The Laser Frequency Comb As a High Precision Wavelength Reference

Total Page:16

File Type:pdf, Size:1020Kb

The Laser Frequency Comb As a High Precision Wavelength Reference The CU/NIST Laser Frequency Comb Calibrator for High-Precision NIR Spectroscopy Steve Osterman1, John Bally1, Scott Diddams2, Frank Quinlan2, Gabriel Ycas2,3 1University of Colorado, Center for Astrophysics and Space Astronomy, Boulder, CO 2National Institute for Sciencde and Technology, Time and Frequency Division, Boulder, CO 3University of Colorado, Department of Physics, Boulder, CO Abstract HARPS, HIRES, etc. have shown the value of high precision spectroscopy for RV planet searches at visible We have developed a broad-band laser frequency comb at NIST to support high-precision H-Band wavelengths, but visible light RV planet searches are best suited to to solar like stars, making detection of spectroscopy at resolutions of 50,000 and higher. We present an overview of laser frequency comb an earth-analog extremely challenging. Alternatively, low mass M Dwarfs are promising subjects but are not technology and detailed capabilities of the existing H-band laser frequency comb. In addition to ground-based J easily observed at visible wavelengths. Precision NIR spectroscopy is becoming a reality with advances in applications, we will discuss the possibility of performing high-precision spectroscopy from the SOFIA aircraft. laser comb technology, making high precision RV studies of low mass stars a possibility. Why look for planets around low mass The Laser Frequency Comb as a High The CU/NIST H-Band Laser Comb stars? Precision Wavelength Reference: ! 250 MHz Er fiber comb (0.002nm/mode at 1550nm) ! Larger RV signature for a given planet mass in the habitable zone ! Two levels of mode filtering increase spacing to 12.5GHz (0.11nm/ ! An LFC represents an ideal wavelength standard: ! Lower mass " Lower temperature mode, or !/"!=15,500 at 1550nm) w/ > 50nm band width ! Dense array of uniformly spaced, uniformly bright lines ! Habitable zone is closer to the host, increasing RV signature ! Post filter non-linear broadening increases band width to 400nm ! Lower host mass increases RV signature ! Frequencies traceable to a fundamental standard. ! Nearest neighbor suppression = 20-40dB for broadened spectrum ! Tighter orbit leads to shorter period (weeks) ! Precision and long term stability should exceed the ultimate precision ~30 dB suppression, ! Large number of host stars within 10pc of the spectrograph. HOSM, SMA present ! Cool stars brighter in the NIR ! A laser Frequency Comb meets these requirements: ! No shortage of narrow spectral features ! The LFC creates a high precision optical frequency ruler: Each line (mode) can be written as f = nf + f P]":45?97>3;"H:"S7;FF93".9::""<B3" n r 0 f is the frequency of the nth mode $"9?G"#";9376YC9::"MF9?;7:"4?" n >60 dB, no side fr is the repetition rate of the laser (~250MHz to 10GHz) mode 76;"F4=>4G"I97;3"69D479DF;"QB?;" asymmetry Quinlan, 2010 (arXiv:1002.4354) f0 is the carrier offset frequency (< fr ) 29G9M7;G"<3BC"-9:E?5^"$__`8 -19 ! This relation is exact (measured to 10 ). 7$1013R/s The existing H-Band comb can support < 5cm/s RV precision (1:1010) %#!" %!!" "'979"<3BC"%&'()*":>3H;A" $#!" H9F>;:"2\9?"%!!_8":6BI4?5" $!!" Quinlan, 2010 (arXiv:1002.4354) M3;YGBC4?9?@;"B<"@F9::"." #!" :793:"I4764?"$!"M@J" Low power High power !" 12.5GHz filter cavity filter cavity /" +" 0" 1" -" )" *" ," (" f:2f mode ." HNLF &'" locking 2345678"/9:;3"<3;=>;?@A"@BCD"<>?@EB?4?5"9:"DB76"9":4C>F79?;B>:"9?G"BH;3F94G"I9H;F;?576" What else could be done if high precision 3;<;3;?@;J""06;"F9:;3"@BCD"4:"I;FF":>47;G"<B3">:;"I476"KD;3"<;G":A:7;C:J"""2F;L8"06;"<3;=>;?