<<

Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Communications WF03 L. Dussopt, F. Gianesello

CEA-LETI, STMicroelectronics

[email protected] , [email protected] 5G mobile communications above 6 GHz: timelines, key technologies and recent R&D M. Nekovee

Samsung R&D, UK

[email protected]

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 1 Communications EMF user exposure due to mobile terminals in V-band

Anda R. Guraliuc 1, M. Zhadobov 1, R. Sauleau 1, L. Marnat 2, L. Dussopt 2

1Institute of Electronics and Telecommunications of Rennes Rennes, France

2French Alternative Energies and Atomic Energy Commission Grenoble, France

[email protected]

Overview & Objectives

www.miwaves.eu

Evaluation of the user’s exposure to mmW for 1. Real case scenarios 2. Different antenna positions

Front position Edge position

Phone call Browsing

Correlation of near-field exposure parameters to recommended safety limits

A.R. Guraliuc, M. Zhadobov, R. Sauleau, L. Marnat, L. Dussopt, “Millimeter-wave exposure from mobile terminals” 2 2015 European Conf. on Networks and Commun. (EuCNC 2015) , Paris, France, pp. 82-85, June 29-July 2, 2015. mmW interaction with the human body

‹ At 60 GHz, normal incidence, the power transmission coefficient is around 60% and increases with the . mmWaves

‹ Shallow penetration depth of mmWs in the skin Penetration depth is shallow induce SAR levels significantly higher than those (@ 60 GHz δ ≈ 0.5 mm) at for identical IPD values (e.g. 100 W/kg for IPD = 1 mW/cm 2). Absorption in the superficial layers ‹ Clothing impacts the absorption in the body (textile may increase the transmission, while an air gap between clothing and skin may reduce it). Primary biological targets are skin and cornea

M. Zhadobov, N. Chahat, R. Sauleau, C. Le Quement, Y. Le Dréan, “Millimeter-wave interactions with the human body: state of knowledge and recent advances” 3 International Journal of and Wireless Technologies , 3, pp. 237-247, 2011.

Exposure guidelines and standards

Safety guidelines are set for Incident Power Density (IPD) Absorption is superficial & far-field region.

Power Averaging Frequency Public Organization density Surface Time Safety factor (GHz) exposure (mW/cm 2) (cm 2) (min) 5 20 Occupational Occupational 100 1 ICNIRP [1] 10-300 68/ f1.05 1 20 General 20 1 5 20 Occupational F = 5 or 10 100 1 S CENELEC [2] 2-300 68/ f1.05 1 20 General General 20 1 30 - 300 10 100 2.524/ f0.47 3-96Occupational 200( f/3) 0.2 1 IEEE [3], [4] > 96 400 1 1 100 25.24/ f0.47 30 - 100 General 20 1 f – frequency in GHz [1] ICNIRP: “Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)”, Health Phys., vol. 74, no. 4, pp. 494-522, 1998. [2] EN 50413 – 2008, “Basic standard on measurement and calculation procedures for human exposure to electric, magnetic and electromagnetic fields (0 Hz – 300 GHz)”. [3] IEEE Standard for safety levels with respect to human exposure to electromagnetic fields, 3 kHz to 300 GHz, ISBN 0-7381-4835-0 SS95389, Apr. 2006. 4 [4] IEEE Standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz, ISBN 978-0-7381-6207-2 STD96039, Feb. 2010. Exposure limits - Considerations

‹is the surface area of a cube with edge dimension 1.8 cm (related 2 20 cm to the human eye) used to establish exposure limits.

‹is the surface area of the cornea used to establish localized 1 cm 2 Spatial exposure limits. Limits averaged over 1cm 2 should not exceed 20 times the values averaged over 20cm 2.

100 cm 2 ‹is the surface area of human face / hand. ‹ is less restrictive than ICNIRP.

‹safety limits rely on temperature increase in the eye and the potential adverse health effects caused by this increase. ‹ Temperature threshold in the eye ≈ 41 °C, over which cataract formation may Temperature appear. It corresponds to a temperature increase of 3-4°C.

‹ e.g. SAR @2.45GHz =10W/kg ∆T=4°C T<41 °C.

‹ Skin exposure at mmWs at the recommended limits (i.e. 1mW/cm2 and 5mW/cm 2 for an average surface of 20 cm 2) will increase its temperature by less than 0.7°C.

[1] A. Guraliuc, M. Zhadobov, and R. Sauleau, “Dosimetric aspects related to the human body exposure to mm Waves”, MiWaveS project – Deliverable D1.3, Dec. 2014. Available online: http://www.miwaves.eu/MiWaveS_D1.3_v1.0.pdf [2] ICNIRP: “Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)”, Health Phys., vol. 74, no. 4, pp. 494-522, 1998. [3] IEEE Standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz, ISBN 0-7381-4835-0 SS95389, Apr. 2006. 5 [4] EN 50413 – 2008, “Basic standard on measurement and calculation procedures for human exposure to electric, magnetic and electromagnetic fields (0 Hz – 300 GHz)”.

Human body modeling - Plane wave exposure

Plane waves TM

d

TE

[1] N. Pavselj, D. Miklavcic, “Resistive heating and electropermeabilization of skin tissue during in vivo electroporation: A coupled nonlinear finite element model”, Int. J. of Heat and Mass Transfer , vol. 54, pp. 2294-2302, 2011. [2] S.I. Alekseev, M.C. Ziskin, “Human skin permittivity determined by millimeter wave reflection measurements”, Bioelectromagn., vol. 28, pp. 331-339, 2007. [3] T. Wu, T.S. Rappaport,, C.M. Collins, “Safe for generations to come”, IEEE Microw. Mag., vol 16. no. 2, pp. 65-84, Mar. 2015. [4] S. Gabriel, R.W. Lau, C. Gabriel, “The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz”, Phys. Med. Biol., vol. 41, pp. 2251-2269, 1996. [5] M. Zhadobov, C. Leduc, A. Guraliuc, N. Chahat, R. Sauleau, Chapter 5 “Antenna / human body interactions in the 60 GHz band: state of knowledge and recent advances”, State-of-the-art in Body-Centric Wireless Communications and Associated Applications , IET. 9 Human body modeling - Power density

PD - power density at the skin surface ( z = 0) −δ2 − δ 0 () = ⋅2/z = ⋅−Γ⋅ 2/ z Γ 2 PDz PDe0 IPD(1 ) e - power reflection coefficient δ - penetration depth

Normal Skin can be modeled as a incidence homogenous layer

TM TE Oblique incidence

M. Zhadobov, C. Leduc, A. Guraliuc, N. Chahat, R. Sauleau, Chapter 5: “Antenna / human body interactions in the 60 GHz band: state of knowledge and recent 10 advances”, State-of-the-art in Body-Centric Wireless Communications and Associated Applications , IET.

Antenna module

Realized gain [dB] @ 60GHz Ant1 Ant2 10 8.97 8.82 Head effect

Geometrical head model : open source CAD file with skin- equivalent properties

(ε*_60GHz =7.98-j·10.93)

Impact of the human body on the antenna performance

11

Antenna in phone call mode

Front

Absorbed Module Input power Peak-SAR Peak-IPD power eq position mW W/kg mW/cm 2 mW Front 0.084 9.69 ×10 -8 3.99x10 -9 10 Edge 0.133 3×10 -7 1.24x10 -8

<< ICNIRP recommended BRs (1 mW/cm 2 over 20cm 2; 20 mW/cm 2 over 1 cm 2) Edge - Maximum SAR occurs on the user’s ear helix. - Lower exposure is noticed for “Front” case than “Edge” case (“Front”: the antenna radiates towards the base station). - Exposure levels are significantly lower compared to the recommended limits.

A.R. Guraliuc, M. Zhadobov, R. Sauleau, L. Marnat, L. Dussopt, “Millimeter-wave exposure from mobile terminals”, 2015 European Conf. on Networks and Commun. 12 (EuCNC 2015), Paris, France, pp. 82-85, June 29-July 2, 2015. Thank You! Cost effective mmW systems leveraging silicon technology and digital manufacturing C. Luxey, F. Gianesello, A. Bisognin, D. Titz, J. Costa, C. Fernandez, C. del Rio Bocio

EpoC, University Nice-Sophia Antipolis [email protected]

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 2 Communications of 53

Introduction

• Rapid growth of wireless data drives the development of new technologies: - 5G - Wireless backhaul developments in V/E Bands • Availability of high performance and cost effective antenna is key

• To address this need, fundamental enablers lie in manufacturing technologies able to handle complex 3D-Shapes while providing fast and low- cost prototyping as well as the ability to support medium-volume production

• This presentation illustrates how 3D-Printing and digital manufacturing technologies might help to develop innovative and cost-effective antenna solutions in order to address new business challenges

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 3 Communications of 53 Outline

• Context and Motivation • Antenna-Solution • 3D-Printed Lens • 3D-Printed Horns • 3D-Printed Reflectors • Future Work • Conclusion

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 4 Communications of 53

Context & Motivation

• Following the growth of mobile devices, global mobile data traffic has exceeded 4200 Petabytes/month in 2nd Q 2015

Source : Ericsson mobility report June 2015 • Peak data rates of 5G will be close to 10 Gbit/s • Cell-edge data rates should be 100 Mbit/s • In order to address consumer demand, the development of high-speed, low-cost and low- power wireless technologies is a key challenge for our industry WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 5 Communications of 53 Context & Motivation

• Many current 5G researches are dealing with new RF/mmW radio technologies for access in order to increase peak data rates, but do we really need new radio technologiesg for access? ADSL2+ Under deployment

VDSL2 Wired Under deployment Broadband FTTH / FTTB

LTE Advanced Cellular

802.11n Under deployment Wireless 802.11ac connectivity 802.11ad (WiGig)

Under deployment E Band backhaul Under deployment R&D

120 GHGHz

200 GHzGH

5 Mb/s 30 Mb/sMb/ 100 Mb/s 150 Mb/sMb 300 Mb/s 433 MbMb/s 867 Mb/s 1.3 GGb/s 3.39 Gb/s 6.77 Gb/s 7 Gb/Gb/s 10 GbGb/s 40 GbGb/s

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 6 Communications of 53

Context & Motivation

• Today average fixed broadband connection speed in Europe is 4.6 Mb/s, which is far lower to the Gb/s experience that WiFi can deliver today … • The situation is not better for mobile average connection speed which is in Europe ~4 Mb/s

Akamai State of the Internet Report Q2 2014 • While 100 Mb/s & 1Gb/s wireless technologies are today available in a cost-effective manner (e.g. 802.11ac & LTE), we are not able to deliver those data rates to the user: this is the challenge that 5G has to address .

