Tuber Elevatireticulatum Sp. Nov., a New Species of Whitish Truffle from Taiwan

Total Page:16

File Type:pdf, Size:1020Kb

Tuber Elevatireticulatum Sp. Nov., a New Species of Whitish Truffle from Taiwan Lin et al. Bot Stud (2018) 59:25 https://doi.org/10.1186/s40529-018-0241-y ORIGINAL ARTICLE Open Access Tuber elevatireticulatum sp. nov., a new species of whitish trufe from Taiwan Chieh‑Lung Lin1, Ming‑Jer Tsai2,3, Chuen‑Hsu Fu4, Tun‑Tschu Chang4, Hoi‑Tung Li5 and King‑Fai Wong6* Abstract Background: There are estimated 180–220 species of Tuber described in the world, but the diversity of the genus in Taiwan is poorly known, with only two species recorded, i.e., Tuber formosanum and T. furfuraceum. During our survey of hypogenous fungi in Taiwan, a whitish trufe belongs to Puberulum clade was collected from roots of Keteleeria fortunei var. cyclolepis in central Taiwan and appeared to difer from the two recorded species. Results: The whitish trufe is herein described as a new species Tuber elevatireticulatum, which is distinguished from closely resembled Asian whitish trufes species like Tuber thailandicum, T. panzhihuanense, T. latisporum and T. sinopu- berulum by the association with Keteleeria host, small light brown ascocarps with a dark brown gleba, dark brownish and elliptical ascospores ornamented with a prominently raised alveolate reticulum. Molecular phylogenetic analyses of both ITS and LSU loci clearly supports T. elevatireticulatum as a new species without any signifcant incongruence. Conclusions: The whitish trufe is herein described as a new species T. elevatireticulatum based on the evidence from morphology and DNA sequences. T. elevatireticulatum is the frst scientifc record of whitish trufe in Taiwan. Keywords: Keteleeria, Morphology, Phylogeny, Taxonomy, Taiwan, Trufe, Tuber Background them among the most famous and demanding trufes in True trufes, belonging to the genus Tuber (Tuberaceae, the world (Hall et al. 2007; Bonito et al. 2010a). Pezizales, Pezizomycetes), produce hypogeous asco- Index Fungorum (http://www.index​fungo​rum.org/ carps, which are formed in soil or sometimes within names​/Names​.asp) lists out three hundred and fve layers of leaf litter. Tey have lost the ability to actively Tuber names, however, many of them required clarif- discharge ascospores (Bonito and Smith 2016). Tey are cation (Suwannarach et al. 2015; Kinoshita et al. 2016). symbiotic fungi that develop association with fne roots Bonito et al. (2013) reassessed the published names and of specifc host trees (T. oregonense Trappe, Bonito and estimated 180–220 accepted species in the genus, was P. Rawl. with Douglas fr) or broad host ranges (T. aes- subdivided into 11 major clades according to their phy- tivum (Wulfen:Fr.) Spreng. with some plant species in logenetic relationships. Puberulum clade, Maculatum Betulaceae, Corylaceae, Fagaceae, Tiliaceae, Pinaceae and clade and closely related lineage Gibbosum clade were Cistaceae) (Hall et al. 2007). Te unique aroma makes phylogenetically grouped with as Puberulum Group some species greatly sought after as high-end culinary and members of this group commonly called “whit- ingredients throughout the world, especially in Europe ish trufe” in order to distinguish them from Italian (Hall et al. 2007). Te scarcity and irreplaceably scent of white trufe (T. magnatum in Aestivum clade) (Bonito French Périgord black trufe (T. melanosporum Vittad.) et al. 2010a; Lancellotti et al. 2016). Researches in Tuber and Italian Alba white trufe (T. magnatum Pico.) render have a long history and are well-documented in Europe and North America. However, research in Asia are still scarce despite the estimated high diversity (Bonito et al. 2010a; Kinoshita et al. 2011). Hypogeous