@A" Menlo @BCD":M;@73>C"4:"76;"+B>34;3"739?:<B3C"B<"9"M>F:;"7394?"I476"76;"53B>M"9?G"M69:;"H;FB@4E;:" Er:Fiber comb Amplifiers NIR spectroscopy were possible? BN:;7"DA"O#."""!"#9?G"!$"93;"P+"9?G";9:4FA":79D4F4Q;G"7B"6456"M3;@4:4B?J ! How common are terrestrial mass planets around low mass stars, and Principal LFC technologies" S4C>F9EB?"B<"9"$%J#,TQ"F9:;3"@BCD" how many reside in the habitable zone? :M;@73>C"BH;3F94G"B?"9?".U" Gain 55,000 ! How and when do gas giant orbits evolve? CW (Er-doped :M;@73>C"97"%V J""WBCD"X" pump fiber) :M;@73B539M6"!"#YZC[:"M3;@4:4B?J" CU/NIST H-Band Laser Frequency ! How common are gas giant planets around post-main sequence red M3 OC single- Comb giant? Isolator mode 2.U":M;@73>C"<3BC"1;?5"\49?58 PUMP polarizer fiber ! Are “Hot Jupiters” Cannibalized by Red Giants M1 M2 polarizer controller ! How Common are Gas Giant, Brown Dwarfs, and Red Dwarfs Around Suitability for air-born application Massive Super-giants? Ti:Sapphire !" Er:fiber laser Yb:fiber laser ! Existing technology easily adapted to the H band (Er-fiber laser) or to ! Planetary atmospheres Wavelength Range*: 400-1200 nm 1000-2200 nm 500-1700 nm Repetition Rate: up to 10 GHz ~ 250 MHz up to 1GHz the J Band (Yb-fiber laser) ! Stellar rotation and astroseismology Power out: >500 mW 3-30 mW 3-30 mW ! M and lower mass spectroscopic binaries Pump: 5-8 W @ 532nm 100 mW @ 100 mW @ ! SWAP of flight qualified Er and Yb-based combs could be as low as 1480/980 nm 980nm 15 liters, 20 kg , 50 W (without nonlinear broadening) Alignment: Required Easy Easy This is not just about finding planets around M stars: By Noise: Very low Higher Higher ! The fundamental limit is likely to be the transverse (line of sight) RV Pulse width: <30 fs 90-200 fs 90-200 fs improving RV precision by up to 2 orders of magnitude we Electrical Power: ~700 W ~10 W ~10 W knowledge and stability of platform open up an enormous discovery space. *: Wavelength range with nonlinear broadening ! Add fast shutter to control spurious RV content .
Recommended publications
  • The Near-Infrared Multi-Band Ultraprecise Spectroimager for SOFIA
    NIMBUS: The Near-Infrared Multi-Band Ultraprecise Spectroimager for SOFIA Michael W. McElwaina, Avi Mandella, Bruce Woodgatea, David S. Spiegelb, Nikku Madhusudhanc, Edward Amatuccia, Cullen Blaked, Jason Budinoffa, Adam Burgassere, Adam Burrowsd, Mark Clampina, Charlie Conroyf, L. Drake Demingg, Edward Dunhamh, Roger Foltza, Qian Gonga, Heather Knutsoni, Theodore Muencha, Ruth Murray-Clayf, Hume Peabodya, Bernard Rauschera, Stephen A. Rineharta, Geronimo Villanuevaj aNASA Goddard Space Flight Center, Greenbelt, MD, USA; bInstitute for Advanced Study, Princeton, NJ, USA; cYale University, New Haven, CT, USA; dPrinceton University, Princeton, NJ, USA; eUniversity of California, San Diego, La Jolla, CA, USA; fHarvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA; gUniversity of Maryland, College Park, MD, USA; hLowell Observatory, Flagstaff, AZ, USA; iCalifornia Institute of Technology, Pasadena, CA; jCatholic University of America, Washington, DC, USA. ABSTRACT We present a new and innovative near-infrared multi-band ultraprecise spectroimager (NIMBUS) for SOFIA. This design is capable of characterizing a large sample of extrasolar planet atmospheres by measuring elemental and molecular abundances during primary transit and occultation. This wide-field spectroimager would also provide new insights into Trans-Neptunian Objects (TNO), Solar System occultations, brown dwarf atmospheres, carbon chemistry in globular clusters, chemical gradients in nearby galaxies, and galaxy photometric redshifts. NIMBUS would be the premier ultraprecise