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 7 Communications of 53 Context & Motivation

• Small cells will play a key role in order to increase the network capacity

• Considering the deployment of those small cells, backhaul connection is an issue (civil works cost ) : wireless backhaul is here mandatory.

• Since high data rates (1 Gb/s in full duplex) are required at low- cost in backhaul solutions , 60 GHz & 70-80GHz wireless solutions are strongly considered today.

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 8 Communications of 53

Context & Motivation

• Wireless Backhaul System at 60 & 80GHz • The global power consumption of commercially available backhaul systems is mainly dominated by the Digital Base Band (especially for high order modulation scheme).

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 9 Communications of 53 Context & Motivation

• Low Power OOK mmW Transceivers • From the other side, academic research focused its effort on the design of wide bandwidth and low power wireless system at mmW .

Freq. Max. Output Data Rate DC power (Tx+Rx ) Ref. (GHz) Power (dBm) (Gbps) (mW)

NTU 57-64 5 3.3 286 KAIST 47-67 5 10.7 67 STARC 125-145 -9 10 98.4

NTU KAIST Toshiba (STARC)

60GHz 60GHz 135GHz

Jri Lee et al, A Low-Power Low-Cost Fully- Chul Woo Byeon et al, A 67-mW 10.7-Gb/s Integrated 60-GHz Transceiver System 60-GHz OOK CMOS Transceiver for Short- Minoru Fujishima et al, 98 mW 10 Gbps With OOK Modulation and On-Board Range Wireless Communications, MTT, Wireless Transceiver Chipset With D-Band Antenna Assembly, JSSC, 2010. 2013 CMOS Circuits, JSSC, 2013 • What about a wide bandwidth wireless system beyond 100GHz leveraging silicon technologies ? WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 10 Communications of 53

Context & Motivation

• Leveraging the performance of state-of-the-art silicon transceivers operating at 60 & 120GHz, the following specifications could be targeted.

Existing 57-66GHz Backhaul Systems : 116-142GHz Wireless System:

• Max Output power (at antenna port): ~10 dBm • Max Output power (at antenna port): ~5 dBm • Modulation scheme /sensitivity: • Modulation scheme /sensitivity: • QPSK / -62 dBm • OOK / -45 dBm

• Data rates: • Data rate: 10 Gbps

• 100 Mbps • DC power*: 185 mW (Rx+Tx) • 300 Mbps • 1000 Mbps *(power consumption including analog interface)

• DC power: 700mW (+5W from DBB)

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 11 Communications of 53 Context & Motivation

• 60/120GHz High Gain Antenna Spec. • Since the output power level is limited, the transmission range of the system mainly depends on the antenna gain .

• From a first demo, a 25 dBi antenna gain has been targeted to achieve at least 10m and validate the B55 IC developed by Stanford. WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 12 Communications of 53

Context & Motivation

• Low Cost Antenna Challenge • In order to meet the antenna gain required, the quasi-optical solution for the antenna is the preferred approach. • Low cost high gain mmW antenna solution is a key enabler in order to support the development of cost effective wireless PtP solutions.

60GHz BiCMOS IC SMPM connector V/E-band antenna Peraso PRS2152, PRS2153 60GHz coax. PCB connector Elva-1 fronthaul/backhaul antennas

~ 30cm > 35 dBi

5$ (>100 000 parts) 15$ 200/1500$ Slide 13 WF03̱ Millimetre-Wave Technologies for 5G ̱Mobile Networks and Short-Range̱ Communications of 53 Context & Motivation

• Wireless mmW links are technically feasible but the challenge is here more on integration in order to propose a real breakthrough on the cost of the proposed solution. This is mandatory to deploy denser networks .

Today ~25000 $ Tomorrow ~1500 $ ?

• This is where silicon technologies as well as 3D-Printing technologies can play a major role

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 14 Communications of 53

Context & Motivation

• Wireless Communications beyond 100GHz • There is an opportunity to leverage the 116-142GHz band where silicon technologies still exhibit suitable performance. • Leveraging III-V technologies, NTT has already demonstrated a 10 Gbps wireless system in the 116-134GHz band over a range higher than 1 km. 10 Gbps Wireless System in the Available frequency bands beyond 100GHz (US) 116-134 band (NTT) 48 dBi cassegrain antenna (30cm diameter)

Transmission range > 1km Source: FCC Source: NTT, 2012

• The next step consists in developing an integrated solution leveraging silicon technologies and associated packaging one. WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 15 Communications of 53 Context & Motivation

Development of a high gain and cost-effective antenna solution fulfilling the following specifications.

Targeted Performance Summary (antenna side)Specifications Application Small cells Datacenter 116-142GHz 116-142GHz Freq. 57-66GHz (15%) (20%) (20%)

S11 < -10 dB < -10 dB < -10 dB Gain ~30 dBi ~35 dBi > 25 dBi

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 16 Communications of 53

Antenna-Solution

• The lens-antenna approach enables antenna gain in the order of 25dBi while using a low complexity source-antenna . Gain vs. antenna size

Reflector Lens

Antenna array on PCB

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 17 Communications of 53 Antenna-Solution

• Specifications • In order to keep the system in a compact size , a co-design of the source antenna with the lens is mandatory. Lens directivity vs. Source directivity Elliptical Lens Cross-section Plastic

Source

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 18 Communications of 53

Antenna-Solution

• Low Loss HDI PCB technology

• A 60GHz planar antenna source has been developed using a cost-effective PCB technology. • Subtractive manufacturing process • Design rules: 80 µm (line width) 80 µm (space between lines)

1+2 PCB Buildup ൈ Panasonic Megtron 6 materials

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 19 Communications of 53 Antenna-Solution

• 2 2 array of Linear Aperture Coupled Patch antennas in order to achieve the required directivity ( 12/13 dBi). • Wideൈ operation bandwidth using a thick core substrate (400µm). ̱ Photography of the PCB-module

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 20 Communications of 53

Antenna-Solution

Gain in the broadside direction Normalized Gain in the H plane at 60GHz

Frequency (GHz)

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 21 Communications of 53 Antenna-Solution

• Semi-additive manufacturing process – Design rules: 50 µm (line width) 50 µm (space between lines) • Flip-chip assembly enables: ൈ – Low profile , limited impact of the IC on the antenna performance. – Low interconnection loss. • Multilayer substrates with built-in LACP antenna.

Antenna-in-Package assembly scheme BGA modules in strip format

BGA module Fit in automated assembly machines

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 22 Communications of 53

Antenna-Solution

• 1+2+1 BGA Buildup • A thick core substrate provide a wide operation bandwidth of the LACP antenna. Cross-section view of the buildup*

* (core) = (ppg) = 3.4

ߝ௥ ߝ௥ WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 23 Communications of 53 Antenna-Solution

• For measurements, we used a dedicated probe-fed antenna setup for S11 and 3D radiation pattern up to 140 GHz .

D. Titz et al, “Development of a Millimeter -Wave Measurement Setup and Dedicated Techniques to Characterize the Matching and Radiation Performance of Probe-Fed Antennas”, IEEE Antennas and Propagation Magazine , vol. 54, pp. 188-203, 2012.

A. Bisognin et al.,” Probe -fed measurement system for F-band antennas”, EuCAP 2014.

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 24 Communications of 53

Antenna-Solution

• A 2 2 array of LACP antennas is integrated inside a 7 7mm² BGA .

ൈ Manufactured BGA module ൈ

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 25 Communications of 53 Antenna-Solution

Matching (S 11 ) Smith Chart 0

-10

(dB) (dB) -20 11 S dB(S(1,1)) -30

freq (90.00GHz to 140.0GHz) freq (90.00GHz to 140.0GHz) -40 90 100 110 120 130 140 150 Freq (90…140GHz) freq, GHz

Measurements Simulation

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 26 Communications of 53

Antenna-Solution

Realized Gain in the broadside Realized Gain in the H plane at 130GHz direction

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 27 Communications of 53 3D-Printed Lens

• Various materials have already been explored for lenses at mmW like Teflon , Polyethylene , Quartz , Rexolite , etc. • But main drawbacks of those materials: cost and manufacturing complexity .

Quartz lens at Rexolite lens at Polyethylene at Teflon at 77GHz 86GHz 77GHz 110GHz

Alexey Artemenko et al, “Experimental Characterization of E-Band Two-Dimensional A. Karttunen, et al, "Using Optimized Eccentricity H. Gulan et al, "Lens Coupled Aki Karttunen, "Extended Hemispherical Electronically Beam-Steerable Integrated Lens Rexolite Lens For Electrical Beam Steering With Broadband Slot Antenna for W- Integrated Lens Antenna with Feeds on a Antennas”, AWPL, 2013. Integrated Aperture Coupled Patch Array, Progress Band Imaging Applications", Spherical Surface", EuCAP, 2013. In Electromagnetics Research B, 2012. APSURSI, 2013.

• In order to lower the manufacturing cost, we could think to evaluate 3D- printing technologies using consumer grade plastic material. WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 28 Communications of 53

3D-Printed Lens

• For low to medium-volume fabrications, 3D-Printing can eliminate the need for tool production and therefore decrease costs, lead times and associated labor.

Michael Graham, A Look at 3D Printing as a Production Technology, October 5, 2015, http://3dprinting.com/ • Can we leverage 3D-Printing technology to develop innovative and cost effective mmW antennas ? WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 29 Communications of 53 3D-Printed Lens

• Fuse Deposition Modeling: layer-by-layer fabrication process. • Plastic material: ABS-M30 • Layer thickness: 178µm

Stratasys FDM technology FabricatedFabr lens

source: en.wikipedia.org

Source: www.stratasysdirect.com

and of the ABS-M30 at 60GHz, 120 GHz ?

