Page 1 植物研究雜誌 J. Jpn. Bot. 70: 77-84 (1995) Laboratory Culture and Life History of Trichosolen (=Pseudobryopsis) Myura (J. Agardh) Taylor from Italy Mitsuo CHIHARA And

Total Page:16

File Type:pdf, Size:1020Kb

Page 1 植物研究雜誌 J. Jpn. Bot. 70: 77-84 (1995) Laboratory Culture and Life History of Trichosolen (=Pseudobryopsis) Myura (J. Agardh) Taylor from Italy Mitsuo CHIHARA And 植物研究雑誌 1. 1. Jpn. Bo t. 70: 70: 77-84 (1 995) Laboratory Laboratory Culture and Life History of Trichosolen Trichosolen (=Pseudobryopsis) myura (J. Agardh) Taylor from It aly Mitsuo CHIHARA a and Takaaki KOBARA b aTh e Japanese Red Cross College of Nursing ,4・ 1-3 Hiroo ,Shibuya-ku ,Tokyo , 150 JAPAN; bSenshu bSenshu University , 2-1-1 Higashi-mita ,Tama-ku ,Kawasaki ,Kanagawa ,214 JAPAN (Received (Received on May 14 , 1994) Themo 中hology and life history of Trichosolen myura (J. Agardh) Taylor (Syn. Pseudobryopsis myura Berthold) Berthold) are redescribed ,based on material from It aly. Individual thalli are monoecious ,with male and female gametes gametes in separate gametangia. Zygotes produced from gametic fusion develop into prostrate filaments with branches branches and irregularly spaced constrictions. These filaments produce new Trichosolen thalli directly. The life history history ofthe alga 合om Italy is identical with that from Syria (Mayhoub 1974). Herbarium specimens of T. myura collected collected in Japan by Yendo (1 915) have been examined and are reassigned to Bryopsis. Introduction Materials and Methods Trichosolen Trichosolen myura (J. Agardh) Taylor was origi- The specimens used in the present study were nally nally described by J. Ag 征 dh (1842) under the name of collected at Ischia Island near Naples (July 2, 1987) Bryopsis Bryopsis myura ,and was based on specimens col- and at Maria la Scola ,Sicily Island (J uly 8, 1987) in lected lected in Italy. The type locality was not specified and Italy by one ofus ,M. C. They were growing on rocks only only a brief morphological description was given. The several meters below low tide. The specimens for species species was later transferred to Pseudobryopsis morphological observation were preserved in forma- Berthold in Oltmanns (1 904) ,but Trichosolen lin seawater , while living material for laboratory Montagne (1861) is now recognized as having prior- culture was put into plastic bottles with natural seawater ity ity (Taylor 1962). Feldmann (1937 , 1969) provided and brought back to the laboratory. The unialgal details details of the morphology and reproduction of T. culture was started from excised apical portions of myura on the basis of the collections at Banyuls on the main axes and ramuli. All cultures were grown in ES Mediterranean Mediterranean coast of France. Mayhoub (1974) has medium (Proyasoli 1966) at 23 0 C and under a light also also studied the life history of T. myura but on speci- regi 11l e of 18h: 611 (l igh t: dark) , with light intensity of mens collected in Syria. On the basis of these publica- 3,000 -4, 000 lux provided by cool white fluorescent tions tions it appe 訂 s that there is a difference in size of lamps. Under these conditions , the thalli grew well gametangia between the specimens from France and and produced gametes. The filamentous germlings Syria. Syria. The former has relatively small gametangia. In resultingfrom thezygotes ,九 rere cultured at five differ- this this paper we describe the morphology and life ent temperatures: 15 0 C ,18 0 C ,21 oC ,24 0 C and 2TC. history history of T. myura collected in Italy. Observations of nuclei were made using the fluoro- -:-77- 78 植物研究雑誌第70 巻第2 号 平成 7 年 4 月 chrome DAPI (Coleman 1979). In addition ,speci- the papillum ruptured and gametes were liberated mens in Yendo's collection at the University Mu- through the aperture. Male gametes were liberated as seum ,University of Tokyo (TI) (now deposited in a jet cloud , as reported in hainanensis Trichosolen the the Hokkaido University Herbarium) were examined. (Kobara and Chihara 1978a). Female gametes were also