    [Show full text]
  • Fundamentals of Frequency Combs: What They Are and How They Work
    Fundamentals of frequency combs: What they are and how they work Scott Diddams Time and Frequency Division National Institute of Standards and Technology Boulder, CO KISS Worshop: “Optical Frequency Combs for Space Applications” 1 Outline 1. Optical frequency combs in timekeeping • How we got to where we are now…. 2. The multiple faces of an optical frequency comb 3. Classes of frequency combs and their basic operation principles • Mode-locked lasers • Microcombs • Electro-optic frequency combs 4. Challenges and opportunities for frequency combs 2 Timekeeping: The long view Oscillator Freq. f = 1 Hz Rate of improvement f = 10 kHz since 1950: 1.2 decades / 10 years f = 10 GHz “Moore’s Law”: 1.5 decades / 10 years f = 500 THz Gravitational red shift of 10 cm Sr optical clock ? f = 10-100 PHz ?? S. Diddams, et al, Science (2004) Timekeeping: The long view Oscillator Freq. f = 1 Hz f = 10 kHz f = 10 GHz f = 500 THz Gravitational red shift of 10 cm Sr optical clock ? f = 10-100 PHz ?? S. Diddams, et al, Science (2004) Use higher frequencies ! Dividing the second into smaller pieces yields superior frequency standards and metrology tools: 15 νoptical 10 ≈ ≈ 105 νmicrowave 1010 In principle (!), optical standards could surpass their microwave counterparts by up to five orders of magnitude ... but how can one count, control and measure optical frequencies? 5 Optical Atomic Clocks Atom(s) νo Detector At NIST/JILA: Ca, Hg+, Al+, Yb, Sr & Slow Δν Laser Control Atomic Resonance Counter & Laser Read Out Fast Laser (laser frequency comb) Control •Isolated cavity narrows laser linewidth and provides short term timing reference Isolated Optical Cavity •Atoms provide long-term stability and accuracy— now now at 10-18 level! •Laser frequency comb acts as a divider/counter Outline 1.
    [Show full text]
  • Towards On-Chip Self-Referenced Frequency-Comb Sources Based on Semiconductor Mode-Locked Lasers
    micromachines Review Towards On-Chip Self-Referenced Frequency-Comb Sources Based on Semiconductor Mode-Locked Lasers Marcin Malinowski 1,*, Ricardo Bustos-Ramirez 1 , Jean-Etienne Tremblay 2, Guillermo F. Camacho-Gonzalez 1, Ming C. Wu 2 , Peter J. Delfyett 1,3 and Sasan Fathpour 1,3,* 1 CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL 32816, USA; [email protected] (R.B.-R.); [email protected] (G.F.C.-G.); [email protected] (P.J.D.) 2 Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA; [email protected] (J.-E.T.); [email protected] (M.C.W.) 3 Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA * Correspondence: [email protected] (M.M.); [email protected] (S.F.) Received: 14 May 2019; Accepted: 5 June 2019; Published: 11 June 2019 Abstract: Miniaturization of frequency-comb sources could open a host of potential applications in spectroscopy, biomedical monitoring, astronomy, microwave signal generation, and distribution of precise time or frequency across networks. This review article places emphasis on an architecture with a semiconductor mode-locked laser at the heart of the system and subsequent supercontinuum generation and carrier-envelope offset detection and stabilization in nonlinear integrated optics. Keywords: frequency combs; heterogeneous integration; second-harmonic generation; supercontinuum; integrated photonics; silicon photonics; mode-locked lasers; nonlinear optics 1. Introduction The field of integrated photonics aims at harnessing optical waves in submicron-scale devices and circuits, for applications such as transmitting information (communications) and gathering information about the environment (imaging, spectroscopy, etc.).
