The Interfacial Behavior of Bombyx Mori Silk Fibroin

Total Page:16

File Type:pdf, Size:1020Kb

The Interfacial Behavior of Bombyx Mori Silk Fibroin University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations 1896 - February 2014 1-1-1998 The interfacial behavior of Bombyx mori silk fibroin. Regina, Valluzzi University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_1 Recommended Citation Valluzzi, Regina,, "The interfacial behavior of Bombyx mori silk fibroin." (1998). Doctoral Dissertations 1896 - February 2014. 981. https://scholarworks.umass.edu/dissertations_1/981 This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations 1896 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. THE INTERFACIAL BEHAVIOR OF BOMBYXMORI SILK FIBROIN A Dissertation Presented by REGINA VALLUZZI Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY September 1998 Department of Polymer Science and Engineering © Copyright by Regina Valluzzi 1998 All Rights Reserved THE INTERFACIAL BEHA\qOR OF BOMBYXMORI SILK FffiROIN A Dissertation Presented by REGINA VALLUZZI Approved as to style and content by; Samuel P. Gido, Chair Shaw-Ling Hsu, Mem David A. Tirrell, Member Rjclwd J. Farris, Department Head Polymer Science and Engineering ACKNOWLEDGEMENTS In the course of my studies in Polymer Science at the university of Massachusetts, I have had the privilege of working within some fine scientists, and have benefited fi-om their insights. My advisor, S. P. Gido has, in my opinion, a genuine appreciation for the spirit of scientific inquiry, and his persistence in the face of controversial results and sometimes daunting experimental problems has been exemplary. I would like to acknowledge my committee members S. L Hsu, D. A. Tirrell and thank them for their time, their input, and their attention to detail. Several fiiends and colleagues have made the UMass experience better than it would otherwise have been. I would like to thank Vema Lo, Georgia Dris, and Shi-Juang He for their good cheer and for sharing the trials and tribulations of entry into the research lifestyle. Drs. Scott Barton and Roger Porter have been sources of unwavering support and often necessary perspective. Lastly I would like to acknowledge my family for their patience in tolerating my absences while I pursued my degree. iv ABSTRACT THE INTERFACIAL BEHAVIOR OF BOMBYXMORI SILK HEROIN SEPTEMBER 1998 REGINA VALLUZZI, B.S. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Ph. D., UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor Samuel Patrick Gido A new crystal structure has been observed for Bombyx mori silk fibroin at air-water interfaces. This structure, silk III, incorporates a left-handed three-fold polyglycine II conformation and an approximately hexagonal lattice. Detailed crystaJlo graphic studies using electron diffraction data have been used to characterize the silk III crystal structure. There is a hexapeptide repetitive sequence found in the crystaUizable portions of silk fibroin. When this sequence, Gly-Ala-Gly-Ala-Gly-Ser, is in a threefold helical conformation, a row of alternating glycine and serine residues parallel to the helical axis results. One third of the helix thus becomes slightly hydrophilic, whereas the other two thirds consist of glycine and hydrophobic alanine residues. The data indicate that the helices are arranged so that the serine residues pack preferentially in serine-rich sheets in the (110) planes of the crystal. The result is a monoclinic crystal structure, where the basal plane angle y is 1 16° rather than the 120° expected for perfect hexagonal packing, due to the distortion in nearest neighbor interhelical packing distances that results when the serine residues have a preferred packing. The separation of hydrophobic and hydrophilic residues in a threefold helical conformation of fibroin suggests that the air- V water interface may stabilize the threefold conformation because this conformation allows the fibroin to behave as a surfactant at the interface. The sheet-like arrangement of serine residues deduced for the monoclinic silk III crystallites also supports a role for surfactancy in stabilizing the silk III structure at the air-water interface. If the crystallizable portions of fibroin are behaving as a surfactant, then the three-fold helical silk III structure should be oriented with the axes of the three-fold fibroin helices in the plane of the interface. This orientation is observed in uncompressed fibroin films which were picked up onto TEM grids. In LB films compressed to 16.7 mN/meter on the trough prior to being picked up onto TEM grids a uniaxial orientation is observed for silk III, with the helical axes perpendicular to the plane of the sample film. A surface compression of 34 mN/meter results in fihns containing silk II crystallites with the same uniaxial orientation, placing