also liberated rapidly (Fig. 7). When female gametes Observations Observations matured in the gametangia of healthy thalli , they Morphology swam about immediately after liberation , without The specimens collected at Ischia Island and Sicily outside staying the gametangium. Sometimes , the Island Island are similar to each other in their gross mo 叩hol- liberated female gametes stayed as a mass at the tip of ogy. ogy. Thalli are clustered with the numerous main axes gametangium for one or two minutes before swim- originating originating from a common rhizoidal base (Fig. 1). ming away , as reported by Feldmann (1969) in T. Main axes are up to 120 mm long and 40 0- 1,000μm myura. Male and female gametes possessed two equal wide. wide. Relatively short main axes 紅 e always simple , anterior flagella. Female gametes were 7-10μmlong but but longer axes are generally branched sub- and 4-5μm wide , and generally possessed several dichotomously dichotomously or laterally. Axes and branches have green chloroplasts and a red eyespot (Fig. 8). 乱1ale numerous ramuli except on the lower par t. Ramuli are gametes were 4-5μm long and about 2μmwide , with 2-3 mm long ,2 0-4 0μm wide ,soft ,and arranged one pale green chloroplast and no eye spot (Fig. 9). around around the branches. Gametangia 訂 e ovoid in shape , When male and female gametes met ,conjugation 100-180μm long and 65-110μm wide ,and each has took place immediately ,resulting in the formation of a papillum at the tip. They are produced adaxially near zygotes (Fig. 10). The zygotes remained motile for the the base of ramuli ,usually singly , but there 訂 esome- about one hour before attaching to the bottom of the times times two or three per ramulus. Chloroplasts are very culture vessel (Fig. 11). Within three days , zygotes small ,2-4 μm long and about 2μm wide , with no increased in volume , with the formation of a vacuole pyrenoid. pyrenoid. in the cells. After seven days , they began to germinate (Fig. (Fig. 12). One week later , the microscopic filament Life Life history produced one to severallateral branches and irregular In In culture ,apical portions grew into erect main constrictions (Fig. 13). After a further six weeks , the axes axes with ramuli and associated rhizoidal filaments. much branched filamentous germlings were to 5 mm Later ,many erect axes developed from rhizoidal long and 25-50μm in diameter (Figs. 14 ,15). They filaments filaments and those produced ramuli in the upper had a single nucleus , as already reported by Neumann parts. parts. After about a month , the cultured thalli had a (1 970) (Fig. 16). The germlings attached on oyster clustered clustered appearance (Fig. 2). Many gametangia were shells and corals did not pene 廿ate the substrates. produced produced adaxially , near the base of the ramuli (Fig. In orderto examine the possibility of parthenogen- 3). 3). The alga was monoecious. Male and female esis ,male and female gametangia were excised from gametangia gametangia differ from each other in color: male parent thalli and isolated. Unfused male and female gametangia gametangia were light yellowish-green , while fe- gametes did not develop. males males were dark brownish-green (Fig. 4). Generally After three months growth attemperatures of 21 oc 0 gametangia gametangia of the same sex were produced on single and 24 C , the prostrate filaments produced erect fila 四 ramuli ramuli (Fig. 5) but rarely the two sexes occurred ments directly (Figs. 17 ,18). These were produced together together (Fig. 6). At the beginning of a light period , mostly from the terminal ends and were thicker than April April 1995 Jou ll1 al of Japanese Botany Yo l. 70 No. 2 79 Figs. 且-11 ・ 1 n cnosolen myura. 1: Specimen s collected atMaria la Scola ,Sicily Island (July 8, 1987).2: Thallus in culture developed from an apical piece ofaxis or branches ,after 4 weeks. 3: Portion of the thallus ,showing gametangia produced adaxially near the the base of ramuli. 4: Male (I ight yellowish-green) and female gametangia (dark brownish-green) produced on a thallus. 