Slide 30 WF03 Millimetre-Waveߝ௥ Technologies–ƒ ߜ for 5G Mobile Networks and Short-Range Communications of 53

3D-Printed Lens Complex Permittivity Measurements

Fabry-Perot Open Resonator at 60GHz Non-resonant waveguide method at 120GHz

J. R. Costa, et al, Source: IST/IT lab “Compact Beam-Steerable Lens Antenna for 60-GHz Wireless Communications ”, TAP , 2009. IST/IT ESA/ESTEC Our meas. Teflon Fabry-Perot Open Quasi-optical meas. Waveguide Method NA resonator setup method Freq. 60GHz 137.5GHz 110-125GHz NA 2.48 2.48 2.49 2 0.009 0.008 0.01 0.0002 ߝ௥ –ƒ ߜ WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 31 Communications of 53 3D-Printed Lens

• 30dBi Lens for Backhaul at 60GHz

• In order to lower the dielectric loss , we designed a chopped lens . • Fast optimization using ILASH software tool ( GO/PO ).

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 32 Communications of 53

3D-Printed Lens

Chopped Lens Profile

= 52mm

ܾ = 30mm = 33mm 38mmͻͲι ݀ = 19 mm ܮ ܿ ൌ ܯ

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 33 Communications of 53 3D-Printed Lens

• A first 8cm diameter plastic lens was manufactured and measured leveraging a NF-FF transformation method. Co-pol NF Gain in the boresight direction Fabricated Lens on the 30 supporting structure from the 3D-printer 28

26

24 Gain (dBi) (dBi) Gain Meas (Co-pol) at 60cm 22 Inter. Pol (order 3) Inter. Pol (order 3) - 1 Inter. Pol (order 3) + 1 20 50 52 54 56 58 60 62 64 66 Frequency (GHz)

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 34 Communications of 53

3D-Printed Lens

• This 4cm diameter lens is an homothety of the 60GHz 8cm diameter lens. Fabricated 120GHzLens Profile of the 120GHz lens

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 35 Communications of 53 3D-Printed Lens

Co-Polarized Realized Gain (dBi) in the boresight direction Matching (Measured S ) 30 11 28 26 26 GHz (20%) 24 22

Meas (dB) 11 Gain (dBi) (dBi) Gain 20 Interpolated meas. values (order 4) + 1.2 dB S Interpolated meas. values (order 4) - 1.2 dB 18 Interpolated meas. values (order 4) 16 Simu. In the direction (phi, theta)=(180°, 91°) Simu. In the direction (phi, theta)=(180°, 90°) 14 90 100 110 120 130 140 Frequency (GHz)

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 36 Communications of 53

3D-Printed Lens

• A full elliptical lens made of Teflon and of 25mm diameter achieves the same level of antenna gain (~28dBi). Co-Polarized Realized Gain (dBi) in the Lens Profile broadside direction

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 37 Communications of 53 3D-Printed Lens

• 3D Printed Plastic vs. Teflon Lenses

Teflon Lens 3D Printed Lens

Manufacturing time ~1 day ~9 hours

Manufacturing High Low cost/complexity

Material cost High Low

Lens diameter 25 mm 40 mm

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 38 Communications of 53

3D-Printed Lens

• Microstrip line loss (organic BGA technology): 0.24 dB/mm at 130GHz

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 39 Communications of 53 3D-Printed Horns

• Total efficiency of the 60 & 120GHz sources in BGA and PCB are 50 %. • Enhance the illumination efficiency ? ̱ • We evaluated a 3D-printing technology (Swissto12 ) for the fabrication of a plastic metallized horn antenna (designed by Prof. Carlos del-Río from University of Navarre).

• However, a wide bandwidth and low loss PCB-waveguide transition is still required.

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 40 Communications of 53

3D-Printed Horns

• Corrugated Horn is 3D-Printed out of plastic polymer and subsequently metal plated with copper (+ protected for oxidation with gold) nearly 90% of efficiency

8mm

20mm

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 41 Communications of 53 3D-Printed Reflectors

• For higher gains (> 35 dBi ), the reflector antenna solution could be envisioned (leveraging 3D-printing plastic metallized technologies).

Reflector/Lens antenna gain vs. diameter Reflector/Lens antenna gain vs. diameter at 60GHz

Overall size: 13 13 3.8cm 3

WF03 Millimetre-Waveൈ Technologiesൈ for 5G Mobile Networks and Short-Range Slide 42 Communications of 53

3D-Printed Reflectors

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 43 Communications of 53 3D-Printed Reflectors

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 44 Communications of 53

3D-Printed Reflectors

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 45 Communications of 53 3D-Printed Reflectors

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 46 Communications of 53

3D-Printed Reflectors

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 47 Communications of 53 3D-Printed Reflectors

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 48 Communications of 53

3D-Printed Reflectors

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 49 Communications of 53 Future Work

• Improve “PCB Source + Lens” combination for 30 dBi at 60 GHz

• Design a wideband microstrip-to-waveguide transition for horn use

• Evaluate PE material to improve Lens efficiency

• Investigate 3D-Printed low-cost antenna and source solutions for the 200- 300 GHz band

• Investigate 3D-Printed waveguide-fed novel antenna solution to improve efficiency and form factor

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 50 Communications of 53

Conclusion

• HDI organic packaging technology validated up to 140 GHz with a predictive design flow . • 3D-Printing technology has emerged has a promising solution achieving excellent results in V-band and D-band up to 140 GHz Those results enable cost-effective industrial high gain antenna solution beyond 100GHz.

• We are still looking for the limit of 3D-Printing technology • What about 3D-Printed antennas beyond 200 GHz ?

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 51 Communications of 53 Perspectives

1. Increase the gain ? Reflectors

2. Increase the efficiency ? Horn source

3. Increase the bandwidth ? Si-Photonics solution

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 52 Communications of 53

Thank you for your attention

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 53 Communications of 53 Reconfigurable millimeter-wave transmitarray antennas for backhaul applications

L. Dussopt

CEA-LETI

[email protected]

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 2 Communications of 44

Agenda

• Introduction – Principles, applications • Passive transmit-arrays (fixed beam) – Examples at 60 GHz and 70/80 GHz • Switched-beam transmit-arrays – Examples at 60 GHz • Reconfigurable transmit-arrays – Examples at 10 GHz and 30 GHz

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 3 Communications of 44 Introduction – mmWave applications

P2P communications Mobile access in future (backhaul/fronthaul) networks (5G)

Satellite communications Radar systems Imaging and security (automotive, industry) WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 4 Communications of 44

Transmit-array antennas

Principle: ° Free-space feed from a focal source. ° The signal is collected on one side, phase-shifted, and re-radiated on the other side. ° Reconfigurability at focal source level or lens level.

Characteristics: ° High-directivity antennas, ° Wideband performance, Focal Source ° Good efficiency, ° Excellent polarization properties (linear or circular), ° Standard PCB technologies (planar or conformable).

Antenna Antenna Phase- array Array Shifters

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 5 Communications of 44 Transmit-array antennas

Modeling and simulation (1/2) ° Full-wave EM simulation of the entire structure: for validation only! ° Separate EM simulations: • Unit-cell(s): S-parameters, radiation patterns D • Focal source(s): radiation patterns

, ,

, focal distance F

, focal source

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 6 Communications of 44

Transmit-array antennas

Modeling and simulation (2/2) ° Full-wave EM simulation of the entire structure: for validation only! ° Separate EM simulations: • Unit-cell(s): S-parameters, radiation patterns • Focal source(s): radiation patterns ° Analytic calculation of the full structure properties ° Optimization of the cell distribution ° Radiation patterns ° Power budget

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 7 Communications of 44 Passive transmit-arrays (fixed beam)

60-GHz Circularly-Polarized Transmit-Arrays ° Patch-based unit-cells, sequential rotations for CP ° Unit cells: • Insertion losses : 0.44 dB at 60 GHz • 3-dB bandwidth : 7.8 GHz (13%)

Unit-cell limits 0

-5

-10

-15 0° 90°

-20

Return loss ( S ) -25 11 Insertion loss ( S21 ) Reflection, Transmission (dB) Transmission Reflection, -30 50 55 60 65 70 Frequency (GHz) 180° 270°

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 8 Communications of 44

Passive transmit-arrays (fixed beam)

Cell 0° Cell 90° Cell 180° Cell 270° 50×50 mm 60-GHz Circularly-Polarized Transmit-Arrays ° Patch-based unit-cells, sequential rotations for CP ° Array performances: • Max. Gain: 23 dBi (50x50 mm aperture) • 1-dB bandwidth : >12 GHz (18.7%) • Axial Ratio (1 dB): 9.9 GHz (16.3%)

Simulation Measurement Axial Axial (dB)Ratio Gain (dBi) Gain Gain (dBi) Gain Gain (dBi) Gain

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 9 Communications of 44 Passive transmit-arrays (fixed beam)

60-GHz Linearly-Polarized Transmit-Arrays M3 : Antenna ° Via-less unit-cells, 3 metal layers 381 um (0.015”) ° 3 unit-cells to achieve 7 phase states (2.8 bits) M2 : GP 76 um (0.003”) 254 um (0.010”) M1 : Antenna Unit-cell “b” /2 Patch Patch π 3π/4 π/4

Coupling slot Coupling slot 0 Slots π X Periodic boundaries conditions Patch Patch -π/4 Coupling slot Coupling slot Slots -3π/4 Patch Patch -π/2 Unit-cell “c” (a) (b) (c)

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 10 Communications of 44

Passive transmit-arrays (fixed beam)

60-GHz Linearly-Polarized Transmit-Arrays ° Via-less unit-cells, 3 metal layers ° 3 unit-cells to achieve 7 phase states (2.8 bits) ° Insertion losses: < 1 dB

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 11 Communications of 44 Passive transmit-arrays (fixed beam)

60-GHz Linearly-Polarized Transmit-Arrays ° Ø100-mm lens, focal distance 55 mm ° Focal source: 10-dBi horn

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 12 Communications of 44

Passive transmit-arrays (fixed beam)

60-GHz Linearly-Polarized Transmit-Arrays ° Ø100-mm lens, focal distance 55 mm ° Focal source: 10-dBi horn ° Max. Gain: 33 dBi at 64 GHz (45% aperture efficiency) ° 3-dB bandwidth: ~15%

Measurement Gain(dBi)

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 13 Communications of 44 Passive transmit-arrays (fixed beam)

60-GHz Linearly-Polarized Transmit-Arrays ° Ø100-mm lens, focal distance 55 mm ° Focal source: 10-dBi horn ° Radiation pattern synthesis: fan beam

H-Plane E-Plane

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 14 Communications of 44

Passive transmit-arrays (fixed beam)

E-band Linearly-Polarized Transmit-Arrays ° 71-76 GHz and 81-86 GHz: total 19% relative bandwidth ° Ø100-mm lens, focal source: 10-dBi horn ° Several designs: lower band, upper band, dual band

36 40

34 Simulation 30 32 20 30

28 10 Gain (dBi)

Gain(dBi) 26 0 24 -10 22

20 -20 65 70 75 80 85 90 -90 -60 -300 30 60 90 Frequency (GHz) Angle (degrees) WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 15 Communications of 44 Passive transmit-arrays (fixed beam)

Pre-industrial prototype ° Linear polarization, compliance ETSI-class 2 radiation mask ° Circular array (Ø 100 mm ˜ 40 cells) ° Gain 32.5 dBi, 1-dB bandwidth 15.4% ° Aperture efficiency 42.7%

Radome

Source

Pre-Industrial prototype Transmit array Courtesy of Radiall.