fungi in Taiwan *Correspondence: [email protected] are poorly documented, with only T. formosanum Hu 6 Advance Plant Protection Limited Company, Hsinchu, Taiwan Full list of author information is available at the end of the article (invalidly described in 1992 due to the lack of designated © The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Lin et al. Bot Stud (2018) 59:25 Page 2 of 10 holotype and later re-typifcation in 2013) and T. furfu- Molecular analysis raceum Hu and Wang reported previously. Both species DNA extraction form symbiotic association with roots of Quercus glauca Approximately 9–14 mg of gleba tissue of fresh ascocarps (Tunb. ex Murray) Oerst. in the family of Fagaceae (Hu were ground by plastic pestle with 800 µl of Lysis Bufer 1992; Hu and Wang 2005; Qiao et al. 2013). A whitish (Taiwan Advanced Nanotech Inc.; containing Guani- trufe was mentioned in Hu (1987) but lacks a formal dine salt, Tris bufer and surfactants) in 1.5 ml centrifuge description. tube for DNA extraction. DNA was then extracted using During our survey of hypogenous fungi in Taiwan, a the TANBeadⓇ fungal Nucleic Acid Extraction Kit and whitish trufe was found under Keteleeria fortunei var. TANBeadⓇ Nucleic Acid Extractor (Taiwan Advanced cyclolepis (Flous) Silba, in Sitou Tract, Nantou County of Nanotech Inc.) following protocol of the manufacturer. central Taiwan. It resembles several known Asian whit- ish trufes in the Puberulum Clade, such as T. thailandi- Polymerase chain reaction (PCR) amplifcation cum Suwannarach et al. (2015), T. panzhihuanense Deng and sequencing et al. (2013), T. latisporum Chen and Liu (2007), T. pseu- Two nuclear ribosomal DNA loci were used for amplify- dosphaerosporum Fan and Yue (2013), and T. alboumbili- ing and sequencing, including the internal transcribed cum Wang and Li (Li et al. 2014), but difers from species spacer (ITS) with forward primer ITS5 (5′-GGA AGT in the Puberulum clade by the only species associated AAA AGT CGT AAC AAGG-3′) was paired with reverse with Keteleeria host, small light brown ascocarps with primer ITS4 (5′-TCC TCC GCT TAT TGA TAT GC-3′) hyphae-like hairs arised, dark brownish and elliptical (White et al. 1990); and ribosomal large subunit (LSU) ascospores ornamented with a prominently raised alveo- with forward primer LR0R (5′-ACC CGC TGA ACT late reticulum. TAAGC-3′) (Rehner and Samuels 1994) was paired with reverse primer LR5 (5′-TCC TGA GGG AAA CTTCG-3′) Methods (Vilgalys and Hester 1990). PCR was performed in 25 µl Sample collection reactions containing 2.5 µl DNA template, 1 µl primer Ascocarps were collected with three-pronged garden each, 8 µl ddH20 and 12.5 µl 2× Taq Master Mix (includ- cultivators, wrapped with tissue paper and kept in sep- ing 20 mM KCl, 4 mM MgSO 4·7H2O, 40 mM Tris–HCl arate plastic zipper bags until further morphological with pH 8.8, 0.2% Triton X-100, 20 mM (NH4)2SO4, and molecular analyses in laboratory. Ascocarps were 0.2 mg/ml BSA, 0.4 mM dNTP mix, 100 U/ml Taq DNA weighted freshly within 24 h, and the pH value of adja- Polymerase and stabilizers) (Genomics Bioscience and cent soil were measured by JENCO 6010M pH meter fol- Technology CO., Ltd.). PCR for ITS/LSU were run as lowing protocol of the manufacturer. an initial denaturation at 94/95 °C for 3/2 min, then at 94/95 °C for 30 s, annealing at 56/50 °C for 30 s, extension Morphological analysis at 72 °C for 30 s/1 min by 30 cycles and a fnal extension Ascocarps were cleaned with dry toothbrush, and then at 72 °C for 5/10 min on a multigene thermal cycler (Lab- cut into halves for observing gleba color or color change net International, Inc.). PCR products were checked on under air exposure. Sections of fresh tissue were made agarose gel containing 1.4% agarose and 