5: two male gametangia (upper) and two female gametangia (1 ower) produced on separate ramuli. 6: Male gametangium (upper) and female female gametangium (I ower) produced on a single ramulus. 7: Female gametangium ,liberating female gametes. 8: Female gametes. gametes. 9: Male gametes. 10: Zygotes. 1 1: Zygotes attached to the substratum. 80 植物研究雑誌第70 巻第2 号 平成 7 年 4 月 • ~ 吋乙~ヘ,---←『田町 一 Figs. Figs. 12-21. Trichoso/en myura. 12: Germinating zygotes. 13: Young germling developed from the zygote , with branches. 14: Two month old germlings. 15: Two month old germling with several branches and irregular constrictions. 16: Filamentous germling containing containing single nucleus. 17 - 18: Erect filaments developed directly from a filamentous germling . 19: Erect filament containing numerous small nuclei. 20: Erect filament with ramuli. 21 : Typical Trichosolen thallus developed from the filamentous germling. Apri11995 Apri11995 Joumal of Japanese Botany Vo l. 70 No. 2 81 the the prostrate filaments. One to twelve erect filaments filaments. At the higher temperature of 2TC , only a were produced from each germling. Some of the few erect filaments were produced camong about a protoplasm protoplasm of the prostrate filament appeared to move hundred of filamentous germlings , but the production into into the erect filaments and , as a result ,a part of the of gametangia was not depressed. prostrate prostrate filament became pale green or transparen t. At this stage , both the erect thalli and prostrate fila- Examination of Japanese specimens of Tricho- ment contained numerous small nuclei (Fig. 19). The solen myurafrom the Herbarium ofYendo subsequent subsequent formation of a stephanokont zoospore as In the University Museum ,University of Tokyo reported reported in T. hain α nensis (Kobara and Chihara 1978b; (TI) , in which Yendo's collection was deposited ,we Okuda et al. 1979) was not observed. The erect found two herbarium 戸pecimens named as Bryopsis filaments filaments grew rapidly and produced many ramuli myura ,a basionym of Trichosolen myura. One of 訂 ound the upper part of the axes (Fig.
Recommended publications
  • The Cell Walls of Green Algae: a Journey Through Evolution and Diversity
    The cell walls of green algae a journey through evolution and diversity Domozych, David S.; Ciancia, Marina; Fangel, Jonatan Ulrik; Mikkelsen, Maria Dalgaard; Ulvskov, Peter; Willats, William George Tycho Published in: Frontiers in Plant Science DOI: 10.3389/fpls.2012.00082 Publication date: 2012 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Domozych, D. S., Ciancia, M., Fangel, J. U., Mikkelsen, M. D., Ulvskov, P., & Willats, W. G. T. (2012). The cell walls of green algae: a journey through evolution and diversity. Frontiers in Plant Science, 3. https://doi.org/10.3389/fpls.2012.00082 Download date: 27. Sep. 2021 MINI REVIEW ARTICLE published: 08 May 2012 doi: 10.3389/fpls.2012.00082 The cell walls of green algae: a journey through evolution and diversity David S. Domozych1*, Marina Ciancia2, Jonatan U. Fangel 3, Maria Dalgaard Mikkelsen3, Peter Ulvskov 3 and William G.T.Willats 3 1 Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, NY, USA 2 Cátedra de Química de Biomoléculas, Departamento de Biología Aplicada y Alimentos, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina 3 Department of Plant Biology and Biochemistry, Faculty of Life Sciences, University of Copenhagen, Frederiksberg, Denmark Edited by: The green algae represent a large group of morphologically diverse photosynthetic eukary- Jose Manuel Estevez, University of otes that occupy virtually every photic habitat on the planet. The extracellular coverings of Buenos Aires and Consejo Nacional de Investigaciones Científicas y green algae including cell walls are also diverse. A recent surge of research in green algal Técnicas, Argentina cell walls fueled by new emerging technologies has revealed new and critical insight con- Reviewed by: cerning these coverings.
