A Method for In-Flight Adjustment of Wing Dihedral with Folding Wings
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Compact Hyperbolic Tetrahedra with Non-Obtuse Dihedral Angles
Compact hyperbolic tetrahedra with non-obtuse dihedral angles Roland K. W. Roeder ∗ January 7, 2006 Abstract Given a combinatorial description C of a polyhedron having E edges, the space of dihedral angles of all compact hyperbolic polyhe- dra that realize C is generally not a convex subset of RE [9]. If C has five or more faces, Andreev’s Theorem states that the correspond- ing space of dihedral angles AC obtained by restricting to non-obtuse angles is a convex polytope. In this paper we explain why Andreev did not consider tetrahedra, the only polyhedra having fewer than five faces, by demonstrating that the space of dihedral angles of com- pact hyperbolic tetrahedra, after restricting to non-obtuse angles, is non-convex. Our proof provides a simple example of the “method of continuity”, the technique used in classification theorems on polyhe- dra by Alexandrow [4], Andreev [5], and Rivin-Hodgson [19]. 2000 Mathematics Subject Classification. 52B10, 52A55, 51M09. Key Words. Hyperbolic geometry, polyhedra, tetrahedra. Given a combinatorial description C of a polyhedron having E edges, the space of dihedral angles of all compact hyperbolic polyhedra that realize C is generally not a convex subset of RE. This is proved in a nice paper by D´ıaz [9]. However, Andreev’s Theorem [5, 13, 14, 20] shows that by restricting to compact hyperbolic polyhedra with non-obtuse dihedral angles, E the space of dihedral angles is a convex polytope, which we label AC R . It is interesting to note that the statement of Andreev’s Theorem requires⊂ ∗rroeder@fields.utoronto.ca 1 that C have five or more faces, ruling out the tetrahedron which is the only polyhedron having fewer than five faces. -
Using Information Theory to Discover Side Chain Rotamer Classes
Pacific Symposium on Biocomputing 4:278-289 (1999) U S I N G I N F O R M A T I O N T H E O R Y T O D I S C O V E R S I D E C H A I N R O T A M E R C L A S S E S : A N A L Y S I S O F T H E E F F E C T S O F L O C A L B A C K B O N E S T R U C T U R E J A C Q U E L Y N S . F E T R O W G E O R G E B E R G Department of Molecular Biology Department of Computer Science The Scripps Research Institute University at Albany, SUNY La Jolla, CA 92037, USA Albany, NY 12222, USA An understanding of the regularities in the side chain conformations of proteins and how these are related to local backbone structures is important for protein modeling and design. Previous work using regular secondary structures and regular divisions of the backbone dihedral angle data has shown that these rotamers are sensitive to the protein’s local backbone conformation. In this preliminary study, we demonstrate a method for combining a more general backbone structure model with an objective clustering algorithm to investigate the effects of backbone structures on side chain rotamer classes and distributions. For the local structure classification, we use the Structural Building Blocks (SBB) categories, which represent all types of secondary structure, including regular structures, capping structures, and loops. -
How Planes Fly ! Marymoor R/C Club, Redmond, WA! AMA Charter 1610!
How Planes Fly ! Marymoor R/C Club, Redmond, WA! AMA Charter 1610! Version 2.0 – Nov 2018! Page 1! Controls, Aerodynamics, and Stability • Elevator, Rudder, Aileron! • Wing planform! • Lift and Wing Design! • Wing section (airfoil)! • Tail group (empennage)! • Center of lift, center of gravity! • Characteristics of a “speed stable” airplane! Page 2! Ailerons, Elevators, and Rudder! Control Roll, Pitch, and Yaw! Ailerons! • Roll, left and right! Elevators! • Pitch, up and down) ! Rudder! • Yaw, left and right! Page 3! Radio Controls! Elevator! Power! (Pitch)! Rudder! Ailerons! (yaw)! (roll)! Trim Controls! Page 4! Wing Planform! • Rectangular (best for trainers)! • Tapered! • Elliptical! • Swept! • Delta! Page 5! Lift! Lift! Lift comes from:! • Angle of Attack! Drag! • Wing Area! Direction of flight! • Airfoil Shape ! • Airspeed! Weight! In level flight, Lift = Weight! Page 6! Lift is greatly reduced when the Wing Stalls! • Stall can occur when:! • Too slow! • Pulling too much up elevator! • Steep bank angle! • Any combination of these three! • Occurs at critical angle of attack, about 15 degrees ! • Trainers have gentle stall characteristics. The warbird you want to fly someday might not.! • One wing can stall before the other, resulting in a sharp roll, and if it continues, a spin. A good trainer won’t do this.! Page 7! Airfoil Shapes! Flat bottom airfoil! “Semi-symmetrical” airfoil! • much camber (mid-line is curved)! • has some camber ! • Often used on trainers and Cubs! • sometimes used on trainers! • Good at low speeds! • Good all-around -
Predicting Backbone Cα Angles and Dihedrals from Protein Sequences by Stacked Sparse Auto-Encoder Deep Neural Network