    [Show full text]
  • Atomic Clocks of the Future: Using the Ultrafast and Ultrastable'
    Atomic clocks of the future: using the ultrafast and ultrastable' Leo Hollberg, Scott Diddanis, Chris Oates, Anne Curtis. SCbastien Bize, and Jim Bergquist National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305 F-mai!: !~ol!ber~~,b~~!der.ni~~.gc\~ *Contribution of NlST not subject Lo copyrigl~t. Abstract. The applicalion of ultrafast mode-locked lasers and nonlinear optics to optical frequency nietrology is revolutionizing the field ofatomic clocks. The basic concepts and applications are reviewed using our recent rcsults with two optical atomic frequency standards based on laser cooled and trapped atoms. In contrast to today's atomic clocks that are based on electronic oscillators locked to microwave transitions in atoms, the nest generation of atomic clocks will ]nos[ likely employ lasers and optical transitions in lasel--cooled atoms and ions. Optical atomic frequency standards use frequency-stabilized CW lasers with good short-term stability that are stabilized to narrow atomic rcsonances using feedback control systems. At NIST we are developing two optical frequency standards, one based on laser cooled and trapped calcium atoms and the other on a single laser cooled trapped Hg+ ion. Similar research is being done at labs around the world. 1\1oving from microwave frequencies, where one cycle corresponds to 100 ps, to optical frequencies where one cycle is a femtosecond long, allows us to divide time into smaller intervals and hence gain frequency stability and timing precision. Steady progress over the past 30 years has improved the performance of optical fiquency standards to the point that they are now competitive with, and even moving beyond.
    [Show full text]
  • And H-Band Spectra of Globular Clusters in The
    A&A 543, A75 (2012) Astronomy DOI: 10.1051/0004-6361/201218847 & c ESO 2012 ! Astrophysics Integrated J-andH-band spectra of globular clusters in the LMC: implications for stellar population models and galaxy age dating!,!!,!!! M. Lyubenova1,H.Kuntschner2,M.Rejkuba2,D.R.Silva3,M.Kissler-Patig2,andL.E.Tacconi-Garman2 1 Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany e-mail: [email protected] 2 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching bei München, Germany 3 National Optical Astronomy Observatory, 950 North Cherry Ave., Tucson, AZ, 85719 USA Received 19 January 2012 / Accepted 1 May 2012 ABSTRACT Context. The rest-frame near-IR spectra of intermediate age (1–2 Gyr) stellar populations aredominatedbycarbonbasedabsorption features offering a wealth of information. Yet, spectral libraries that include the near-IR wavelength range do not sample a sufficiently broad range of ages and metallicities to allowforaccuratecalibrationofstellar population models and thus the interpretation of the observations. Aims. In this paper we investigate the integrated J-andH-band spectra of six intermediate age and old globular clusters in the Large Magellanic Cloud (LMC). Methods. The observations for six clusters were obtained with the SINFONI integral field spectrograph at the ESO VLT Yepun tele- scope, covering the J (1.09–1.41 µm) and H-band (1.43–1.86 µm) spectral range. The spectral resolution is 6.7 Å in J and 6.6 Å in H-band (FWHM). The observations were made in natural seeing, covering the central 24"" 24"" of each cluster and in addition sam- pling the brightest eight red giant branch and asymptotic giant branch (AGB) star candidates× within the clusters’ tidal radii.