    [Show full text]
  • Marine Algae of French Frigate Shoals, Northwestern Hawaiian Islands: Species List and Biogeographic Comparisons1
    Marine Algae of French Frigate Shoals, Northwestern Hawaiian Islands: Species List and Biogeographic Comparisons1 Peter S. Vroom,2 Kimberly N. Page,2,3 Kimberly A. Peyton,3 and J. Kanekoa Kukea-Shultz3 Abstract: French Frigate Shoals represents a relatively unpolluted tropical Pa- cific atoll system with algal assemblages minimally impacted by anthropogenic activities. This study qualitatively assessed algal assemblages at 57 sites, thereby increasing the number of algal species known from French Frigate Shoals by over 380% with 132 new records reported, four being species new to the Ha- waiian Archipelago, Bryopsis indica, Gracilaria millardetii, Halimeda distorta, and an unidentified species of Laurencia. Cheney ratios reveal a truly tropical flora, despite the subtropical latitudes spanned by the atoll system. Multidimensional scaling showed that the flora of French Frigate Shoals exhibits strong similar- ities to that of the main Hawaiian Islands and has less commonality with that of most other Pacific island groups. French Frigate Shoals, an atoll located Martini 2002, Maragos and Gulko 2002). close to the center of the 2,600-km-long Ha- The National Oceanic and Atmospheric Ad- waiian Archipelago, is part of the federally ministration (NOAA) Fisheries Coral Reef protected Northwestern Hawaiian Islands Ecosystem Division (CRED) and Northwest- Coral Reef Ecosystem Reserve. In stark con- ern Hawaiian Islands Reef Assessment and trast to the more densely populated main Ha- Monitoring Program (NOWRAMP) began waiian Islands, the reefs within the ecosystem conducting yearly assessment and monitoring reserve continue to be dominated by top of subtropical reef ecosystems at French predators such as sharks and jacks (ulua) and Frigate Shoals in 2000 to better support the serve as a refuge for numerous rare and long-term conservation and protection of endangered species no longer found in more this relatively intact ecosystem and to gain a degraded reef systems (Friedlander and De- better understanding of natural biological and oceanographic processes in this area.
    [Show full text]
  • TESIS CODIUM.Pdf
    UNIVERSIDAD NACIONAL DEL SUR TESIS DOCTOR EN BIOLOGÍA BIOLOGÍA Y ULTRAESTRUCTURA DE CODIUM SPP. (BRYOPSIDOPHYCEAE, CHLOROPHYTA): MORFOLOGÍAS VEGETATIVA Y REPRODUCTIVA, CICLOS DE VIDA Y EPIFITISMO ALICIA BEATRIZ MIRAVALLES BAHIA BLANCA ARGENTINA 2008 UNIVERSIDAD NACIONAL DEL SUR TESIS DOCTOR EN BIOLOGÍA BIOLOGÍA Y ULTRAESTRUCTURA DE CODIUM SPP. (BRYOPSIDOPHYCEAE, CHLOROPHYTA): MORFOLOGÍAS VEGETATIVA Y REPRODUCTIVA, CICLOS DE VIDA Y EPIFITISMO ALICIA BEATRIZ MIRAVALLES BAHIA BLANCA ARGENTINA 2008 PREFACIO Esta Tesis se presenta como parte de los requisitos para optar al grado Académico de Doctor en Biología, de la Universidad Nacional del Sur y no ha sido presentada previamente para la obtención de otro título en esta Universidad u otra. La misma contiene los resultados obtenidos en investigaciones llevadas a cabo en el ámbito del Departamento de Biología, Bioquímica y Farmacia durante el período comprendido entre el 07/09/99 y el 09/12/08, bajo la dirección del Doctor Eduardo J. Cáceres, Profesor Titular de Biología de Algas y Hongos e Investigador Principal de la Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC) y de la Doctora Patricia I. Leonardi, Profesora Adjunta de Biología de Algas y Hongos e Investigadora Independiente del Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). 09 de diciembre de 2008 Departamento de Biología, Bioquímica y Farmacia Universidad Nacional del Sur UNIVERSIDAD NACIONAL DEL SUR Secretaría General de Posgrado y Educación Continua La presente tesis ha sido aprobada el .…/.…/.….. , mereciendo la calificación de ......(……………………) AGRADECIMIENTOS Durante la realización de esta tesis muchas personas me brindaron su ayuda, su colaboración, sus críticas y principalmente su apoyo necesarios para su culminación: A los Doctores Eduardo J.