Predicting backbone C# angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network Author Lyons, James, Dehzangi, Abdollah, Heffernan, Rhys, Sharma, Alok, Paliwal, Kuldip, Sattar, Abdul, Zhou, Yaoqi, Yang, Yuedong Published 2014 Journal Title Journal of Computational Chemistry DOI https://doi.org/10.1002/jcc.23718 Copyright Statement © 2014 Wiley Periodicals, Inc.. This is the accepted version of the following article: Predicting backbone Ca angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network Journal of Computational Chemistry, Vol. 35(28), 2014, pp. 2040-2046, which has been published in final form at dx.doi.org/10.1002/jcc.23718. Downloaded from http://hdl.handle.net/10072/64247 Griffith Research Online https://research-repository.griffith.edu.au Predicting backbone Cα angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network James Lyonsa, Abdollah Dehzangia,b, Rhys Heffernana, Alok Sharmaa,c, Kuldip Paliwala , Abdul Sattara,b, Yaoqi Zhoud*, Yuedong Yang d* aInstitute for Integrated and Intelligent Systems, Griffith University, Brisbane, Australia bNational ICT Australia (NICTA), Brisbane, Australia cSchool of Engineering and Physics, University of the South Pacific, Private Mail Bag, Laucala Campus, Suva, Fiji dInstitute for Glycomics and School of Information and Communication Technique, Griffith University, Parklands Dr. Southport, QLD 4222, Australia *Corresponding authors ([email protected], [email protected]) ABSTRACT Because a nearly constant distance between two neighbouring Cα atoms, local backbone structure of proteins can be represented accurately by the angle between Cαi-1−Cαi−Cαi+1 (θ) and a dihedral angle rotated about the Cαi−Cαi+1 bond (τ). -
Toroidal Diffusions and Protein Structure Evolution
Toroidal diffusions and protein structure evolution Eduardo García-Portugués1;7, Michael Golden2, Michael Sørensen3, Kanti V. Mardia2;4, Thomas Hamelryck5;6, and Jotun Hein2 Abstract This chapter shows how toroidal diffusions are convenient methodological tools for modelling protein evolution in a probabilistic framework. The chapter addresses the construction of ergodic diffusions with stationary distributions equal to well-known directional distributions, which can be regarded as toroidal analogues of the Ornstein–Uhlenbeck process. The important challenges that arise in the estimation of the diffusion parameters require the consideration of tractable approximate likelihoods and, among the several approaches introduced, the one yielding a spe- cific approximation to the transition density of the wrapped normal process is shown to give the best empirical performance on average. This provides the methodological building block for Evolutionary Torus Dynamic Bayesian Network (ETDBN), a hidden Markov model for protein evolution that emits a wrapped normal process and two continuous-time Markov chains per hid- den state. The chapter describes the main features of ETDBN, which allows for both “smooth” conformational changes and “catastrophic” conformational jumps, and several empirical bench- marks. The insights into the relationship between sequence and structure evolution that ETDBN provides are illustrated in a case study. Keywords: Directional statistics; Evolution; Probabilistic model; Protein structure; Stochastic differential equation; Wrapped -
H2O2 and NH 2 OH
Int. J. Mol. Sci. 2006 , 7, 289-319 International Journal of Molecular Sciences ISSN 1422-0067 © 2006 by MDPI www.mdpi.org/ijms/ A Quest for the Origin of Barrier to the Internal Rotation of Hydrogen Peroxide (H 2O2) and Fluorine Peroxide (F 2O2) Dulal C. Ghosh Department of Chemistry, University of Kalyani, Kalyani-741235, India Email: [email protected], Fax: +91-33 25828282 Received: 2 July 2006 / Accepted: 24 July 2006 / Published: 25 August 2006 Abstract: In order to understand the structure-property relationship, SPR, an energy- partitioning quest for the origin of the barrier to the internal rotation of two iso-structural molecules, hydrogen peroxide, H 2O2, and fluorine peroxide, F 2O2 is performed. The hydrogen peroxide is an important bio-oxidative compound generated in the body cells to fight infections and is an essential ingredient of our immune system. The fluorine peroxide is its analogue. We have tried to discern the interactions and energetic effects that entail the nonplanar skew conformation as the equilibrium shape of the molecules. The physical process of the dynamics of internal rotation initiates the isomerization reaction and generates infinite number of conformations. The decomposed energy components faithfully display the physical process of skewing and eclipsing as a function of torsional angles and hence are good descriptors of the process of isomerization reaction of hydrogen peroxide (H 2O2) and dioxygen difluoride (F 2O2) associated with the dynamics of internal rotation. It is observed that the one-center, two-center bonded and nonbonded interaction terms are sharply divided in two groups. One group of interactions hinders the skewing and favours planar cis/trans forms while the other group favours skewing and prefers the gauche conformation of the molecule. -