    [Show full text]
  • Stellar Spectra in the Hband
    110 Wing and Jørgensen, JAAVSO Volume 31, 2003 Stellar Spectra in the H Band Robert F. Wing Department of Astronomy, Ohio State University, Columbus, OH 43210 Uffe G. Jørgensen Niels Bohr Institute, and Astronomical Observatory, University of Copenhagen, DK-2100 Copenhagen, Denmark Presented at the 91st Annual Meeting of the AAVSO, October 26, 2002 [Ed. note: Since this paper was given, the AAVSO has placed 5 near-IR SSP-4 photometers with observers around the world; J and H observations of program stars are being obtained and added to the AAVSO International Database.] Abstract The H band is a region of the infrared centered at wavelength 1.65 microns in a clear window between atmospheric absorption bands. Cool stars such as Mira variables are brightest in this band, and the amplitudes of the light curves of Miras are typically 5 times smaller in H than in V. Since the AAVSO is currently exploring the possibility of distributing H-band photometers to interested members, it is of interest to examine the stellar spectra that these photometers would measure. In most red giant stars, the strongest spectral features in the H band are a set of absorption bands due to the CO molecule. Theoretical spectra calculated from model atmospheres are used to illustrate the pronounced flux peak in H which persists over a wide range of temperature. The models also show that the light in the H band emerges from deeper layers of the star’s atmosphere than the light in any other band. 1. Introduction When multicolor photometry in the infrared was first standardized in the 1960s, Harold Johnson and his colleagues acquired filters to match the windows in the atmospheric absorption and named them with letters of the alphabet (Johnson 1966).
    [Show full text]
  • Near–Infrared Classification Spectroscopy: <I>H</I>–Band Spectra of Fundamental MK Standards
    Smith ScholarWorks Astronomy: Faculty Publications Astronomy 11-20-1998 Near–Infrared Classification Spectroscopy: H–band Spectra of Fundamental MK Standards Michael R. Meyer University of Massachusetts Amherst Suzan Edwards Smith College, [email protected] Kenneth H. Hinkle Kitt Peak National Stephen E. Strom University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.smith.edu/ast_facpubs Part of the Astrophysics and Astronomy Commons Recommended Citation Meyer, Michael R.; Edwards, Suzan; Hinkle, Kenneth H.; and Strom, Stephen E., "Near–Infrared Classification Spectroscopy: H–band Spectra of Fundamental MK Standards" (1998). Astronomy: Faculty Publications, Smith College, Northampton, MA. https://scholarworks.smith.edu/ast_facpubs/15 This Article has been accepted for inclusion in Astronomy: Faculty Publications by an authorized administrator of Smith ScholarWorks. For more information, please contact [email protected] THE ASTROPHYSICAL JOURNAL, 508:397È409, 1998 November 20 ( 1998. The American Astronomical Society. All rights reserved. Printed in U.S.A. NEAR-INFRARED CLASSIFICATION SPECTROSCOPY: H-BAND SPECTRA OF FUNDAMENTAL MK STANDARDS MICHAEL R. MEYER1 Five College Astronomy Department, University of Massachusetts, Amherst, MA 01003; mmeyer=as.arizona.edu SUZAN EDWARDS Five College Astronomy Department, Smith College, Northampton, MA 01063; edwards=makapuu.ast.smith.edu KENNETH H. HINKLE Kitt Peak NationalObservatory,2 National Optical Astronomy Observatories, Tucson, AZ 85721; hinkle=noao.edu AND STEPHEN E. STROM Five College Astronomy Department, University of Massachusetts, Amherst, MA 01003; sstrom=tsaile.phast.umass.edu Received 1998 April 7; accepted 1998 June 26 ABSTRACT We present a catalog of H-band spectra for 85 stars of approximately solar abundance observed at a resolving power of 3000 with the KPNO Mayall 4 m Fourier Transform Spectrometer.