    [Show full text]
  • Laboratory Studies on Vegetative Regeneration of the Gametophyte of Bryopsis Hypnoides Lamouroux (Chlorophyta, Bryopsidales)
    African Journal of Biotechnology Vol. 9(8), pp. 1266-1273, 22 February, 2010 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB10.1606 ISSN 1684–5315 © 2010 Academic Journals Full Length Research Paper Laboratory studies on vegetative regeneration of the gametophyte of Bryopsis hypnoides Lamouroux (Chlorophyta, Bryopsidales) Naihao Ye 1*, Hongxia Wang 2, Zhengquan Gao 3 and Guangce Wang 2 1Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China. 2Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China. 3School of Life Sciences, Shandong University of Technology, Zibo 255049, China. Accepted 14 January, 2010 Vegetative propagation from thallus segments and protoplasts of the gametophyte of Bryopsis hypnoides Lamouroux (Chlorophyta, Bryopsidales) was studied in laboratory cultures. Thallus segments were cultured at 20°C, 20 µmol photons m -2 s-1, 12:12 h LD); protoplasts were cultured under various conditions, viz. 15°C, 15 µmol photons m -2 s-1, 10:14 h LD; 20°C, 20 µmol photons m -2 s-1, 12:12 h LD; and 25°C, 25 µmol photons m -2 s-1, 14:10 h LD. Microscope observation revealed that the protoplast used for regeneration was only part of the protoplasm and the regeneration process was complete in 12 h. The survival rate of the segments was 100% and the survival rate of protoplasts was around 15%, regardless of culture conditions. Protoplasts were very stable in culture and were tolerant of unfavorable conditions. Cysts developed at the distal end or middle portion of gametophytic filaments under low illumination (2 - 5 µmol photons m -2 s-1), the key induction factor.
    [Show full text]
  • Marine Species Distributions: from Data to Predictive Models
    Marine Species Distributions: From data to predictive models Samuel Bosch Promoter: Prof. Dr. Olivier De Clerck Thesis submitted in partial fulfilment of the requirements for the degree of Doctor (PhD) in Science – Biology Academic year 2016-2017 Members of the examination committee Prof. Dr. Olivier De Clerck - Ghent University (Promoter)* Prof. Dr. Tom Moens – Ghent University (Chairman) Prof. Dr. Elie Verleyen – Ghent University (Secretary) Prof. Dr. Frederik Leliaert – Botanic Garden Meise / Ghent University Dr. Tom Webb – University of Sheffield Dr. Lennert Tyberghein - Vlaams Instituut voor de Zee * non-voting members Financial support This thesis was funded by the ERANET INVASIVES project (EU FP7 SEAS-ERA/INVASIVES SD/ER/010) and by VLIZ as part of the Flemish contribution to the LifeWatch ESFRI. Table of contents Chapter 1 General Introduction 7 Chapter 2 Fishing for data and sorting the catch: assessing the 25 data quality, completeness and fitness for use of data in marine biogeographic databases Chapter 3 sdmpredictors: an R package for species distribution 49 modelling predictor datasets Chapter 4 In search of relevant predictors for marine species 61 distribution modelling using the MarineSPEED benchmark dataset Chapter 5 Spatio-temporal patterns of introduced seaweeds in 97 European waters, a critical review Chapter 6 A risk assessment of aquarium trade introductions of 119 seaweed in European waters Chapter 7 Modelling the past, present and future distribution of 147 invasive seaweeds in Europe Chapter 8 General discussion 179 References 193 Summary 225 Samenvatting 229 Acknowledgements 233 Chapter 1 General Introduction 8 | C h a p t e r 1 Species distribution modelling Throughout most of human history knowledge of species diversity and their respective distributions was an essential skill for survival and civilization.