the helical axes perpendicular to the plane of the film. In addition to air-water interface experiments several experiments were carried out using aqueous-organic interfaces. A hydrated crystal structure incorporating a left-handed 6/2 helix which is still roughly three-fold, is observed at the water-hexane and water- chloroform interfaces. Large lamellar crystallites possessing a hexagonal habit were observed at both of these interfaces. A banded cholesteric mesophase which in some regions crystallizes into the same silk III hydrate structure as the lamellae was also observed and characterized. vi TABLE OF CONTENTS Page ACKNOWLEDGEMEP4TS iv ABSTRACT v LIST OF TABLES x LIST OF FIGURES xi Chapter L BACKGROUND 1 1.1 Silks 4 1. LI Silk Biology 5 1.2 Greater Implications 18 1,2.1 Fibrous Proteins 18 L2.2 Proteins at Interfaces 19 1.2,3 Globular Proteins 23 24 1.3 Objectives 25 2. SDLK ra, A NOVEL CRYSTAL STRUCTURE 25 2.1 Summary 2.2 Introduction 2.3 Experimental 2.3. 1 Sample Preparation 2.3.2 Characterization 2.3.3 Olfaction Data Analysis 2.3.4 Analysis of Possible contaminants 2.3.5 Results and Discussion 63 2.4 Conclusions THE FIBROIN : REFINEMENTS TO 3. THE INTERFACIAL STRUCTURE OF SILK MODEL 64 Vll 3.1 Summary 3.2 Introduction 3.3 Experimental 5.3.7 Sample Preparation i. 3. Characterization 2 ^g 3.4 Results and Discussion 73 3.4. 1 Polycrystalline data 77 3.4.2 Refinements to the Basic Hexagonal Silk Crystal Structure 83 3.4.3 Tilting Experiments with Uniaxially Oriented Samples 91 3.5 Conclusions 95 4. ORIENTATION EFFECTS IN SILK FIBROIN LANGMUIR-BLODGETT FILMS : EVIDENCE OF SURFACTANCY 96 4.1 Summary 96 4.2 Introduction 97 4.3 Experimental 100 4.4 Results and Discussion 101 4.5 Conclusions 120 5. A HYDRATED STRUCTURE OF SILK HI OCCURS AT AQUEOUS-ORGANIC INTERFACES ^ 122 5.1 Summary 122 5.2 Introduction 123 5.3 Experimental 130 5.4 Results and Discussion 132 5.5 Conclusions 152 6. SERICIN AND FIBROIN 154 6.1 Summary 154 6.2 Introduction 155 6.3 Preliminary Data 162 163 6.3. 1 The Unit Cell for /3-sheet sericin 176 6.4 Conclusions and Suggested Experiments 178 7. A COMPARISON OF HBROIN DVTERFACLVL AND BULK STRUCTURES '^^ 8. CONCLUSIONS 9. SUGGESTED FUTURE WORK 9.1 Microfibrils and Mesophase Formation 9.2 Other Water- Organic Interfaces viii APPENDICES A. ATOMIC COORDINATES FOR THE SILK ID CRYSTAL STRUCTURES 206 A. 1 Trigonal model (superlattice) 207 A.2 Monocl in ic model 216 A. 3 Hydrated orthorhombic model 249 A.4 Polyserine model for crystalline sericin 259 B. TRIGONAL VERSUS ORTHORHOMBIC LATTICE 270 C. SAMPLE COMPOSITION 271 REFERENCES 274 LIST OF TABLES Table Page 1 . Comparison of Diffraction data to Simulations from the trigonal silk III model 57 2. Angles between six- fold diffraction spots 71 3. Trigonal versus Monoclinic Unit Cell 72 4. Variation in Torsional Angles 94 5. Relative intensity changes with different orientations 102 6. Silk III Hydrate Model Data 143 X LIST OF FIGURES Figure Page 1. Asymmetric (3-sheet packing 2 2. The crankshaft conformation proposed for silk I 7 3. The silk II P-sheet conformation 8 4. The polyglycine II structure 15 5. Silk II 27 6. Brightfield TEM morphology image of a typical film region 28 7. Darkfield high angle annular STEM image of a typical LB film morphology 29 8. Polycrystalline Silk III diffraction 30 9. In the threefold conformation the glycine residues in the hexapeptide fibroin crystallizable repeat (Gly-Ala-Gly-Ala-Gly-Ser) alternate with the larger residues 31 10. There are different possible lateral arrangements of residues in the 003 planes in a silk III crystal 1 1 . Silk III lamellar crystallites consisting of 2 12. Superlattice structure, or "super cell", for the silk III model, 51 primitive unit cell repeats in each crystallographic direction 52 13. Simulated diffraction fi-om the trigonal model result fi-om uniaxially 14. Schematic diagrams of the diffraction rings that III cast films in the electron oriented silk III LB films and unoriented silk diffraction geometry 15. Tilted single crystal diffraction for the silk III lamellae 59 16. Different zone axes are sometimes observed xi 17. Hexapeptide fibroin sequence in a threefold conformation 66 1 8. Six fold diffi-action patterns fi-om LB films 74 19. Single crystal densitometer scan 75 20. Slow scan image of a silk LB film diffraction pattern showing the closely spaced component rings in the inner (4.5 A) reflection 80 21 . Densitometer scan of a typical diffraction pattern fi-om a uniaxially oriented LB film 81 22. Polycrystalline diffraction rings fi-om the chloroform interface 82 23. The combination of the six residue repeating sequence po\y(Gly-Ala-Gly-Ala- Gly-Ser) (representing the crystallizable component of silk fibroin) with a threefold helical conformation, results in a column of alternating glycine and serine residues parallel to the helical axis 84 24.