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 16 Communications of 44

Switched-beam transmit-arrays

Beam-switching functionality can be implemented at the focal source ° Similarly to dielectric lenses, the beam can be steered by moving the focal source in the focal plane. ° Active focal array: ° The switching circuit can be embedded with the focal sources and with other active circuits (amplifiers, TRx) in a compact module: power efficiency, low cost. ° Schemes more complex than simple switching can be implemented: multi-beam, phase-shifting ° Limited steering range: aberration if the focal source is too far from the lens focal point. ° Applications: ° Long-range radar ° Beam alignment in P2P communications

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 17 Communications of 44 Switched-beam transmit-arrays

V-band Circularly-Polarized Transmit-Arrays ° Switched focal sources ° Focal array: 5-elements array integrated on HR-silicon ° 40x40 mm2 array, Meas. Gain = 20 dBi ° Beam-switching: ±25° ° Bandwidth (3-dB): 15.9%

30 Port 1 20 Port 2 Port 3 10 Port 4 Port 5

0

Focal array Gain (dBi) -10

-20

-30 -90 -60 -30 0 30 60 90 Angle (deg.) WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 18 Communications of 44

Switched-beam transmit-arrays

V-band Linearly-Polarized Transmit-Arrays ° Passive discrete lens (Ø100 mm) ° 5-elements focal source array on LCP with MMIC switches

Focal array

Principle Front Back

Work done in collaboration with VTT. WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 19 Communications of 44 Switched-beam transmit-arrays

V-band Linearly-Polarized Transmit-Arrays ° Passive discrete lens (Ø100 mm) ° 5-elements focal source array on LCP with MMIC switches ° Beam-switching: ±5° ° Bandwidth (3-dB): 14% Phi = 90° Simulations 30 20

10

0 Gain(dBi)

Gain-10 (dBi)

-20 -50 0 50 θ (deg) Work done in collaboration with VTT. WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 20 Communications of 44

Switched-beam transmit-arrays

V-band Linearly-Polarized Transmit-Arrays ° Passive discrete lens (Ø100 mm) ° 5-elements focal source array on LCP with MMIC switches ° Beam-switching: ±5° ° Bandwidth (3-dB): 14% Measurements AUT Gain Plan H AUT Gain Plan H 0 0 beam 101 beam 101 -5 beam 102 beam 102 beam 103 -5 beam 103 beam 104 -10 beam 104 beam 105 beam 105 -15 -10

-20 Magnitude(dBi) -15 -25 Magnitude(dBi) -20 -30 -15 0 15 θ (deg) -35

-40 -90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90 θ (deg) Work done in collaboration with VTT. WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 21 Communications of 44 Switched-beam transmit-arrays

Perspective: beam-switching/beamforming using an active focal array ° Focal source : Transceiver module with 2x4 antennas phased array. ° Improved coverage, lower gain ripple. Coverage

Single beam at a time

Discrete lens

Focal array More uniform coverage using multiple simultaneous beams (gain variation < 3 dB)

Active focal array (8 elements)

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 22 Communications of 44

Reconfigurable transmit-arrays

Reconfigurable transmitarrays enable wide scan angle and complex beam synthesis ° Fixed (passive) focal source ° Reconfigurable transmitarray panel ° Many demonstrations at 5 to 40 GHz using varactor diodes, PIN diodes, MEMS. ° Few demonstrations above 40 GHz using ferroelectric materials or liquid crystals. ° Applications: Focal ° Short-range radar Source ° Point-to-MultiPoint communications ° Wireless mobile access ° SATCOM

Antenna Antenna Phase- array Array Shifters WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 23 Communications of 44 Reconfigurable transmit-arrays

Continuous or discrete phase-shifters? How many phase states? ° Aperture efficiency: ° limited number of phase states enable low quantization losses. ° Trade-off: phase-accuracy vs losses ° Impact on side-lobe levels

80 Theoretical results for an array of 20x20 Perfect 70 3 bits elements and a 10 dBi focal source 60 2 bits 1 bit 50 Phase quant. Perfect 3 bits 2 bits 1 bit 40 Quant. Loss (dB) 0 0.2 0.8 3.5 30 SLL (dB) 25.0 25.0 24.4 20.2 20 10 Aperture efficiencyAperture (%) 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 F/D WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 24 Communications of 44

Reconfigurable transmit-arrays

10-GHz 1-bit linearly-polarized unit-cell ° 2 substrates, 4 metal layers ° 1-bit phase shifter (0/180°) realized with 2 PIN diodes ° Single bias line

Active patch Cross section

Active patch Bias line

Passive patch

Ground plane Passive patch

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 25 Communications of 44 Reconfigurable transmit-arrays

10-GHz 1-bit linearly-polarized unit-cell ° 2 substrates, 4 metal layers ° 1-bit phase shifter (0/180°) realized with 2 PIN diodes ° Single bias line

Active patch Cross section

Active patch Bias line Diode 1 Passive patch Diode 2

Ground plane Passive patch

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 26 Communications of 44

Reconfigurable transmit-arrays

10-GHz 1-bit linearly-polarized unit-cell Waveguide characterization ° Insertion loss: 1.8 dB at 9.8 GHz ° 3-dB bandwidth: 1.47 GHz (14.7%)

0° state 180 ° state 0 0 -5 -5 S21 S21 -10 -10 -15 -15 S11 -20 -20 S11

Magnitude Magnitude (dB) -25 Magnitude Magnitude (dB) -25 Measure Measure. HFSS PBC -30 HFSS PBC -30 HFSS WG HFSS WG -35 -35 8 9 9.5 10 10.5 11 11.5 8 9 9.5 10 10.5 11 11.5 Frequency (GHz) Frequency (GHz)

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 27 Communications of 44 Reconfigurable transmit-arrays

10-GHz transmitarray

Array 20 ×20 cells

Horn 10 dBi

E-Plane

Biasing and logic circuit

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 28 Communications of 44

Reconfigurable transmit-arrays

10-GHz transmitarray ° Total efficiency: 53% ° Gain: 22.7 dBi, aperture efficiency: 16% ° 3-dB bandwidth: 15.6%

25 25 Simulation 20 Measure 20 15 15 10 5 10 0 5 -5

Magnitude Magnitude (dBi) 0 Magnitude Magnitude (dBi) -10 Simul. -5 -15 Measure -20 -10 -90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90 8 8.5 9 9.5 10 10.5 11 11.5 12 θ (deg) Frequency (GHz) WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 29 Communications of 44 Reconfigurable transmit-arrays

10-GHz transmitarray ° Beamsteering: ±70° in E- and H-planes

25 20 H Plane

15

10 5

0 -5 Magnitude (dBi) Magnitude -10

-15

-20 -90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90 θ (deg)

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 30 Communications of 44

Reconfigurable transmit-arrays

10-GHz transmitarray ° Beam synthesis: flat-top beam

15 15 Radiation 10 mask 10 5 0° 180° 5

0 0

-5 -5 Magnitude Magnitude (dBi) -10 (dBi) Magnitude -10 Simulation -15 -15 Simulation Measurement Measurement -20 -20 -90 -60 -30 0 30 60 90 -90 -60 -30 0 30 60 90 Angle (deg.) Angle (deg.)

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 31 Communications of 44 Reconfigurable transmit-arrays

30-GHz transmitarray ° Unit-cell: 1-bit phase-shifting, similar design as in X-band.

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 32 Communications of 44

Reconfigurable transmit-arrays

30-GHz transmitarray ° Unit-cells insertion loss: 1.09-1.29 dB at 29 GHz (meas.). ° 3-dB bandwidth: 27-30.2 GHz (11%)

0 0 0 0

-5 -1 -5 -1 -2 -2 -10 -10 -3 -3 -15 -4 -15 -4 -20 -5 -20 -5 -6 -25 -25 -6 S measurement 11 -7 S11 measurement -7

Magnitude Magnitude (dB) S21 measurement -30 Magnitude (dB) S21 measurement S measurement -30 22 -8 S22 measurement -8 S11 sim. waveguide S11 sim. waveguide S sim. waveguide -35 0° 21 -35 180° S21 sim. waveguide S22 sim. waveguide -9 S22 sim. waveguide -9 -40 -10 -40 -10 26 26.5 27 27.5 28 28.5 29 29.5 30 30.5 31 26 26.5 27 27.5 28 28.5 29 29.5 30 30.5 31 Frequency (GHz) Frequency (GHz) WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 33 Communications of 44 Reconfigurable transmit-arrays

30-GHz transmitarray ° 20x20 elements transmitarray (400 unit-cells). ° 10-dBi focal source (horn)

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 34 Communications of 44

Reconfigurable transmit-arrays

30-GHz transmitarray ° 20x20 elements transmitarray (400 unit-cells). ° 10-dBi focal source (horn) ° Sequential rotation of LP unit-cells ° Switchable circular polarization (left/right) ° Switchable linear polarization (H/V)

Sequential rotation of LP unit-cells

Active patches

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 35 Communications of 44 Reconfigurable transmit-arrays

30-GHz transmitarray ° Gain: 20.8 dBi (broadside) ° 3-dB bandwidth: 15%, 3-dB AR bandwidth: 18% ° Efficiency: 58%

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 36 Communications of 44

Reconfigurable transmit-arrays

30-GHz transmitarray ° Beamsteering: ±60° in every azimuth plane (5-dB scan loss at 60°) ° Polarization switching : LHCP/RHCP

LHCP configuration RHCP configuration Magnitude (dB) Magnitude (dB) Magnitude

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 37 Communications of 44 Reconfigurable transmit-arrays