    [Show full text]
  • Reassessment of the Classification of Bryopsidales (Chlorophyta) Based on T Chloroplast Phylogenomic Analyses ⁎ Ma
    Molecular Phylogenetics and Evolution 130 (2019) 397–405 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Reassessment of the classification of Bryopsidales (Chlorophyta) based on T chloroplast phylogenomic analyses ⁎ Ma. Chiela M. Cremena, , Frederik Leliaertb,c, John Westa, Daryl W. Lamd, Satoshi Shimadae, Juan M. Lopez-Bautistad, Heroen Verbruggena a School of BioSciences, University of Melbourne, Parkville, 3010 Victoria, Australia b Botanic Garden Meise, 1860 Meise, Belgium c Department of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium d Department of Biological Sciences, The University of Alabama, 35487 AL, USA e Faculty of Core Research, Natural Science Division, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo 112-8610, Japan ARTICLE INFO ABSTRACT Keywords: The Bryopsidales is a morphologically diverse group of mainly marine green macroalgae characterized by a Siphonous green algae siphonous structure. The order is composed of three suborders – Ostreobineae, Bryopsidineae, and Seaweeds Halimedineae. While previous studies improved the higher-level classification of the order, the taxonomic Chloroplast genome placement of some genera in Bryopsidineae (Pseudobryopsis and Lambia) as well as the relationships between the Phylogeny families of Halimedineae remains uncertain. In this study, we re-assess the phylogeny of the order with datasets Ulvophyceae derived from chloroplast genomes, drastically increasing the taxon sampling by sequencing 32 new chloroplast genomes. The phylogenies presented here provided good support for the major lineages (suborders and most families) in Bryopsidales. In Bryopsidineae, Pseudobryopsis hainanensis was inferred as a distinct lineage from the three established families allowing us to establish the family Pseudobryopsidaceae. The Antarctic species Lambia antarctica was shown to be an early-branching lineage in the family Bryopsidaceae.
    [Show full text]
  • A History and Annotated Account of the Benthic Marine Algae of Taiwan
    SMITHSONIAN CONTRIBUTIONS TO THE MARINE SCIENCES • NUMBER 29 A History and Annotated Account of the Benthic Marine Algae of Taiwan Jane E. Lewis and James N. Norris SMITHSONIAN INSTITUTION PRESS Washington, D.C. 1987 ABSTRACT Lewis, Jane E., and James N. Norris. A History and Annotated Account of the Benthic Marine Algae of Taiwan. Smithsonian Contributions to the Marine Sciences, number 29, 38 pages, 1 figure, 1987.—Records of the benthic marine algae of the Island of Taiwan and neighboring islands have been organized in a floristic listing. All publications with citations of benthic marine green algae (Chlorophyta), brown algae (Phaeophyta), and red algae (Rhodophyta) in Taiwan are systematically ar­ ranged under the currently accepted nomenclature for each species. The annotated list includes names of almost 600 taxa, of which 476 are recognized today. In comparing the three major groups, the red algae predominate with 55% of the reported species, the green algae comprise 24%, and the browns 21%. Laurencia brongniartii}. Agardh is herein reported for Taiwan for the first time. The history of modern marine phycology in the Taiwan region is reviewed. Three periods of phycological research are recognized: the western (1866-1905); Japanese (1895-1945); and Chinese (1950-present). Western phycologists have apparently overlooked the large body of Japanese studies, which included references and records of Taiwan algae. By bringing together in one place all previous records of the Taiwanese marine flora, it is our expectation that this work will serve as a basis for further phycological investigations in the western Pacific region. OFFICIAL PUBLICATION DATE is handstamped in a limited number of initial copies and is recorded in the Institution's annual report, Smithsonian Year.
    [Show full text]
  • AAPP | Atti Della Accademia Peloritana Dei Pericolanti Classe Di Scienze Fisiche, Matematiche E Naturali ISSN 1825-1242
    DOI: 10.1478/C1A1002005 AAPP j Atti della Accademia Peloritana dei Pericolanti Classe di Scienze Fisiche, Matematiche e Naturali ISSN 1825-1242 Vol. LXXXVIII, No. 2, C1A1002005 (2010) A REVIEW OF LIFE HISTORY PATHWAYS IN BRYOPSIS a∗ a a MARINA MORABITO ,GAETANO M. GARGIULO , AND GIUSI GENOVESE (Communication presented by Prof. Giacomo Tripodi) ABSTRACT. The genus Bryopsis comprises siphonous green algae widely distributed from tropical to polar seas. Despite the early reports on the simplicity of its life history, subse- quent culture observations showed variety of life history patterns, even within a single species. Karyological data and reports on DNA quantification led to somewhat contradic- tory conclusions about the ploidy level of the two life history phases and about the moment of meiosis. Long term observations on Mediterranean species highlighted new alternatives in recycling of the two morphological phases. Looking at all published experimental data, we summarize all life history pathways of Bryopsis species. 1. Introduction The genus Bryopsis J.V. Lamouroux [1] comprises green algae consisting of tubular multinucleate (siphonous) axes, lacking cross walls, variously branched with a feather-like appearance. Species are widely distributed from tropical to polar seas. Despite the early reports on the simplicity of its life history [2, 3], subsequent culture observations showed a more complex cycle [4-9]. A discovery of variety of life history patterns, even within a single species, and of new reproductive characters [7, 8, 10] led to the establishment of new genera: Pseudobryopsis Berthold in Oltmanns [11], a Bryopsis-looking alga differing because of peculiar pyriform gametangia, and Bryopsidella J.