Recommended publications
  • Effect of Starch on Property of Silk Fibroin/Keratin Blend Films
    International Journal of GEOMATE, Dec., 2016, Vol. 11, Issue 28, pp.2870-2873 Special Issue on Science, Engineering and Environment, ISSN: 2186-2990, Japan EFFECT OF STARCH ON PROPERTY OF SILK FIBROIN/KERATIN BLEND FILMS Yaowalak Srisuwan, Ansaya Thonpho and Prasong Srihanam Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand ABSTRACT: This work was aimed to study the effect of starch on silk fibroin (SF)/keratin (K) blend films properties. The SF and K solutions were mixed with starch, homogeneously stirred and poured into polystyrene culture plates. The mixture solution was then dried in an oven at 40 °C for 3 days. The films were then investigated for their morphology, secondary structure and thermal properties by using scanning electron microscope (SEM), Fourier transform-infrared (FT-IR) spectrophotometer, Thermogravimetric analysis (TGA). The results found that each film had different patterns of surfaces depending on ratio used. The structure of almost films co-existed with random coil and α-helix structures which resulted to increase the flexibility and of film. The structure of the films changed to β-sheet after blending between SF and K according to H-bond formation and increased thermal stability of the films. This result indicated that starch helped to decrease the crystalline structure of the film which increased their flexibility. Keywords: Biopolymer, Morphology, Secondary structure, Thermal property 1. INTRODUCTION Silk fibroin (SF) solution was prepared by firstly boiling twice of B. mori cocoons in 0.5% (w/v) Silk is a natural fibrous protein produced from Na2CO3 solution at 90 °C for 30 min in each times, silkworm which had a unique characteristic.
    [Show full text]
  • Programming Function Into Mechanical Forms by Directed Assembly of Silk
    Programming function into mechanical forms by SEE COMMENTARY directed assembly of silk bulk materials Benedetto Marellia,1, Nereus Patela, Thomas Duggana, Giovanni Perottoa, Elijah Shirmana, Chunmei Lia, David L. Kaplana,b, and Fiorenzo G. Omenettoa,c,d,2 aSilklab, Department of Biomedical Engineering, Tufts University, Medford, MA 02155; bDepartment of Chemical Engineering, Tufts University, Medford, MA 02155; cDepartment of Electrical Engineering, Tufts University, Medford, MA 02155; and dDepartment of Physics, Tufts University, Medford, MA 02155 Edited by David A. Weitz, Harvard University, Cambridge, MA, and approved November 21, 2016 (received for review July 23, 2016) We report simple, water-based fabrication methods based on particular, three different models have been proposed for silk protein self-assembly to generate 3D silk fibroin bulk materials assembly, which have been supported by diverse experimental that can be easily hybridized with water-soluble molecules to evidences obtained from Bombyx mori silk, spider silk proteins, obtain multiple solid formats with predesigned functions. Con- regenerated silk fibroin, and recombinantly produced spider trolling self-assembly leads to robust, machinable formats that silk proteins at different concentrations (9–18). A recent review exhibit thermoplastic behavior consenting material reshaping at covers in detail these models (19). (i) The first mechanism the nanoscale, microscale, and macroscale. We illustrate the involves the formation of micellar nanostructures that fuse versatility of the approach by realizing demonstrator devices together via coalescence, forming microscopic globular struc- where large silk monoliths can be generated, polished, and tures that, in the presence of shear stress, elongate and fuse reshaped into functional mechanical components that can be together (9).