30-GHz multi-source transmitarray ° Focal distance reduction using multiple focal sources F -50%

36 60

72

Planar focal array

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 38 Communications of 44

Reconfigurable transmit-arrays

30-GHz multi-source transmitarray ° Focal distance reduction using multiple focal sources ° SIW slot array: 2x2 sub-arrays of 2x2 slots ° Each sub-array: ~8 dBi gain, 50° beamwidth

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 39 Communications of 44 Reconfigurable transmit-arrays

30-GHz multi-source transmitarray ° Gain: 16.2 dBi (broadside) Magnitude(dB)

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 40 Communications of 44

Reconfigurable transmit-arrays

30-GHz multi-source transmitarray ° Gain: 16.2 dBi (broadside) ° Beamsteering ±40° Magnitude (dB) Magnitude

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 41 Communications of 44 Reconfigurable transmit-arrays

Perspective: mmWave base-station applications and self-backhauling ° Medium antenna gain (20-30 dBi) and Rad. Power (40-60 dBm EIRP) ° Beamsteering capability over a wide angular sector ° Spatial multiplexing, Multi-User ° Hybrid architectures (digital + analog beamforming)

AP

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 42 Communications of 44

Conclusion

Transmitarray antennas: competitive and cost-effective solutions for mmWave transmissions in 5G ° Efficiency, bandwidth, polarization quality, light weight ° State-of-the-art demonstrations from 10 to 90 GHz ° Passive antennas: mature solutions with on-going industrial transfer ° Beam-switching antennas with active focal arrays for Point-to-Point or Point-to-MultiPoint links ° Reconfigurable transmitarrays for beam-steering or beamforming in mmWave small cells with self-backhauling.

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 43 Communications of 44 References

° H. Kaouach, L. Dussopt, J. Lantéri, T. Koleck, R. Sauleau., "Wideband low-loss linear and circular polarization transmit- arrays in V-band," IEEE Trans. Antennas and Propagation, vol. 59, no. 7, pp. 2513-2523, July 2011. ° A. Clemente, L. Dussopt, R. Sauleau, P. Potier, P. Pouliguen, "Wideband 400-element Electronically Reconfigurable Transmitarray in X Band ," IEEE Transactions on Antennas and Propagation, vol. 61, no. 10, October 2013, pp. 5017- 2027. ° J.A. Zevallos Luna, L. Dussopt, "A V-band Switched-Beam Transmit-array antenna," Int. Journal on Microwave and Wireless Technologies, vol. 6, Issue 1, Feb. 2014, pp. 51-56. ° J.A. Zevallos Luna, L. Dussopt, A. Siligaris, "Packaged Transceiver with On-Chip Integrated Antenna and Planar Discrete Lens for UWB Millimeter-Wave Communications," 2014 IEEE International Conference on Ultra-Wideband (ICUWB 2014), 1-3 Sept. 2014, Paris, France. ° L. Di Palma, A. Clemente, L. Dussopt, R. Sauleau, P. Potier, P. Pouliguen, "1-bit reconfigurable unit-cell for Ka-band transmitarrays," IEEE Antennas and Wireless Propagation Letters, 2015. ° L. Di Palma, A. Clemente, L. Dussopt, R. Sauleau, P. Potier, P. Pouliguen, "Circularly-polarized reconfigurable transmitarray in Ka-band," 10th European Conference on Antennas and Propagation, Davos, Switzerland, 11-15 April 2016. ° L. Dussopt, A. Moknache, "Design of E-Band Transmitarray Antennas for Point-to-Point Communications," 2016 European Conference on Networks and Communications (EuCNC 2016), Athens, Greece, June 27-30, 2016. Acknowledgement: ° Collaboration Prof. R. Sauleau (univ. of Rennes, IETR) ° PhD students & postdocs: H. Kaouach, A. Clemente, L. Di Palma, J. Zevallos, J. Lanteri, A. Moknache. ° This work was partially supported by the French Ministry of Defense (DGA), the French Space Agency and the European Union (FP7-MiWaveS project).

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 44 Communications of 44 .5E8J5E9 5A8 3KFG9@ +9F=;A :BE 4=E9?9FF ,=69E =A G<9 0=??=@9G9E! 45I9 *5A8 !203%!6*)*0)3

&8)3.46,%'30:-6708= )6*)*0)3B78)3.46,?-,9

P?*- F^aa^bZigZF^aa^bZigZ'PVkZPVkZ MZX]cdad\^Zh MZX]cdad [dg /@ FdW^aZ GZildg`h VcY L]dgi'KVc\Z

7I\I DZINNQK

?^ghi k^YZd -,*e& ,**/ ?^ghi 2`& ,*+/ <]VccZa 4 _VlZY <]VccZa 4 GZjjbVcc[^abh  )>5'UQV 2 )-(>5'UQV

ENGINEERING 7I\I DZINNQK0 9WZMKI[\[

>WJQTM 7I\I DZINNQK / ! *()-%*(*( CUIZ\XPWVM \ZINNQK _QTT M`KMML A6 Ja *(*(

>mVWniZh ) bdci]

T+U <^hXd O^hjVa GZildg`^c\ BcYZm4 @adWVa FdW^aZ =ViV MgV[[^X ?dgZXVhi NeYViZ& ,*+/r,*,* ENGINEERING

% GZl =g^kZgh4 BciZgcZi d[ %;+7=9./3-

LdjgXZ4 JjVaXdbb

LdjgXZ4 @ZcZgVa >aZXig^X ?M\_WZS

LdjgXZ4 KdX`lZaa :jidbVi^dc

8

LdjgXZ4 @gZZcIZV` MZX]cdad\^Zh LdjgXZ4 ;g^kdEVWh ENGINEERING BbV\Z4 KZjiZgh

/ ENGINEERING

Gdi ZVhn id egZY^Xi 0/11+7 (558 8

MdYVn

=g( FVgi^c aZXig^X^in& +2**th

MdYVn

0 ENGINEERING A^hidg^XVa IZgheZXi^kZ

?^ghi P^gZaZhh :\Z4 LiVi^dc id LiVi^dc( %013-7*)1,

@;< FVgXdc^'FVg^i^bZ

%.# $.*10("/+(!(' (&++1(" ("/)(),(- ENGINEERING

A^hidg^XVa IZgheZXi^kZ

?^ghi P^gZaZhh :\Z4 LiVi^dc id LiVi^dc( %013-7*)1, LZXdcY P^gZaZhh :\Z4 LiVi^dc id IZdeaZ( &,.)-(*)1,

!63)+*)78

%.# $.*10("/+(!(' (&++1(" ("/)(),(- ENGINEERING A^hidg^XVa IZgheZXi^kZ

?^ghi P^gZaZhh :\Z4 LiVi^dc id LiVi^dc( %013-7*)1, LZXdcY P^gZaZhh :\Z4 LiVi^dc id IZdeaZ( &,.)-(*)1, M]^gY P^gZaZhh :\Z4 IZdeaZ id IZdeaZ( $0.)-(*)1,

:?I I]did ) I]^a^eeZ Aj\jZc

%.# $.*10("/+(!(' (&++1(" ("/)(),(- ENGINEERING 3

'/3* 4, #.(3-+

6ZW[[ W^MZ \W ")8) PIXXMVML QV c*()+ W^YcZhhZiX(Xdb

%.# $.*10("/+(!(' (&++1(" ("/)(),(- ENGINEERING +* Hi]Zg BcY^XVi^dch8

2 =ViV Xdcig^Wji^dc id dkZgVaa gZkZcjZh ^h cdl Vi 0/

2 ,*+0 J+ dkZgVaa :KIN YgdeeZY WZadl $.*

2 LbVgie]dcZ eZcZigVi^dc VagZVYn p2* ^c i]Z NL l^i] bdW^aZ hjWhXg^WZgh Vi .**F

2 q

LdjgXZh4 LigViZ\n :cVani^Xh5 ?^ZgXZ

++ ENGINEERING

>MM\QVO 6IXIKQ\a 7MUIVL[ _Q\P GQZMTM[[ 9QJMZ

)&

*&

;VX`]Vja^c\ [dg hbVaah XZaah ZkZgnl]ZgZ& ^i cZZYh 4 +( ;QOP XW_MZ [gdb gZaVn id hbVaa XZaa "adc\ Y^hiVcXZ# ,( =W_ XW_MZ ^ch^YZ i]Z hbVaa XZaa "jhZg h^YZ& edlZg XdchigV^ci#

T,U ]iieh4))lll(fjVaXdbb(Xdb)^ckZci^dc)+***m ENGINEERING ;QOPMZ 9ZMY]MVKQM[0 7%5IVL

' FdgZ WVcYl^Yi] VkV^aVWaZ& \dZh l^i] ! , 6MV\MZ 9ZMY]MVKa ,(. @Ao 0/ @Ao )+( :;b 4^IQTIJTM CXMK\Z]U 0* FAo 1 @Ao *( :;b# " ' :i XdchiVci eViX] h^oZ& cjbWZg d[ VciZccV \dZh l^i] ! , !

4V\MVVI IZZIa !'* [XIKQVO!

90/ @Ao 9+-*@Ao GQ\P NQ`ML IXMZ\]ZM$ LMOZMM[ WN NZMMLWU OWM[ _Q\P " - + 8VIJTM 5MIU [\MMZQVO ' CXI\QIT >]T\QXTM`QVO ' CXIKM LQ^Q[QWV U]T\QXTM IKKM[[

$ Gdi d[[^X^Vaan YZ[^cZY Wn ?<< nZi ENGINEERING

IgdWaZb LiViZbZci

'

:X]^Zk^c\ MW)h XVeVX^in

=QUQ\ML 4XMZ\]ZM WV DH =QUQ\ML 4XMZ\]ZM WV BH

2 E^cZ d[ L^\]i& L]dgi id FZY^jb KVc\Z a^c`h "/*b r adl `bth#

+( >mead^i a^c` $+-7++8 4, &7++*42 id dWiV^c XVeVX^in 2 LeZXigVa =H?h  &7+6:+3)= 2 LeVi^Va =H?h  &7+6:+3)= ! * ,( KZVa^o^c\ ]VgYlVgZ hnhiZb id VX]^ZkZ i]^h XVeVX^in 2 LnhiZbh % F^XgdlVkZ)>!F % <^gXj^ih

+. ENGINEERING E\QTQbQVO (4)80)1 !)2+:0+8/ =@C ><>@!