    [Show full text]
  • Bryopsis Spp.: Generalities, Chemical and Biological Activities
    Pharmacogn Rev. 2019;13(26):63-70 A multifaceted peer reviewed journal in the field of Pharmacognosy and Natural Products Plant Reviews www.phcogrev.com | www.phcog.net Bryopsis spp.: Generalities, Chemical and Biological Activities Neyder Contreras1,*, Antistio Alvíz2, Jaison Torres3, Sergio Uribe1 ABSTRACT Bryopsis spp, is a marine green algae distributed in tropical regions of worldwide which have been few studied a level of their chemical constitution and evaluation of properties of bioactive metabolites and derivatives with a high potential pharmacological in treatment of possible disease related with viral, fungi and bacterial diseases. Relevant information was selected from scientific journals, books and electronic reports employed database including PubMed, Science Direct, Scielo and Google Scholar. This review describe different aspects of the Bryopsis spp. such as general characteristics, some species found in tropical regions included in Colombia, metabolites derivatives and finally roles in the pharmacological activity with promissory application in drug discovery and therapies related with antitumoral, anti- oxidant, antimicrobial, antiviral, anti-larvicidal, anticoagulant and antileishmanial. This review offers a new vision of the knowledge about of studies of product naturals and specifically in the investigations referred to Bryopsis spp. may be of great significance for the discovery of drugs for future treatments; thus may be generated new literature of natural elements and its potential drug target. Key words: Bryopsis spp, Activity, Algae, Metabolites. Neyder Contreras1,*, INTRODUCTION Antistio Alvíz2, Jaison 3 1 For several decades it has been shown that marine as elements antioxidant, antimicrobial, anti-inflam- Torres , Sergio Uribe organisms are an important and representative matory, anticoagulant, antiprotozoal and antitumor [10,18-23] 1GINUMED, Faculty of Medicine, source of new potentially bioactive metabolites, such activity.
    [Show full text]
  • Pseudoderbesia Eckloniae, Sp. Nov. (Bryopsidaceae, Ulvophyceae) from Western Australia
    cryptogamie Algologie 2020 ● 41 ● 3 DIRECTEUR DE LA PUBLICATION : Bruno DAVID, Président du Muséum national d’Histoire naturelle RÉDACTEUR EN CHEF / EDITOR-IN-CHIEF : Line LE GALL ASSISTANT DE RÉDACTION / ASSISTANT EDITOR : Audrina NEVEU ([email protected]) MISE EN PAGE / PAGE LAYOUT : Audrina NEVEU RÉDACTEURS ASSOCIÉS / ASSOCIATE EDITORS Ecoevolutionary dynamics of algae in a changing world Stacy KRUEGER-HADFIELD Department of Biology, University of Alabama, 1300 University Blvd, Birmingham, AL 35294 (United States) Jana KULICHOVA Department of Botany, Charles University, Prague (Czech Repubwlic) Cecilia TOTTI Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy) Phylogenetic systematics, species delimitation & genetics of speciation Sylvain FAUGERON UMI3614 Evolutionary Biology and Ecology of Algae, Departamento de Ecología, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Av. Bernardo O’Higgins 340, Santiago (Chile) Marie-Laure GUILLEMIN Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia (Chile) Diana SARNO Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli (Italy) Comparative evolutionary genomics of algae Nicolas BLOUIN Department of Molecular Biology, University of Wyoming, Dept. 3944, 1000 E University Ave, Laramie, WY 82071 (United States) Heroen VERBRUGGEN School of BioSciences, University of Melbourne, Victoria, 3010 (Australia) Algal physiology
    [Show full text]
  • Supplementary Materials: Figure S1