09 Stability and Control
Aircraft Design Lecture 9: Stability and Control G. Dimitriadis Introduction to Aircraft Design Stability and Control H Aircraft stability deals with the ability to keep an aircraft in the air in the chosen flight attitude. H Aircraft control deals with the ability to change the flight direction and attitude of an aircraft. H Both these issues must be investigated during the preliminary design process. Introduction to Aircraft Design Design criteria? H Stability and control are not design criteria H In other words, civil aircraft are not designed specifically for stability and control H They are designed for performance. H Once a preliminary design that meets the performance criteria is created, then its stability is assessed and its control is designed. Introduction to Aircraft Design Flight Mechanics H Stability and control are collectively referred to as flight mechanics H The study of the mechanics and dynamics of flight is the means by which : – We can design an airplane to accomplish efficiently a specific task – We can make the task of the pilot easier by ensuring good handling qualities – We can avoid unwanted or unexpected phenomena that can be encountered in flight Introduction to Aircraft Design Aircraft description Flight Control Pilot System Airplane Response Task The pilot has direct control only of the Flight Control System. However, he can tailor his inputs to the FCS by observing the airplane’s response while always keeping an eye on the task at hand. Introduction to Aircraft Design Control Surfaces H Aircraft control -
Introduction to Aircraft Stability and Control Course Notes for M&AE 5070
Introduction to Aircraft Stability and Control Course Notes for M&AE 5070 David A. Caughey Sibley School of Mechanical & Aerospace Engineering Cornell University Ithaca, New York 14853-7501 2011 2 Contents 1 Introduction to Flight Dynamics 1 1.1 Introduction....................................... 1 1.2 Nomenclature........................................ 3 1.2.1 Implications of Vehicle Symmetry . 4 1.2.2 AerodynamicControls .............................. 5 1.2.3 Force and Moment Coefficients . 5 1.2.4 Atmospheric Properties . 6 2 Aerodynamic Background 11 2.1 Introduction....................................... 11 2.2 Lifting surface geometry and nomenclature . 12 2.2.1 Geometric properties of trapezoidal wings . 13 2.3 Aerodynamic properties of airfoils . ..... 14 2.4 Aerodynamic properties of finite wings . 17 2.5 Fuselage contribution to pitch stiffness . 19 2.6 Wing-tail interference . 20 2.7 ControlSurfaces ..................................... 20 3 Static Longitudinal Stability and Control 25 3.1 ControlFixedStability.............................. ..... 25 v vi CONTENTS 3.2 Static Longitudinal Control . 28 3.2.1 Longitudinal Maneuvers – the Pull-up . 29 3.3 Control Surface Hinge Moments . 33 3.3.1 Control Surface Hinge Moments . 33 3.3.2 Control free Neutral Point . 35 3.3.3 TrimTabs...................................... 36 3.3.4 ControlForceforTrim. 37 3.3.5 Control-force for Maneuver . 39 3.4 Forward and Aft Limits of C.G. Position . ......... 41 4 Dynamical Equations for Flight Vehicles 45 4.1 BasicEquationsofMotion. ..... 45 4.1.1 ForceEquations .................................. 46 4.1.2 MomentEquations................................. 49 4.2 Linearized Equations of Motion . 50 4.3 Representation of Aerodynamic Forces and Moments . 52 4.3.1 Longitudinal Stability Derivatives . 54 4.3.2 Lateral/Directional Stability Derivatives . -
Klein 4A Alkanes+Isomerism
Grossman, CHE 230 4a. Alkanes. Conformational Stereoisomerism. Structural Isomerism. 4a.1 Derivatives of methane. We can replace one of the H atoms in methane with another atom or group. These atoms or groups are called heteroatoms. Examples: Methyl bromide, methyl iodide, methanol, methylamine, methanethiol. Here the central C atom is not quite as perfectly tetrahedral, but for our purposes, it is close enough. If the H atom is replaced with nothing, we have three possibilities. – • We can remove just the H nucleus and leave behind two electrons -- this gives CH3 , with sp3 hybridization. It has the same structure as ammonia, just one fewer proton (and neutron) in the nucleus in the center. + • We can take away the H nucleus and both electrons. This gives us CH3 . The hybridization here? We don't want to waste valuable low-energy s orbital in a hybrid orbital in which there are no electrons. Instead, the valuable s electron is divided equally among the six electrons (three bonds) remaining. Three bonds means three orbitals, one s and two p. That means the third p orbital remains unhybridized. This situation is called sp2 hybridization. Two p orbitals occupy a plane, so in sp2 hybridization, the three hybrid orbitals are coplanar. They point 120° apart, to the corners of a triangle. The unhybridized p orbital is perpendicular to this plane. • What if we take away the H nucleus and one electron? We have a situation in which CH3· (methyl radical) is between sp2 and sp3 hybridization. It's a shallow pyramid. These species are high in energy and don't exist for long. -