0.5× Tris–ace- with a razor blade by hand, then mounted in 0.1% (w/v) tate-EDTA (TAE) and stained with 5 µl/100 ml Health- cotton blue in lacto-phenol for describing morpho- view™ nucleic acid stain under UV light by multilmage™ logical characteristics by a Leica DMLB light micro- light cabinet (Alphalmager 2200). Te PCR products scope. Ascospore dimensions, with the ornamentation were sent to Seeing Bioscience Co., Ltd. for purifcation excluded, were based on at least 100 randomly selected and sequencing by Sanger Sequencing Method (ABI ascospores. Te range of ascospore length to width ratio 3730). (Q), average Q with ± standard deviation (Q) was calcu- lated, and number of meshes across the ascospore width Phylogenetic analyses was measured. Six ITS and eight LSU sequences were obtained For scanning electron microscopy (SEM), ascospores from ascocarps of T. elevatireticulatum and were from dried gleba were mounted onto SEM stubs with submitted to GenBank with Accession Numbers carbon double-sided tape (Nisshin EM CO., Ltd, Tokyo), MF540616–MF540621 (ITS) and LSU sequences: coated with gold–palladium, then examined and photo- LC425119–LC425126 (LSU). Other whitish Tuber graphed with a tabletop HITACHI TM3000 SEM. Holo- sequences were obtained from GenBank database for type was deposited at Herbarium of Taiwan Forestry phylogenetic analyses (Table 1), with Choiromyces alve- Research Institute, Taipei, Taiwan (Index Herbarium: olatus as the outgroup. Sequences were aligned using TAIF). Lin et al. Bot Stud (2018) 59:25 Page 3 of 10 Table 1 Details of the whitish Tuber ITS sequences used in phylogenetic study Taxa Voucher no. Origin GenBank Accession no. References ITS LSU Choiromyces alveolatus MES97 USA HM485332 Bonito et al. (2010a) Choiromyces alveolatus HS2886 USA HM485333 Bonito et al. (2010a) Choiromyces alveolatus p688L USA EU669426 Unpublished Choiromyces alveolatus MES97 USA JQ925660 Bonito et al. (2013) T. alboumbilicum YAAS L2324a China KJ742702 Li et al. (2014) T. bellisporum JT7270 USA FJ809856 FJ809827 Bonito et al. (2010b) T. bellisporum JT6060 USA FJ809857 FJ809828 Bonito et al. (2010b) T. borchii GB45 Italy HM485344 Bonito et al.
Recommended publications
  • I Don't Really Like the Flavor Of
    Tobiah Orin Moshier my observations concerning the use of these gems in the don’t really like the flavor of kitchen. Hopefully this will “ mushrooms.” How many times help get you started on have we mycophiles heard that, your next SUCCESFUL right?I I usually respond with the Oregon truffle dining standard “Well, mushrooms are like experience. fruit. All species have vastly different flavors, textures, applications, etc. So, just because you don’t like bananas, you wouldn’t say that you don’t like all fruit. Apples and bananas couldn’t taste further apart, yet both belong under the same heading. The same goes for mushrooms.” And the same goes for truffles! Each species of hypogeous fungi that we call a “truffle” has its own, and very distinct, aroma and flavor characteristics. Yet, it seems that the mainstream culinary world often forgets this, hasn’t caught on, or frankly, doesn’t care. It’s a great much heat will cook out any flavor and way to get an aroma. So you have to be careful. Use extra twenty General truffle care your infusion as an accoutrement, and bucks for a and usage add it at the last possible moment before dish: “drizzled dining. If you absolutely have to cook in truffle oil” We hold truffles in such with it, though, do so gingerly and for or “topped high regard because of their the shortest amount of time possible. Or, with shaved powerful aroma and flavor. just “truffle” a food that doesn’t have to truffles.” But The best way that I have found be cooked at all, like prepared ice cream.