(4)80)1 !)2+:0+8/ ! #6,59,2*;

IVjagV_& :( C( ",**,#( B>>> MgVchVXi^dch dc >> MgVch( P^gZaZhh

LnhiZb HkZgk^Zl

#"'@ (# -.L & FC5G=5? 89;E99F B: :E998B@ # )!:B?8 ;5=A =: HF98 J=G< CB?5E=L5G=BA # &# -6CF 5;;E9;5G9 E5G9 =: 3/31 E5G9 =F ' -6CF #"'@ $0%3*%, ')1''2 /( !1''&/- (/1 #%1%,,', "*.+2 3H65EE5K BE 8=E97G=BA5? 5AG9AA5 (29DH=E98 :BE@ :57GBE FF GB #"%%@ 6K #"%%@ 5G $&# -.L )

"!"$$ "!"$$ %5+)3*+5 ;31(/2+5

/-.$,'2$/2:$,'2$387$ A^\] ?Vc ^c) ?Vc Hji GZildg`h ENGINEERING +0 gjcc^c\ Vi ]^\] heZZY <]VccZa l) F^hVa^\cbZcih

# <]VccZa bVig^m \^kZc Wn4 ! &

! ! ##%& " "

# # $ $

MKQ& .m. MMQ& .m. A.m.

# !

# EZi #-/$./ F # -/$./$B. C E # -/$./$;. C >@2 ,. C,4591A> .C,4591A> # :hhjbZ4 oZgd'[dgX^c\ YZiZXi^dc& cd^hZ'aZhh X]VccZa [dg h^bea^X^in(

ENGINEERING +1

<]VccZa FdYZa4 @V^ch VcY BciZg[ZgZcXZ P^i] i]Z S? YZiZXidg& i]Z gZh^YjVa ^ciZg[ZgZcXZ d[ i]Z Xgdhh ZaZbZci "dcan dcZ# ^h eadiiZY WZadl(

ENGINEERING BbeaZbZciVi^dc <]VaaZc\Zh +( =QVS 5]LOM\ [dg +**@Weh) .**b) +,s ?dgb ?VXidg # EZch VciZccVh % >aZXig^XVa)FZX]Vc^XVa WZVb[dgb^c\ # =';VcY ZcVWaZh bdgZ ediZci^Va \V^c VcY =H? l^i]^c [dgb [VXidg ,( =IZOM JI[MTQVM VcY h^\cVa)YViV Y^hig^Wji^dc # F^mZY'L^\cVa migZbZan =IZOM 9IV%QV'9IV%W]\ I\ DJX[ # Bc[dgbVi^dc'Hei^b^oZY [gdci'ZcYh5 add`^c\ Vi MQ'KQ XdY^c\& [ZZYWVX`& :cVad\ egdXZhh^c\& VcY Y^hig^WjiZY VgX]^iZXijgZ

P^aa Y^hXjhh V hjWhZi d[ ZmVbeaZ X]VaaZc\Zh ]ZgZ ENGINEERING

>mVbeaZ4 LXVaVWaZ :=< VcY =^\( ;; KViZh =^\^iVa

(71;;59 '& '& '& % F #./ ! #-/, #-/ !# ./ $ D , D " )868?19 ,)<:18; -/,+* 0+,)5?53?<=$,-/

2 $: ""64,560.2/ 356#8,56(140.2-6?6+.-.7(06 2 $: ""64,560.2/ %91)306+,0(96

;/<< !&< >).76 '

!5(*7.32(0 ;/<= ,0(9 '

!&= >).76

, JQ\[ 3 *(:CIUXTM'[MK  / 1 .,( :JX[ ZI\M 476' 55!

?W\ [KITIJTM! ENGINEERING :cVad\ IgdXZhh^c\' "()0 94 9.+ &:9:7+

F4-2503!/2-;3$14/7 F4-2503!/2-;3$14/7 D> D> !1018-23 ?+ ), @ ?+ +7<=3+, @ !/2-;3$14/7 D> $& ?+ 4+7=3+, @ "A( FC 5 ('*# 5362/:3 $& %928162;3 "A( FC 5 -4.3F.. ('*# E

,+ ENGINEERING

=^ZaZXig^X PVkZ\j^YZ CQOVIT 7Q[\ZQJ]\QWV 3)+(:;b IKZW[[ c-(KU IVL _Q\P 2,(:;b 5G IaVcVg ZmX^iVi^dc higjXijgZh dc V h^c\aZ h^YZ d[ i]Z PVkZ\j^YZ4

$ %< bdYZ4 FQ^ITLQ IV\MVVI

$ %= bdYZ4 C]J[\ZI\M QV\MOZI\ML _I^MO]QLM C

ENGINEERING ;7A8 7QMTMK\ZQK GI^MO]QLM >MI[]ZMUMV\[

2 ;7A8 XZWXMZ\QM[

@XMV KI^Q\a ZM[WVI\WZ [M\]X

!g4 ,(,/ Edhh iVc\Zci4 *(***/

=VbVh`dh ^cX(& bdYZa 3**M 2 7QMTMK\ZQK GI^MO]QLM UMI[]ZMUMV\[

>MI[]ZMUMV\[ 3 .( :;b :iiZcjVi^dc 6 ,(/ Y;)b FdYZ edaVg^oVi^dc Xgdhh Xdjea^c\ 6 '-*Y; "[dg V ,b =P@#

,-ENGINEERING

FZVhjgZY =ViV

;VX`'id'WVX` bZVhjgZbZcih

ENGINEERING E^cZ'd['L^\]i +-*@Ao FBFH MgVchXZ^kZg )(+$%,4-352166/4 <% "%%#%'%*!%*/./18/4

AB5C "9 ";

=@ A4 +& AB5C ": "<

! $498 >%ED, 2 ! ")8)%6)8->FD%#*57@%6-)1%,02

! ")8)%6)8->%FD%#*57@%6-)1%,02 ! "!%54;-6%J%GID%2( ! $64/6)22)*1-%$% &%#-37 ! %<%&-37080:08=%J%AHD, 2 <% "%%#%'%==%*/./18/4

=700 ! )7-*)3,%+06+9087 +& ! ")8)%6)8->%FD%#*57@%6-)1%,02 =700

,/ ENGINEERING

:X`cdlaZY\ZbZcih

:ZW]X IVL AZWRMK\ 6WTTIJWZI\WZ[0 2 Igd[Zhhdgh I^ZggZ D]jg^'RV`jW& N( FVY]dl& VcY @gV]Vb =L& R?:& VcY K:F egd\gVbh# 2 GL? "@^\VGZih VcY <:K>>K# 2 GBA 2 AZaabVc ?VXjain LX]daVgh]^e ! LH> MZgbVc ?Zaadlh]^e 2 LM:KcZi LHGB<

ENGINEERING KZ[ZgZcXZh

]iieh4))VgWVW^VcaVW(hiVc[dgY(ZYj)ejWa^XVi^dch

,1 ENGINEERING 300 GHz Fixed Wireless Links

Ingmar Kallfass

University of Stuttgart

[email protected]

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 2 Communications

Outline

• Motivation of THz Communication • E-/G-/H-band Frontends and Experiments • 300 GHz Fixed Wireless Link • Challenges and Outlook

IEMN THz Workshop WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 3 Communications “THz“ Communication (0.1 – 1 THz) A Wealth of (Potential) Applications

Fixed wireless links WLAN (p2p) Home Theatre

Access WPAN Media Kiosk Front-/Backhaul Data Center Data synch Smart Office

Intra-Machine Board-to-board km m cm

Si ↔SiGe ↔ GaAs, InP, GaN Photonics (UTC, QCL, Si, ...) ↔ WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 4 Communications

Fixed Wireless Links at ILH

E-band G-band H-band 71-76 & 81-86 GHz 208 – 272 GHz 275 – 325 GHz

1000

100 E-bandlink G-bandlink H-band link

10 H O 2

H O 1 2 limit of frequencylimit allocation 43.4% RH

atmosphericattenuation dB/km / O 2 heavy rain O 2 heavy fog 1 bar, 20°C 0,1 0 100 200 300 400 frequency / GHz WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 5 Communications Fixed Wireless Link Experiments

Tx: UTC PD EVM: 21.6 % 32 GBd 32 GBd 8PSK EVM: 26.3 % 32 GBd 32 GBd QPSK 20 GBd 16QAM @240 GHz @240 GHz @240 GHz @ 40 m @ 850 m

P = -4 dBm tx @ 20 m Ptx = -4 dBm Gant = 2 x 55 dBi Ptx = -13.5 dBm Gant = 2 x 43 dBi Gant = 2 x 43 dBi 40 m 850 m

Tx: GaN PA 32 GBd QPSK 3 GBd QPSK @300 GHz @ 1 m @73.5 GHz @ 37 km P = -4 dBm tx Ptx = 29 dBm G = 2 x 24 dBi ant Gant = 2 x 49 dBi 64 Gbit/s EVM: −9.65 dB

QPSK WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 6 Communications

Frequency Plan

LO X-band

RF n E-band n G-band IQ H-band Q I A A D D

IF Zero-IF

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 7 Communications Data Source

n n

IQ Q I A A D D

• Choice of AWG DAC Modulation format • Filtering • (Pre-Distortion) 20 GHz / 4x 65 GSa 13 GHz / 4x 65 GSa

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 8 Communications

Data Sink

n n

IQ Q I A A D D

• Synchronization DSO ADC • Equalization • (Filtering) 20 GHz / 80 GSa • De-Modulation (offline, using VSA Software) • EVM, SNR, ... • BER (Matlab)

20 GHz / 4x 65 GSa WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 9 Communications LO Generation

n n

IQ Q I A A D D

Synthesizer PLL-based approx. -126 dBc/Hz DDS-based approx. -104 dBc/Hz @ 100 kHz offset @ 100 kHz offset

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 10 Communications

Antennas

n n

IQ Q I A A D D

B2b + var. Attenuator Horn (+ collimating lens) Cassegrain parabolic sensitivity meas. Short range < 100 m Long range (km)

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 11 Communications Analog Transmit/Receive Frontend

n n

IQ Q I A A D D

• LO frequency multiplication and buffer amplifiers • RF Tx amplification • RF Rx LNA • IQ up- and down-conversion • Fraunhofer IAF 100, 50 and 35 nm mHEMT process

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 12 Communications

Fraunhofer IAF 35 nm mHEMT Process

1.5 µm

fT = 515 GHz fmax >1 THz 2.0 µm

Slide 13 THE TERAPAN PROJECT

Slide 14

The TERAPAN Project http://www.terapan.de/

Terahertz Communication for Next Generation Wireless Personal Area Networks

• TERAPAN is funded by the German Federal Ministry of Research and Education (BMBF) in the frame of the VIP (Validating the Innovative Potential) under grant number 03V0411. • The authors thank Dr. Peter Meissner for his valuable input as the Innovation Mentor of the TERAPAN project.