Nomenclature and Conformations of Alkanes and Cycloalkanes1 on The
Andrew Rosen Chapter 4 - Nomenclature and Conformations of Alkanes and Cycloalkanes1 4.1 - Introduction to Alkanes and Cycloalkanes - Alkanes are hydrocarbons with all carbon-carbon single bonds - Alkenes are hydrocarbons with a carbon-carbon double bond - Alkynes are hydrocarbons with a carbon-carbon triple bond - Cycloalkanes are alkanes in which all or some of the carbon atoms are arranged in a ring - Alkanes have the general formula of CnH2n+2 - Cycloalkanes with a single ring have the formula CnH2n 4.2 - Shapes of Alkanes - An unbranched chain means that each carbon atom is bonded to no more than two other carbon atoms and that there are only primary and secondary carbon atoms 4.3 - IUPAC Nomenclature of Alkanes, Alkyl Halides, and Alcohols - Endings of alkane names end in −ane, and the standard prexes apply to how many carbon atoms there are (meth-, eth-, prop-, but-, pent-, etc.) - An alkyl group has one hydrogen removed from an alkane, and the names have a sux of −yl Rules for naming branched-chain alkanes: 1) Locate the longest continuous chain of carbon atoms. This chain determines the parent (prex) name for the alkane. Always start numbering from the end of a chain 2) Number the longest chain begining with the end of the chain nearer the substitutent 3) Use the numbers obtained by application of Rule 2 to designate the location of the substitutent group 4) When two or more substitutents are present, give each substituent a number corresponding to its location on the longest chain. Name them in alphabetical order 5) When two -
Glider Basics What Is Glider ?
GLIDER BASICS WHAT IS GLIDER ? A light engineless aircraft designed to glide after being towed aloft or launched from a catapult. 2 PARTS OF GLIDER A glider can be divided into three main parts: a)fuselage b)wing c)tail FUSELAGE It can be defined as the main body of a glider Comparing it with a conventional aircraft, the fuselage is the main structure that houses the flight crew, passengers, and cargo. Howsoever, in this case it is only a 2-D fuselage. It is cambered and in the middle portion, we attach the wing around the position where the camber is maximum by either making a slot in the fuselage, or by dividing in two parts and then attaching SLOT MADE IN FUSELAGE WITHOUT SLOT If we are breaking the wing in two parts then we have an advantage that we can give dihedral angle to the wing. But typically for first time users, it is advisable to cut a slot into the fuselage and then attach the wing. Since in this way the wing remains firmly attached and also since the model is of small size, dihedral is of little importance.(dihedral :explained in later slides) The front part of the fuselage is called nose. It is rounded in shape to avoid drag and to ensure smooth flow. WING It is the most essential part of a plane. When air flows past it, due to the difference in curvature of its upper and lower parts lift is generated, which is responsible for balancing the weight of the plane, and the body can thus fly. -
Unit-2 Conformational Isomerism
UNIT-2 CONFORMATIONAL ISOMERISM In chemistry, conformational isomerism is a form of stereoisomerism in which the isomers can be interconverted exclusively by rotations about formally single bonds. Such isomers are generally referred to as conformational isomers or conformers and specifically as rotamers when the rotation leading to different conformations is restricted (hindered) rotation, in the sense that there exists a rotational energy barrier that needs to be overcome to convert one conformer to another. Conformational isomers are thus distinct from the other classes of stereoisomers for which interconversion necessarily involves breaking and reforming of chemical bonds. The rotational barrier, or barrier to rotation, is the activation energy required to interconvert rotamers. Conformers of butane, shown in Newman projection. The two gauche as well as the anti form are staggered conformations Types of conformational isomerism Butane has three rotamers: two gauche conformers, which are enantiomeric and an anti conformer, where the four carbon centres are coplanar. The three eclipsed conformations with dihedral angles of 0°,120° and 240° are not considered to be rotamers, but are instead transition states. Some important examples of conformational isomerism include: 1. Linear alkane conformations with staggered, eclipsed and gauche conformers, and 2. Ring conformation o Cyclohexane conformations with chair and boat conformers. o Carbohydrate conformation 3. Atropisomerism- due to restricted rotation about a bond, a molecule can become chiral 4. Folding of molecules, where some shapes are stable and functional, but others are not. Conformations of Ethane While there are an infinite number of conformations about any sigma bond, in ethane two particular conformers are noteworthy and have special names.