    [Show full text]
  • Truffles and False Truffles: a Primer by Britt A
    Two views of Tuber canaliculatum. Photos: John Plschke III. Truffles and False Truffles: A Primer by Britt A. Bunyard; photos by John Plischke III Nothing in biology makes sense except in the light of evolution. —Theodosius Dobzhansky (1900–1979) Truffles have been the stuff of legend and culinary delight for genus of the most highly prized species of truffles.) As with every- centuries, even millennia. Historically, all mushrooms have been thing in nature, though, there is a reason. regarded with mystery or suspicion due mostly to their habit of materializing overnight (completely unlike other “plants”) and Form follows function: the convoluted hymenium often in rings (which was clearly the work of dancing fairies). Truffles are curiouser still in that they develop entirely under- Although it may not be obvious upon first inspection, species of ground. Theophrastus (372–287 B.C.) is credited with the earli- truffle are most closely related to members of the order Pezizales, est authorship of the group; he considered them the strangest of which includes Peziza, the eyelash fungus (Scutellinia scutellata), all plants (you will recall that, until fairly recently, fungi were and the beautiful scarlet cup (Sarcoscypha coccinea). But how did classified as plants) because they lack any plantlike features, in- members of the genus Tuber and their relatives go from a flattened cluding roots. morphology and epigeous (above ground) growth habit to highly When we think of truffles, we hardly get an image of the convoluted and hypogeous (subterranean)? In his terrific book typical fungus fruitbody, much less that of a mushroom. Not The Fifth Kingdom, Bryce Kendrick illustrates the evolutionary classified with true mushrooms (the Basidiomycetes), the truffles sequence from a flattened, above-ground cup like Peziza that likely possess sac-like spore producing structures (the ascus; plural gave rise to fungi that were increasingly convoluted like Genea.
    [Show full text]
  • Discovering the Oregon Truffle by David C
    t h e w i l d e p i c u r e (Re) Discovering the Oregon Truffle by David C. Work Now, I haven’t traipsed the forest floor for Oregon Truffles, bringing them, dirt clods clinging, to my nostrils, the streaming sunspears piercing the moss-encrusted Douglas fir canopy above, but I have met the Oregon truffle with a beginner’s mind and have discovered in the kitchen an ally of joyful power and subtlety, an ingredient full of surprising contortionistic capabilities that challenges me to leave precon- ceptions behind and rediscover myself in a creative exploration of the senses. Someone once said that people who don’t like truffles don’t like sex. Oregon truffles are a world-class, gourmet ingredient. In 1983, “the father of American gastronomy,” Portland-born James Beard, declared their culinary values to be at least as good as their European cousins, the French Black and the Italian White. But they are (thankfully) quite different from those cousins. Me and Truffles Man, there is very little in this world comparable to the experi- ence of good food, mixed with good people, wine, and truffles. The innately pheromonal nature of the truffle and its effect on some mammals encourages direct raw comparisons to sex and other blissful states of sensual intensity sought after and cel- ebrated by dedicated epicureans around the world. Over the years as a chef, my experience with quality fresh truffles has necessarily been limited to relatively few occasions underwritten by the curiosity and decadence of those in whose employ I was fortunate enough to reside.