    [Show full text]
  • The NIR Upgrade to the SALT Robert Stobie Spectrograph
    The NIR Upgrade to the SALT Robert Stobie Spectrograph Andrew I. Sheinis,1,a Marsha J. Wolf,1,b Matthew A. Bershady,1 David A.H. Buckley,2 Kenneth H. Nordsieck,1 Ted B. Williams3 1 University of Wisconsin – Madison, Dept. of Astronomy, 475 N. Charter St., Madison, WI 53706 2 South African Astronomical Observatory, Observatory 7935, South Africa 3 Dept. of Physics and Astronomy, Rutgers University, Piscataway, NJ 08855 ABSTRACT The near infrared (NIR) upgrade to the Robert Stobie Spectrograph (RSS) on the Southern African Large Telescope (SALT), RSS/NIR, extends the spectral coverage of all modes of the visible arm. The RSS/NIR is a low to medium resolution spectrograph with broadband imaging, spectropolarimetric, and Fabry-Perot imaging capabilities. The visible and NIR arms can be used simultaneously to extend spectral coverage from approximately 3200 Å to 1.6 !m. Both arms utilize high efficiency volume phase holographic gratings via articulating gratings and cameras. The NIR camera is designed around a 2048x2048 HAWAII-2RG detector housed in a cryogenic dewar. The Epps optical design of the camera consists of 6 spherical elements, providing sub-pixel rms image sizes of 7.5 " 1.0 !m over all wavelengths and field angles. The exact long wavelength cutoff is yet to be determined in a detailed thermal analysis and will depend on the semi-warm instrument cooling scheme. Initial estimates place instrument limiting magnitudes at J = 23.4 and H(1.4- 1.6 !m) = 21.6 for S/N = 3 in a 1 hour exposure. Keywords: astronomical spectrographs, optical design, near infrared spectroscopy, volume phase holographic gratings, Fabry-Perot imaging, spectropolarimetry 1.
    [Show full text]
  • Kerr Microresonator Soliton Frequency Combs at Cryogenic Temperatures
    Kerr Microresonator Soliton Frequency Combs at Cryogenic Temperatures Gregory Moille,1, 2, ∗ Xiyuan Lu,1, 2 Ashutosh Rao,1, 2 Qing Li,1, 2, 3 Daron A. Westly,1 Leonardo Ranzani,4 Scott B. Papp,5, 6 Mohammad Soltani,4 and Kartik Srinivasan1, 7, y 1Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA 2Institute for Research in Electronics and Applied Physics and Maryland Nanocenter, University of Maryland,College Park, Maryland 20742, USA 3Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA 4Raytheon BBN Technologies, 10 Moulton Street, Cambridge, MA, 02138, USA 5Time and Frequency Division, National Institute of Standards and Technology, 385 Broadway, Boulder, CO 80305, USA 6Department of Physics, University of Colorado, Boulder, Colorado, 80309, USA 7Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA (Dated: February 19, 2020) We investigate the accessibility and projected low-noise performance of single soliton Kerr fre- quency combs in silicon nitride microresonators enabled by operating at cryogenic temperatures as low as 7 K. The resulting two orders of magnitude reduction in the thermo-refractive coefficient relative to room-temperature enables direct access to single bright Kerr soliton states through adia- batic frequency tuning of the pump laser while remaining in thermal equilibrium. Our experimental results, supported by theoretical modeling, show that single solitons are easily accessible at tem- peratures below 60 K for the microresonator device under study. We further demonstrate that the cryogenic temperature primarily impacts the thermo-refractive coefficient. Other parameters critical to the generation of solitons, such as quality factor, dispersion, and effective nonlinearity, are unaltered.
    [Show full text]
  • H-Band Spectroscopic Classification of OB Stars
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server H−Band Spectroscopic Classification of OB Stars R. D. Blum1,T.M.Ramond,P.S.Conti JILA, University of Colorado Campus Box 440, Boulder, CO, 80309 [email protected] [email protected] [email protected] D. F. Figer Division of Astronomy, Department of Physics & Astronomy, University of California, Los Angeles, CA, 90095 fi[email protected] K. Sellgren Department of Astronomy, The Ohio State University 174 W. 18th Ave., Columbus, OH, 43210 [email protected] accepted for publication in the AJ ABSTRACT We present a new spectroscopic classification for OB stars based on H−band (1.5 µmto1.8µm) observations of a sample of stars with optical spectral types. Our initial sample of nine stars demonstrates that the combination of He I 1.7002 µm and H Brackett series absorption can be used to determine spectral types for stars between ∼ O4 and B7 (to within ∼±2 sub–types). We find that the Brackett series exhibits luminosity effects similar to the Balmer series for the B stars. This classification scheme will be useful in studies of optically obscured high mass star forming regions. In addition, we present spectra for the OB stars near 1.1 µmand1.3µm which may be of use in analyzing their atmospheres and winds. Subject headings: infrared: stars — stars: early–type — stars: fundamental parameters 1Hubble Fellow –2– 1. INTRODUCTION OB stars are massive and thus short lived. Because they have short lives, they will be confined to regions relatively close to their birthplaces and will be found close to the Galactic plane.