    [Show full text]
  • Silk-Based Biomaterials for Tissue Engineering
    C H A P T E R 1 Silk-based Biomaterials for Tissue Engineering V. Kearns, A.C. MacIntosh, A. Crawford and P.V. Hatton* Summary ilks are fibrous proteins, which are spun by a variety of species including silkworms and spiders. Silks have common structural components and have a hierarchical structure. Silkworm silk must be S degummed for biomedical applications in order to remove the immunogenic sericin coating. It may subsequently be processed into a variety of forms, often via the formation of a fibroin solution, including films, fibres and sponges, and used in combination with other materials such as gelatine and hydroxyapatite. Spider silks do not have a sericin coating and may be used in natural fibre form or processed via formation of a spidroin solution. Both silkworm and spider silks have been reported to support attachment and proliferation of a variety of cell types. Silks have subsequently been investigated for use in tissue engineering. This chapter provides a general overview of silk biomaterials, discussing their processing, biocompatibility and degradation behaviour and paying particular attention to their applications in tissue engineering. KEYWORDS: Silk; Fibroin; Spidroin; Tissue engineering. *Correspondence to: Professor Paul V Hatton, Centre for Biomaterials & Tissue Engineering, School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield, S10 2TA, UK. Email: [email protected] Tel: +44 (114) 271 7938 Fax: +44 (114) 279 7050. Topics in Tissue Engineering, Vol. 4. Eds. N Ashammakhi, R Reis, & F Chiellini © 2008. Kearns et al. Silk Biomaterials 1. INTRODUCTION Silks are fibrous proteins, which are spun into fibres by a variety of insects and spiders [1].
    [Show full text]
  • The Physiological Accumulation of Mutant Fibroin Light Chains Induces
    Journal of Insect Biotechnology and Sericology 86, 105-112 (2017) The physiological accumulation of mutant fibroin light chains induces an unfolded protein response in the posterior silk gland of the Sericin cocoon Nd-sD strain of silkworm Bombyx mori Tadashi Takahashi1, Masao Miyazaki1, Shin-ichiro Kidou2, Yoshiki Matsui1, Ying An1, Taku Ozaki3, Koichi Suzuki1** and Tetsuro Yamashita1* 1 Faculty of Agriculture, Iwate University, Ueda, Morioka, Iwate 020-8550, Japan 2 Graduate School of Natural Sciences, Nagoya City University, Mizuho-cho, Mizuho-ku, Nagoya 467-8501, Japan 3 Faculty of Science and Engineering, Iwate University, Ueda, Morioka, Iwate 020-8550, Japan (Received May 15, 2017; Accepted July 4, 2017) Fibroin, a major component of silk fiber, is composed of light (L) chains, heavy chains, and fhx/P25 in the silk- worm Bombyx mori. Sericin cocoon (Nd-sD) is a silkworm strain expressing a mutant fibroin L chain that is accu- mulated in the endoplasmic reticulum (ER) of posterior silk glands (PSGs). However, little is known about the effects of accumulation in PSGs in Nd-sD strain. We compared the PSG gene expression profiles of 5th-instar larvae of Nd-sD strain and the fibroin-producing normal strain. cDNA representational difference analysis identi- fied candidate genes whose expression levels were higher in Nd-sD strain than in normal strain. We focused on heat shock proteins and cathepsin B, a major lysosomal protease. We confirmed upregulation of BiP(GRP78), Hsp20.8, and cathepsin B at the transcriptional and/or translational levels. These results suggest that the accu- mulation of mutant L chain induces the unfolded protein response in PSGs of Nd-sD strain, which will be a valu- able tool for protein quality-control studies of silk grand.