    1 Supplementary materials: Figure S1. Algal communities in Luhuitou reef in rainy season 2016: (A−J) Transect 1, heavily polluted area; (K−M) Transect 2, moderately polluted area. (A) The upper intertidal monodominant community with the dominance of the brown crust alga Neoralfsia expansa; insert: the dominant alga N. expansa. (B) The upper intertidal monodominant community of algal turf, the red alga Polysiphonia howei; insert: the dominant alga P. howei. (C) The upper intertidal monodominant community of algal turf, the green alga Ulva prolifera; insert: the dominant alga U. prolifera. (D) The upper intertidal monodominant algal turf community of the green alga Ulva clathrata; insert: the dominant alga U. clathrata. (E) The upper intertidal bidominant community of the red alga P. howei and the green alga Cladophoropsis sundanensis insert: the dominant alga C. sundanensis. (F) The middle intertidal monodominant community of the red crust alga Hildenbrandia rubra. (G) The middle intertidal monodominant community of the brown crust alga Ralfsia verrucosa. (H) The middle intertidal monodominant algal turf community with the dominance of the red fine filamentous alga Centroceras clavulatum. (I) The lower intertidal bidominant community of the turf-forming red algae C. clavulatum and Jania adhaerens; insert: the dominant alga J. adhaerens. (J) Monodominant community of the red alga Grateloupia filicina densely overgrown with the epiphyte Ceramium cimbricum in the middle part of concrete chute of outlet from fish farm, and bidominant community of the green algae Trichosolen mucronatus and U. flexuosa at marginal parts of the chute; inserts: (a) the dominant U. flexuosa; (b) T. mucronatus; (c) Grateloupia filicina.
    [Show full text]
  • Nuevo Genero De Algas Marinas (Bryopsidaceae, Chlorophyta)
    PSEUDODERBESIA, NUEVO GENERO DE ALGAS MARINAS (BRYOPSIDACEAE, CHLOROPHYTA) EDUARDO CALDERON Av. Estaci6n No. 5AN-41, Ap. 402, Cali, Colombia REINHARD SCHNElTER Bot8nisches Institut I der Justus-Liebeig-Universitaet, Senckenbergstr. 17-21, 0-6300 Giessen, R.F.A. Resumen Se describe Pseudoderbesia como genera nuevo dentro de las Bryopsidaceae. Se aislaron cuatro clones de Pseudoderbesia y se mantuvieron como cultivos unialgales: dos provenientes de la Costa Colombiana del Caribe (P. arbuscula) y dos de las Islas Canarias en el Oceano Atlantica (Pseudoderbesia sp.). Aunque se conoce solo la lase gametolftica, hay razones suficientes para el establecimiento de un nuevo genera. Se describe y discute el crecimiento, variabilidad, producci6n bajo condiciones de cultivo. Se sugiere la posibilidad que ciertas especies de Oerbesia que poseen ramitlcaclon dicotornica y filamentos gradual mente atenuados, como O. fastigiata, O. attenuata y O. padinae, sean real mente miembros de Pseudoderbesia. Abstract Pseudoderbesia is described as a new genus within the Bryopsidaceae. Four clones of Pseudoderbesia were isolated and kept as unialgal cultures: two from the Caribbean coast of Colombia (P. arbuscula) and two from the Canary Islands, Atlantic Ocean (Pseudoderbesia sp.). Although only the gametophylic phase is known, it is distinct enough forthe establishement of a new genus. Growth, variability and swarmer production, under culture conditions, are described and discussed. It is suggested, that some little known species of Oerbesia with dichotomous branching and gradually attenuated filaments, like O. fast/giata, O. attenuata and O. padinae, could actually be members of Pseudoderbesia. Introducci6n sobre el cicio de vida de las Bryopsidaceae (Rie- tema, 1975; Calderon-Saenz & Schnetter, Las Bryopsidaceae constituyen un grupo de al- 1989).
    [Show full text]