    [Show full text]
  • Collision of Akhmediev Breathers in Nonlinear Fiber Optics
    PHYSICAL REVIEW X 3, 041032 (2013) Collision of Akhmediev Breathers in Nonlinear Fiber Optics B. Frisquet, B. Kibler,* and G. Millot Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Universite´ de Bourgogne, Dijon, France (Received 1 July 2013; published 19 December 2013) We report here a novel fiber-based test bed using tailored spectral shaping of an optical-frequency comb to excite the formation of two Akhmediev breathers that collide during propagation. We have found specific initial conditions by controlling the phase and velocity differences between breathers that lead, with certainty, to their efficient collision and the appearance of a giant-amplitude wave. Temporal and spectral characteristics of the collision dynamics are in agreement with the corresponding analytical solution. We anticipate that experimental evidence of breather-collision dynamics is of fundamental importance in the understanding of extreme ocean waves and in other disciplines driven by the continuous nonlinear Schro¨dinger equation. DOI: 10.1103/PhysRevX.3.041032 Subject Areas: Interdisciplinary Physics, Nonlinear Dynamics, Optics I. INTRODUCTION randomization inherent to the study of incoherent waves or chaotic states, various numerical works have shown the Nonlinear coherent phenomena in continuous media spontaneous emergence of coherent localized waves (even have been a key subject of research over the last decades rational solutions of the NLSE) from a turbulent environ- in the framework of the nonlinear Schro¨dinger equation ment [7,13–15]. Rogue waves are not just an offshoot of (NLSE), with applications to plasma physics, fluid dynam- breather collisions, but other mechanisms depending on the ics, and nonlinear optics [1]. In particular, much attention physical system must be taken into account in the forma- has been focused on the common solitary wave structures, tion of rogue waves, including the statistical approach, known as solitons, and their interactions in almost conser- when noise is present [16].
    [Show full text]
  • Self-Referencing a CW Laser with Efficient Nonlinear Optics
    Self-referencing a CW laser with efficient nonlinear optics Scott Papp, Katja Beha, Pascal Del’Haye, Daniel Cole, Aurélien Coillet, Scott Diddams Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO 80305 USA [email protected] Abstract: We present self-referencing of a CW laser via nonlinear pulse broadening of a Kerr microcomb and an electro-optic modulation (EOM) comb. Our experiments demonstrate the first phase-coherent optical-to-microwave link via f-2f self-referencing with such combs. OCIS codes: (190.4410) Nonlinear optics, parametric processes; (140.3948) Microcavity devices; (190.4380) Nonlinear optics, four-wave mixing. 1. Overview of experimental results Modelocked-laser frequency combs have revolutionized optical frequency metrology and precision time keeping by providing an equidistant set of absolute reference lines that span in excess of an octave. Their typically sub-GHz repetition frequency and <100 fs optical pulses enable nonlinear broadening for self-referencing, and feature among the highest spectral purity of any oscillator. Such devices have enabled myriad applications from optical clocks (1– 6) to precisely calibrated spectroscopy to quantum information. Moreover, experimental control of carrier-envelope offset phase contributes to ultrafast science. Frequency combs generated from a CW laser via Kerr parametric nonlinear optics in microcavities (Kerr microcombs) (7, 8) and electro-optic modulation (EOM) (9–13) are interesting new platforms for experimenters. The 10’s of GHz or higher repetition frequency and the offset frequency of such combs are tunable to match a fuller range of comb applications in optical communications, metrology, arbitrary waveform generation, and with quantum-based systems.
    [Show full text]