Slide 15 The TERAPAN Project http://www.terapan.de/

35 nm GaAs mHEMT technology with THz cutoff frequency

Fully integrated 300 GHz transmitter & receiver MMICs

Compact high performance waveguide modules

Mechanical beam-steering of SISO link Ongoing: 4x4 channel electronic beam-steering

Slide 16

300 GHz Rx/Tx MMIC Chip Set

• Transmitter Tx • IQ up-conversion

• integrated LO tripler Tx MMIC Rx MMIC IF IF • PA output stage I RF I IF 300 GHz IF Receiver Rx Q Q • 3 3 • IQ down-conversion LO LO • integrated LO tripler 100 GHz 100 GHz • LNA stage LO Freq. Multiplier MMIC • no IF amplification LO in 2 3 2 LO out • Local Oscillator LO 8.333 GHz 100 GHz • X-band input • frequency multiplier-by-12 ( x2 x3 x2)

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 17 Communications 300 GHz Transmitter

re si st ive FET 2 x 7 µm

compressed two-stage two-stage single-stage class-A cascode 90° 90° cascode cascode 2 x 20 µm 4 x 9 µm 4 x 9 µm 4 x 9 µm 0° 0° LO 0° 0° 0° 0° RF x3 90° 0° 90° 90° 0° 0°

90° 90°

TRL Q TRL I

IF Q IF I

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 18 Communications

300 GHz Receiver

resistive FET 2 x 7 µm

compressed two-stage four-stage class-A cascode 90° 90° cascode 2 x 20 µm 4 x 9 µm 4 x 9 µm 0° 0° LO 0° 0° RF x3 90° 0° 0° 0°

90° 90°

TRL Q TRL I

IF Q IF I

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 19 Communications 300 GHz Transmit and Receive MMICs

Technology: Fraunhofer IAF 35 nm mHEMT

x3 LO buffer Mixer PA LNA

0.75 x 3.25 mm 2

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 20 Communications

300 GHz Transmit MMIC

@300 GHz RF: @ P IF 0 dBm • 6 dB linear conversion gain • 270 – 314 GHz 3dB RF bandwidth • 3.6 dBm saturated RF power • 290 – 310 GHz <1dB gain ripple • -1 dBm OCP1dB • 6 dBm LO power @100 GHz

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 21 Communications 300 GHz Receive MMIC

@-35 dBm PRF : @ P IF 0 dBm, fRF 300-330 GHz (USB) • 11.4 dB linear conversion gain • gain control via cascode bias • 6 dBm LO power @100 GHz • 6.5 dB NF (stand-alone LNA)

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 22 Communications

W-Band Frequency Multiplier by Twelve

• 1.5 dBm output power • 2.5 dB conversion gain • 88 – 103 GHz bandwidth (15.7%) • >30 dBc suppression • no PN degradation beyond 20logn

Weber et.al. CSICS2011

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 23 Communications Waveguide Packaging

• split-block Au-plated brass waveguide modules • 50 µm Quartz waveguide-to-microstrip transitions • integrated PCB voltage supply

W-Band x12

300 GHz Tx/Rx

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 24 Communications

Measurement Setup

Keysight AWG Keysight DSO 64 GSa/s, 20 GHz, 8bit 80 GSa/s, 20 GHz, 8bit Rx ARBITR. WAVEFORM GEN. Tx OSCILLOSCOPE I I 300 GHz Q Q MPA MPA 100 GHz 100 GHz 12 12 8.33 GHz 8.33 GHz

SIGNAL GENERATOR SIGNAL GENERATOR

Slide 25 Tx/Rx Module Chain

LO in IFI/IFQ in 8.33 GHz 0-32 GHz

x12

WR-3 horn ant.

100 GHz WR-10 300 GHz MPA att. Tx DC supplies

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 26 Communications

1 m SISO Link

80 GSa/s WR10 RTO power meter DC supplies Rx LO @ 8.33 GHz 64 GSa/s AWG

300 GHz Rx Tx LO @ 8.33 GHz 300 GHz Tx

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 27 Communications Receiver Sensitivity

• 25 cm free-space (70 dB FSPL) plus variable attenuator • QPSK 2 GBd • Optimum Rx power: - 35.8 dBm

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 28 Communications

64 Gbit/s QPSK Transmission

• 1 m free-space distance 64 Gbit/s EVM: −9.65 dB • QPSK 32 GBd

QPSK

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 29 Communications CHALLENGES AND OUTLOOK

Slide 30

Challenges of THz Communication Systems

Directional Links beam-steering for NLOS and nomadic/mobile scenarios

Cost-efficient analog frontends: MMIC technology, packaging etc.

Multi-Gigabit Baseband DSP

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 31 Communications Analog Frontend („Radio“) Imperfections

DC Supplies Clock of switched Supply mode regulators modulation Phase IQ noise imbalance PLL × n

Unwanted LO leakage NF harmonics Linearity

fc = 300 GHz Spurs and noise in the radar or communication signal

System level simulation incl. frontend imperfections J. Antes, Dissertation, ILH 2015

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 32 Communications

Conclusions and Outlook

• We consider 300 GHz directional links a viable and scalable option for providing Gigabit data rates in real-world wireless communication systems • Data rates of 100 Gbit/s will be achievable by low complexity modulation formats (2-3 bit/s/Hz) • Choice of technology (Si / III-V MMIC, Si / InP photonic) can be matched to the most prospective application scenario • Future developments should focus on • Performance improvements of the analog Tx/Rx frontend • Electronic beam-steering for mobile/nomadic applications • Energy-efficient real-time digital signal processing at 100 Gbit/s and beyond • Low-cost, low-weight packaging technology • Seamless network integration

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 33 Communications • Thank you for your attention

Ingmar Kallfass University of Stuttgart Institute of Robust Power Semiconductor Systems Pfaffenwaldring 47 D – 70569 Stuttgart Tel.: +49 (0)711-685-68747 Fax: +49 (0)711-685-58747 E-Mail: [email protected]

Slide 34 THz Point to point links for back-hauling in future networks

G. Ducournau, M. Zaknoune, JF Lampin

IEMN, Lille University

[email protected]

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 2 Communications of Ducournau

Outline

1. Towards THz frequencies: why? 2. Photomixing for THz generation using UTC-PD 3. Early demonstrators 4. State of the art 5. Towards 100 Gbit/s at mm/submm wave frequencies

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 3 Communications of Ducournau Outline

1. Towards THz frequencies: why? 2. Photomixing for THz generation using UTC-PD 3. Early demonstrators 4. State of the art 5. Towards 100 Gbit/s at mm/submm wave frequencies

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 4 Communications of Ducournau

1. Towards THz frequencies

IP Trafic expected : -> 130 Ebyte per month in 2018…

Massive connected objects.

- Point to point, Line of Sight

1 THz

60 GHz LAN THz

LMDS Satellite comms WPAN 1 GHz Radio comms

“We will use THz carrier frequencies by 2020”, after T. S. Bird, Keynote talk at Next P2P links Asia-Pacific Microwave Conference, Melbourne, Australia, December 2011. Access for mobile networks 1 MHz Marconi [NASA] Adapté de [P.J. Winzer; IEEE Proceedings] 1900 1940 1980 2020 WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 5 Communications of Ducournau 1. Towards THz frequencies

Board to board coms. Fibre optic compatible (1.55 µm). Competitors Optics: also available

FSO products (Free Space optics, 0.4 / 0.78 µm) (ex: Intellimax) ~ Gbit/s

60 GHz products THz for indoor: frequency re-use , small cell size. AireBeam G60-DP

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 6 Communications of Ducournau

1. Towards THz frequencies

Frequency re-use

Frequency can depend on usages Point to point up to km range

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 7 Communications of Ducournau 1. Towards THz frequencies

Back-hauling

Kiosk downloading

Link budget

200-320 GHz: good target for km range

Contexte 8 WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 8 Communications of Ducournau

Outline

1. Towards THz frequencies: why? 2. Photomixing for THz generation using UTC-PD 3. Early demonstrators 4. State of the art 5. Towards 100 Gbit/s at mm/submm wave frequencies

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 9 Communications of Ducournau 2. Photomixing for THz

P P UTC-PD / Photoconducteur

F F

x bit/s

Laser 1, F 1,55 µm THz 1 fB P

fB = F2 - F1

x Hz

F Terahertz/sub-THz Optical domain Optical Photomixer

Laser 2, F2 Bruit millimétrique/THz I=s.P opt

ASE

η = PTHz Efficiency t + IV 00 Popt WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 10 Communications of Ducournau

2. Photomixing for THz

P UTC-PD operation P [T. Ishibashi et al., IEICE Trans. Electron Vol. E-83C, 2000]

InGa InGa As As τ InP a InP InP τ t

Hole-limited Structure InP/InGaAs Absorption in p-doped zone( ∼10 18 cm -3) e-: diffusion towards InP collector

τ τ τ ω 2 Dynamics: a, transit ( t), collector capacitance + loading ( RC ) PRF =r ( ).I f3dB > 200 GHz

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 11 Communications of Ducournau 2. Photomixing for THz

Barrière (AlInGaAs) Couche τ ∼ a 0.2 ps absorbante e- τ ∼ t 0.7 ps p InGaAs Contact (p) InP 2 Coll. InP 3 µm + h (i) Sub- Coll. 100 nm Epitaxy (MBE) : X. Wallart and C. Coinon (n) 137 nm Technology : A. Beck and M. Zaknoune

To increase cut-off frequency: • Short collector (137 nm) • Small area (3 µm 2) • Pseudo-field in absorbing layer: 46 % ⇒ 60 % Indium

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 12 Communications of Ducournau

2. Photomixing for THz

TEM horn antenna (TEM-HA)

• No radiation in the substrate • No Si lens • Pulse or CW (Non dispersive) TEM-HA

CPW

10 µW @ Target UTC-PD communication

20 µm frequencies (200-400 GHz)

UTC-PD + TEMHA : (No bias, passive hot spot)

Spatial separation of the 1.55 µm beam and the THz beam. WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 13 Communications of Ducournau 2. Photomixing for THz

TEM horn antenna (TEM-HA)

• No radiation in the substrate • No Si lens • Pulse or CW (Non dispersive)

[L. Prissette et ,al. IEEE Microwave and Wireless Components Lett. 21, 49- 51, 2011.]