    [Show full text]
  • A Review of Structure Construction of Silk Fibroin Biomaterials from Single Structures to Multi-Level Structures
    International Journal of Molecular Sciences Review A Review of Structure Construction of Silk Fibroin Biomaterials from Single Structures to Multi-Level Structures Yu Qi 1, Hui Wang 1,*, Kai Wei 1, Ya Yang 1, Ru-Yue Zheng 1, Ick Soo Kim 2 and Ke-Qin Zhang 1,* 1 National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; [email protected] (Y.Q.); [email protected] (K.W.); [email protected] (Y.Y.); [email protected] (R.-Y.Z.) 2 Nano Fusion Technology Research Lab, Interdisciplinary Cluster for Cutting Edge Research (ICCER), Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Shinshu University, Ueda, Nagano 386 8567, Japan; [email protected] * Correspondence: [email protected] (H.W.); [email protected] (K.-Q.Z.) Academic Editors: John G. Hardy and Chris Holland Received: 24 November 2016; Accepted: 11 January 2017; Published: 3 March 2017 Abstract: The biological performance of artificial biomaterials is closely related to their structure characteristics. Cell adhesion, migration, proliferation, and differentiation are all strongly affected by the different scale structures of biomaterials. Silk fibroin (SF), extracted mainly from silkworms, has become a popular biomaterial due to its excellent biocompatibility, exceptional mechanical properties, tunable degradation, ease of processing, and sufficient supply. As a material with excellent processability, SF can be processed into various forms with different structures, including particulate, fiber, film, and three-dimensional (3D) porous scaffolds. This review discusses and summarizes the various constructions of SF-based materials, from single structures to multi-level structures, and their applications.
    [Show full text]
  • Materials Fabrication from Bombyx Mori Silk Fibroin
    PROTOCOL Materials fabrication from Bombyx mori silk fibroin Danielle N Rockwood, Rucsanda C Preda, Tuna Yücel, Xiaoqin Wang, Michael L Lovett & David L Kaplan Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA. Correspondence should be addressed to D.L.K. ([email protected]). Published online 22 September 2011; doi:10.1038/nprot.2011.379 Silk fibroin, derived from Bombyx mori cocoons, is a widely used and studied protein polymer for biomaterial applications. Silk fibroin has remarkable mechanical properties when formed into different materials, demonstrates biocompatibility, has controllable degradation rates from hours to years and can be chemically modified to alter surface properties or to immobilize growth factors. A variety of aqueous or organic solvent-processing methods can be used to generate silk biomaterials for a range of applications. In this protocol, we include methods to extract silk from B. mori cocoons to fabricate hydrogels, tubes, sponges, composites, fibers, microspheres and thin films. These materials can be used directly as biomaterials for implants, as scaffolding in tissue engineering and in vitro disease models, as well as for drug delivery. INTRODUCTION Bombyx mori (silkworm) silk is a unique material, which has his- blocks linked by small hydrophilic linker segments or spacers. torically been highly regarded for its strength and luster. Physicians The crystalline regions are primarily composed of glycine-X have used silk as a suture material for centuries, and it has recently repeats, where X is alanine, serine, threonine or valine. Within gained attention as a biomaterial because of several desirable prop- these domains lie subdomains that are rich in glycine, alanine, erties.
    [Show full text]
  • Thermal Conductivity of Protein-Based Materials: a Review
    polymers Review Thermal Conductivity of Protein-Based Materials: A Review Ye Xue 1,2, Samuel Lofland 1 and Xiao Hu 1,2,3,* 1 Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; [email protected] (Y.X.); lofl[email protected] (S.L.) 2 Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA 3 Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA * Correspondence: [email protected]; Tel.: +1-856-256-4860; Fax: +1-856-256-4478 Received: 19 February 2019; Accepted: 7 March 2019; Published: 11 March 2019 Abstract: Fibrous proteins such as silks have been used as textile and biomedical materials for decades due to their natural abundance, high flexibility, biocompatibility, and excellent mechanical properties. In addition, they also can avoid many problems related to traditional materials such as toxic chemical residues or brittleness. With the fast development of cutting-edge flexible materials and bioelectronics processing technologies, the market for biocompatible materials with extremely high or low thermal conductivity is growing rapidly. The thermal conductivity of protein films, which is usually on the order of 0.1 W/m·K, can be rather tunable as the value for stretched protein fibers can be substantially larger, outperforming that of many synthetic polymer materials. These findings indicate that the thermal conductivity and the heat transfer direction of protein-based materials can be finely controlled by manipulating their nano-scale structures. This review will focus on the structure of different fibrous proteins, such as silks, collagen and keratin, summarizing factors that can influence the thermal conductivity of protein-based materials and the different experimental methods used to measure their heat transfer properties.
