoprotein filaments ter- dsDNA with an affinity comparable to that for ssDNA (11). This minate when Ϸ2 ␮m in length. The dependence of nascent fila- Rad51-dsDNA complex impedes DNA repair by inhibiting homol- ment formation on Rad51 concentration suggests that 2–3 Rad51 ogous pairing (12).
    [Show full text]