Linear scale

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 14 Communications of Ducournau

2. Photomixing for THz

TEM-HA: S 11 < - 10 dB 100 GHz up to 1000 GHz:

Exemple in 220-325 GHz band

WR3 waveguide Plane reflector ∆ν ~ 20 GHz (Air Cavity)

< -10 dB In the whole band

Without reflector

Antenna With reflector (l = 4,5 mm) WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 15 Communications of Ducournau Outline

1. Towards THz frequencies: why? 2. Photomixing for THz generation using UTC-PD 3. Early demonstrators 4. State of the art 5. Towards 100 Gbit/s at mm/submm wave frequencies

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 16 Communications of Ducournau

3. Demonstrators

Roadmap : Tx development using advanced InGaAs/InP UTC-PD, componant up to system-level evaluation of performances.

V Fiber optic compatible / link with coherent networks.

• 2010 : Simple ASK / 1.25 Gbit/s @ 200 GHz

• 2012 : « Fiber» data rates in THz range: • ASK 46 Gbit/s / 400 GHz • 2013 : Coherent-links for ultra-high efficiency at 200 GHz, combination of photonics and electronics.

• 2014-2015: Vectorial schemes

• Towards 100 Gbit/s in THz?

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 17 Communications of Ducournau 3. Simple case: ASK link

G. Ducournau, et al. Electronics • Simple modulation format (ASK) Letters, 46(19) :pp. 1349–1351, 2010. • 2 modulated λ (Mach-Zehnder)

• BER « error-free » 10 -9 / 10 -11

• Power < µW IET Premium award 2011 WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 18 Communications of Ducournau

3. Ultra-wide band at 400 GHz

Optical modulation Reference eye LD2 (PRBS -> 46 Gbps) (22 Gbps)

Antenne THz Laser Diodes LD 1 193.6 THz MZM LD 2 194 THz Mixer CL = 8 dB 3.2 nm (400 GHz) EDFA UTC-PD @ 400 GHz Amp.

Oscillos 0 cope

-20 THz Cornet WR2.2 WR5.1 30 dB ∼ λ 4 dB -40 LD1 -meter X12 -60 Optical monitoring (dBm) Optical

-80 193,4 193,6 193,8 194,0 194,2 Frequency (THz) 16.666 GHz

46 Gbit/s @ 400 GHz

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 19 Communications of Ducournau 3. Ultra-wide band at 400 GHz

G. Ducournau et al., “Ultra wide bandwidth …”, IEEE Transactions on THz Science and Technology, 2014.

0 7.5 dB T.A.D. -3

-6 22 Gbps D.A.D.

-9 Towards 40 Gbit/s

-12 ∼ 7.5 dB distorsion 40 Gbps ∼ THz channel not symetric -15 ∼ Noise-limited Bande requise pour ∼ …Challenging… -18 40 Gbit/s NormalizedTHz channel (dB)

340 360 380 400 420 440 460 Frequency (GHz)

Transmission of fiber data rates (OC-768, 40 Gbit/s - 42,7 Gbit/s avec FEC) on THz carrier

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 20 Communications of Ducournau

3. Coherent schemes

Collab. Univ. OSAKA (T. Nagatsuma) Frequency comb driven by microwave reference

Bandwidth Elec. Rx Sensitivity

UTC-PD

Error free BER

< 1 µW à 5 Gbit/s < 2 µW à 10 Gbit/s

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 21 Communications of Ducournau 3. Next steps

2010-2013 demonstrators

Heterodyne + Dét. enveloppe

Heterodyne + Dét. enveloppe Dét. enveloppe

UTC-PD Tx can be qualified using electronic Rx

Ultra-wide bandwidth in THz

Very simple ASK format

Real-time only in ASK mode (phase noise of the laser sources)

Easy to reach multi-carrier in THz using Sigle THz carrier, single polarization, directive photonic devices

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 22 Communications of Ducournau

3. Next steps

• Radio- services and earth observation: already working

• H2O lines! • Sevaral sub-bands available, split in frequency in the > 275 GHz region

Free above 275 GHz

8 6 5/3 5/10/5 5 10 21/11 30 ASK? x-PSK QAM 300 350 400 450 500 550 600 Frequency (GHz)

Total ~ 120 GHz / 200 Gbit/s @ 2 bit/s/Hz

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 23 Communications of Ducournau 3. Next steps: coupling with fibers

Fiber networks

OPTICS

Multi λ, 2-Pol

Fopt ~ 193 THz THz Data λ 1 Optical QPSK Baseband PIN-PD

Access THz networks λ2 1-Pol Pilot optical Mm-wave UTC-PD F -F line radio 1 2 THz-QPSK

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 24 Communications of Ducournau

3. Exemple: QAM-16 in THz

THz emission

Optical fiber

THz Optical signal 25 m QAM-16 (reference) 32 Gbit/s

Detection electronics 32 Gbit/s detected I-eye Signal processing

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 25 Communications of Ducournau Outline

1. Towards THz frequencies: why? 2. Photomixing for THz generation using UTC-PD 3. Early demonstrators 4. State of the art 5. Towards 100 Gbit/s at mm/submm wave frequencies

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 26 Communications of Ducournau

4. State of the art

Data rate Distance Freq. Technology CDP Multiplexing Modulation BER (Type) Ref. Year (Gbit/s) (m) (GHz) (Tx/Rx) (Gbit/s.km)

200 0.5 100 Polarization (2 ch) PD / SHM QPSK 10 -3 / off-line [31] - 2013 UTC + HEMTs / 10 1000 120 - ASK < 10 -9 / real-time [9] 10 2012 HEMT 40nm CMOS 11 3 130 - ASK < 10 -9 /real-time [58] 0.033 2015 (Tx/Rx) 75 0.02 200 Frequency (3 ch) UTC-PD / SHM QPSK 10 -5 / off-line [29] - 2014 UTC-PD / HEMT Up to QAM- 100 20 237.5 Frequency (3 ch) 2.10 -3 / off-line [32] - 2013 Rx 16 64 850 240 - mHEMT -MMIC QPSK 5.10 -3 / off-line [61] - 2015

64 1 300 - MMIC (Tx/Rx) QPSK - / off-line [52] - 2015

40 10 300 - UTC-PD / SHM QPSK 10 -4 / off-line [36] - 2015

48 0.5 300 Polarization (2 ch) UTC-PD / SBD ASK 10 -10 / real-time [34] 0.024 2013

3 50 340 - SHM / SHM QAM-16 10 -10 / real-time [65] 0.15 2014

32 0.5 385 - UTC-PD / SHM QPSK 10 -5 / off-line [62] - 2015

46 2 400 - UTC-PD / SHM ASK 10 -3 / off-line [30] - 2014 UTC-PD / SBD or 30 / 50 20 / 0.5 300 / 330 - ASK 10 -9 / real-time [28] 0.6/0.025 2015 SHM 60 0.5 400 Frequency (4 ch) UTC-PD / SHM QPSK 10 -3 / off-line [63] - 2015 Duobinary 2.5 3 625 - Multiplier / SBD < 10 -9 /real-time [64] 0.0075 2011 WF03 Millimetre-Wave Technologies for 5G Mobile Net(ASK)works and Short-Range Slide 27 Communications of Ducournau 4. State of the art (applicative)

Real ‘figure-of- THz com. systems demonstrated merit’ is Product Data-rate.distance, 1000 TERALINKSIEMN roadmap roadmap (2016-2020) (Gbit/s.km) (b) Spectrally efficient - Indoor 100 IEMN, 2015 [6] IAF, [9] (real-time perf.) Outdoor IEMN, 2014, [5] (a) ASK Back-haul 10 [IEMN, 2014] NTT, [7] NTT, [8]

Photonics, DSP 1 [IEMN, 2010] Photonics, real-time Datarate (Gbit/s) Electronics, DSP Electronics, real-time 0,1 Targets, real-time 0,01 0,1 1 10 100 1000 Distance (m)

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 28 Communications of Ducournau

Outline

1. Towards THz frequencies: why? 2. Photomixing for THz generation using UTC-PD 3. Early demonstrators 4. State of the art 5. Towards 100 Gbit/s at mm/submm wave frequencies

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 29 Communications of Ducournau 5. Towards 100 Gbit/s

ASK transmissions Coherent transmissions

… 100 Gbit/s @ 1 km Multi-carrier Pre-distorsion Channel effects P2P > 100 m QPSK 385 GHz Advanced UTC-PD 32 Gbit/s, 20 cm QAM-16 32 Gbit/s à 385 GHz, 25m

UWB à 400 GHz Génération THz lasers Brillouin 1 Gbit/s à 200 GHz UTC-PD pour THz

2008 2010 2011 2013 2014 2015

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 30 Communications of Ducournau

5. Towards 100 Gbit/s

Open challenges

Item Target Technology options

Multi-band (multi-carrier) system Data rate 100 Gbit/s ~ 1 Tbit/s Ultra-wideband optical modulators ‘system-level’ Integrated photodiode arrays Active devices Link distance 1 km ~ 5 km Use of amplifiers and integration Circuits Photonic integration Efficiency - (III-V photonics/Si photonics) Low-loss waveguide/interconnect Wide-band antenna Antennas Wide-band passive devices Key component - (fix or reconfigurable) (filter/coupler/diplexer) New materials & devices (metamaterial, graphene, plasma-wave, etc.) Propagation model Miscellaneous - Standardization Radio channel Spectrum regulation

Robust system, in ‘real-life’ case, using III-V or Silicon photonic devices (for integration level) WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 31 Communications of Ducournau Acknowledgments

CPER PHOTONICS FOR SOCIETY ( 2016-2020 )

Excelsior, FLUX

ITN MITEPHO

« WITH », « OSMOTUS », « COM’TONIQ »

WF03 Millimetre-Wave Technologies for 5G Mobile Networks and Short-Range Slide 32 Communications of Ducournau