    [Show full text]
  • New Insights Into the Proteins Interacting with the Promoters Of
    www.nature.com/scientificreports OPEN New insights into the proteins interacting with the promoters of silkworm fbroin genes Yan Ma1,2, Qin Luo1,2, Yao Ou1, Yiyun Tang1, Wenhui Zeng1, Haomiao Wang1, Jie Hu1 & Hanfu Xu1* The silkworm, Bombyx mori, is a silk-producing insect that has contributed greatly to human society. The silk gland of B. mori is a specialized organ responsible for synthesizing silk fbroin and sericin proteins under control of numerous factors. However, which factors are involved in direct silk protein synthesis regulation remains largely unknown. We report the identifcation of promoter-interacting proteins (PIPs) necessary for the regulation of genes encoding fbroin proteins, including the fbroin heavy chain (fbH), fbroin light chain (fbL), and a 25-kD polypeptide protein (P25). In the fourth larval molting stage (M4) or day 5 ffth-instar larvae (L5D5), a total of 198, 292, and 247 or 330, 305, and 460 proteins interacting with the promoter region of fbH, fbL and P25, respectively, were identifed from the posterior silk gland by DNA pull-down combined with mass spectrometry. Many PIPs were particularly involved in ribosome- and metabolism-related pathways. Additionally, 135 and 212 proteins were identifed as common PIPs of fbH, fbL and P25 in M4 and L5D5, respectively. Among all PIPs, we identifed 31 potential transcription factors, such as Y-box and poly A-binding proteins, which play roles in nucleotide binding, ATP binding, or protein folding. This study provides the frst in-depth profle of proteins interacting with fbroin gene promoters and contributes to a better understanding of silk protein synthesis regulation.
    [Show full text]
  • Silk Fibroin: a Smart Biomaterial for Long Term and Targeted Nanotherapeutics
    SILK FIBROIN: A SMART BIOMATERIAL FOR LONG TERM AND TARGETED NANOTHERAPEUTICS Tapash Chakraborty, Anupam Sarma* & Malay K. Das Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India Abstract: With the advancement of chemical and polymer sciences, the various strategies have been grown up for the development of novel Nanotherapeutics. Controlled Release Drug Delivery strategy has also been utilized by the novel Nanoformulations to alter the pharmacokinetic and pharmacodynamic property of drugs as well as to target the drug at different sites inside the body. Drug carrier materials play a significant role in the delivery of drugs. These carriers are processed into different drug controlled release systems. As the time passed the preference for biodegradable biomaterials have been increasing day by day. The biomaterial is those substances that have been engineered to interact with biological systems for therapeutic or diagnostic purposes. Biomaterials are mainly derived from natural materials but are can also be synthesized in the laboratory. Silk fibroin (SF) is a natural protein polymer that has been approved as a biomaterial by the US Food and Drug Administration (FDA). Silk fibroin based materials have a great biocompatibility profile due to their cytocompatibility and relatively lower or similar immunogenic potential compared to other common degradable polymers. SF has many unique characteristics, including appropriate mechanical properties, versatile process ability in an aqueous environment, biocompatibility, and a controlled degradation rate that make it an excellent candidate for drug delivery applications. So far silk-based nanoparticles have been developed to target lung, tumor and ocular disease for the delivery of proteins, small molecules, and anticancer drugs.
    [Show full text]
  • N-Terminal Domain of Bombyx Mori Fibroin Mediates the Assembly of Silk in Response to Ph Decrease
    doi:10.1016/j.jmb.2012.02.040 J. Mol. Biol. (2012) 418, 197–207 Contents lists available at www.sciencedirect.com Journal of Molecular Biology journal homepage: http://ees.elsevier.com.jmb N-Terminal Domain of Bombyx mori Fibroin Mediates the Assembly of Silk in Response to pH Decrease Yong-Xing He†, Nan-Nan Zhang†, Wei-Fang Li, Ning Jia, Bao-Yu Chen, Kang Zhou, Jiahai Zhang, Yuxing Chen and Cong-Zhao Zhou⁎ Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China Received 20 October 2011; Fibroins serve as the major building blocks of silk fiber. As the major received in revised form component of fibroin, the fibroin heavy chain is a considerably large protein 18 February 2012; comprising N-terminal and C-terminal hydrophilic domains and 12 highly accepted 23 February 2012 repetitive Gly-Ala-rich regions flanked by internal hydrophilic blocks. Here, Available online we show the crystal structure of the fibroin N-terminal domain (FibNT) at 1 March 2012 pH 4.7, revealing a remarkable double-layered anti-parallel β-sheet with each layer comprising two FibNT molecules entangled together. We also Edited by M. Moody show that FibNT undergoes a pH-responsive conformational transition from random coil to β-sheets at around pH 6.0. Dynamic light scattering Keywords: demonstrates that FibNT tends to oligomerize as pH decreases to 6.0, and fibroin; electron microscopy reveals micelle-like oligomers. Our results are X-ray crystallography; consistent with the micelle assembly model of silk fibroin and, more N-terminal domain; importantly, show that the N-terminal domain in itself has the capacity to structural transition; form micelle-like structures in response to pH decrease.
    [Show full text]
  • Silk Fibroin Safety in the Eye: a Review That Highlights a Concern
    BMJ Open Ophth: first published as 10.1136/bmjophth-2020-000510 on 23 September 2020. Downloaded from Review Silk fibroin safety in the eye: a review that highlights a concern Peter W Madden ,1,2 Igor Klyubin,3,4 Mark J Ahearne1,2 To cite: Madden PW, Klyubin I, ABSTRACT a review on silk in ophthalmology to consider Ahearne MJ. Silk fibroin The biomedical use of silk as a suture dates back to its safety in the eye. safety in the eye: a review antiquity. Fibroin is the structural element that determines that highlights a concern. the strength of silk and here we consider the safety of BMJ Open Ophthalmology fibroin in its role in ophthalmology. The high mechanical 2020;5:e000510. doi:10.1136/ THE ORIGIN AND APPLICATION OF SILK FIBROIN bmjophth-2020-000510 strength of silk meant sufficiently thin threads could IN THE EYE be made for eye microsurgery, but such usage was all Silks are produced primarily by species of but superseded by synthetic polymer sutures, primarily Euarthropoda, such as moths, spiders and Received 8 May 2020 because silk in its entirety was more inflammatory. centipedes. In general, the silk components Revised 15 July 2020 Significant immunological response can normally be Accepted 7 August 2020 avoided by careful manufacturing to provide high purity are stored in the organism as liquids, which fibroin, and it has been utilised in this form for tissue are then configured into fibres on extrusion. engineering an array of fibre and film substrata deployed The number of natural silks is very large, as in research with cells of the eye.
    [Show full text]
  • Booklet-The-Structures-Of-Life.Pdf
    The Structures of Life U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES NIH Publication No. 07-2778 National Institutes of Health Reprinted July 2007 National Institute of General Medical Sciences http://www.nigms.nih.gov Contents PREFACE: WHY STRUCTURE? iv CHAPTER 1: PROTEINS ARE THE BODY’S WORKER MOLECULES 2 Proteins Are Made From Small Building Blocks 3 Proteins in All Shapes and Sizes 4 Computer Graphics Advance Research 4 Small Errors in Proteins Can Cause Disease 6 Parts of Some Proteins Fold Into Corkscrews 7 Mountain Climbing and Computational Modeling 8 The Problem of Protein Folding 8 Provocative Proteins 9 Structural Genomics: From Gene to Structure, and Perhaps Function 10 The Genetic Code 12 CHAPTER 2: X-RAY CRYSTALLOGRAPHY: ART MARRIES SCIENCE 14 Viral Voyages 15 Crystal Cookery 16 Calling All Crystals 17 Student Snapshot: Science Brought One Student From the Coast of Venezuela to the Heart of Texas 18 Why X-Rays? 20 Synchrotron Radiation—One of the Brightest Lights on Earth 21 Peering Into Protein Factories 23 Scientists Get MAD at the Synchrotron 24 CHAPTER 3: THE WORLD OF NMR: MAGNETS, RADIO WAVES, AND DETECTIVE WORK 26 A Slam Dunk for Enzymes 27 NMR Spectroscopists Use Tailor-Made Proteins 28 NMR Magic Is in the Magnets 29 The Many Dimensions of NMR 30 NMR Tunes in on Radio Waves 31 Spectroscopists Get NOESY for Structures 32 The Wiggling World of Proteins 32 Untangling Protein Folding 33 Student Snapshot: The Sweetest Puzzle 34 CHAPTER 4: STRUCTURE-BASED DRUG DESIGN: FROM THE COMPUTER TO THE CLINIC 36 The Life of an AIDS
    [Show full text]