    [Show full text]
  • 9B Taxonomy to Genus
    Fungus and Lichen Genera in the NEMF Database Taxonomic hierarchy: phyllum > class (-etes) > order (-ales) > family (-ceae) > genus. Total number of genera in the database: 526 Anamorphic fungi (see p. 4), which are disseminated by propagules not formed from cells where meiosis has occurred, are presently not grouped by class, order, etc. Most propagules can be referred to as "conidia," but some are derived from unspecialized vegetative mycelium. A significant number are correlated with fungal states that produce spores derived from cells where meiosis has, or is assumed to have, occurred. These are, where known, members of the ascomycetes or basidiomycetes. However, in many cases, they are still undescribed, unrecognized or poorly known. (Explanation paraphrased from "Dictionary of the Fungi, 9th Edition.") Principal authority for this taxonomy is the Dictionary of the Fungi and its online database, www.indexfungorum.org. For lichens, see Lecanoromycetes on p. 3. Basidiomycota Aegerita Poria Macrolepiota Grandinia Poronidulus Melanophyllum Agaricomycetes Hyphoderma Postia Amanitaceae Cantharellales Meripilaceae Pycnoporellus Amanita Cantharellaceae Abortiporus Skeletocutis Bolbitiaceae Cantharellus Antrodia Trichaptum Agrocybe Craterellus Grifola Tyromyces Bolbitius Clavulinaceae Meripilus Sistotremataceae Conocybe Clavulina Physisporinus Trechispora Hebeloma Hydnaceae Meruliaceae Sparassidaceae Panaeolina Hydnum Climacodon Sparassis Clavariaceae Polyporales Gloeoporus Steccherinaceae Clavaria Albatrellaceae Hyphodermopsis Antrodiella
    [Show full text]
  • Current Status of Truffle Cultivation: Recent Results and Future Perspectives ______Alessandra Zambonelli1, Mirco Iotti1, Ian Hall2
    A. Zambonelli, M. Iotti, I. Hall Micologia Italiana vol. 44 (2015) ISSN 2465-311X DOI: 10.6092/issn.2465-311X/5593 Current status of truffle cultivation: recent results and future perspectives ________________________________________________________________________________ Alessandra Zambonelli1, Mirco Iotti1, Ian Hall2 1Department of Agricultural Science, Bologna University, viale Fanin 46, 40127 Bologna Italy 2 Truffles & Mushrooms (Consulting) Ltd, P.O. Box 268, Dunedin, New Zealand Correspondig Author M. Iotti e-mail: [email protected] Abstract In this review the current status of truffle cultivation in Europe and outside Europe is reported. While the cultivation of Tuber melanosporum (Périgord black truffle), Tuber aestivum (summer or Burgundy truffle) and Tuber borchii (bianchetto truffle) gave good results, only the Italian white truffle (Tuber magnatum), which is the most expensive, has yet to be successfully cultivated. In future a revolutionary approach to truffle cultivation would be the application of mycelial inoculation techniques for producing Tuber infected plants which will allow to select the fungal strains adapted to specific climatic, edaphic conditions and hosts. The new insights which will be gained by the extensive Tuber genome sequencing programme will also help to improve truffle cultivation techniques. Keywords: Tuber melanosporum; Tuber magnatum; Tuber borchii; Tuber aestivum; cultivation; mycelial inoculation Riassunto I tartufi sono funghi ascomiceti appartenenti all’ordine delle Pezizales anche se molti ricercatori considerano “veri tartufi” solo le specie apparteneti al genere Tuber, che comprende le specie di maggiore interesse gastronomico e commerciale quali Tuber melanosporum (tartufo nero pregiato), Tuber magnatum (tartufo bianco pregiato), Tuber aestivum (tartufo estivo o uncinato) e Tuber borchii (tartufo bianchetto). L’elevato valore economico di questi tartufi ha suscitato grande interesse riguardo la loro coltivazione fin dal lontano rinascimento.
    [Show full text]
  • Oregon Culinary Truffles
    Oregon Culinary Truffles An Emergent Industry for Forestry, Agriculture & Culinary Tourism A feasibility study by David Pilz, Charles Lefevre, Leslie Scott & James Julian 30 April 2009 Front cover: Photo at left by John Valls Photo at right by Andrea Johnson Back cover photo by Mike McDermott This publication is available at www.oregontruffles.org Executive Summary Of all the world’s culinary delicacies, truffles stand out as the ultimate luxury food. With the advent of technology to control the symbiosis between truffles and the roots of their host trees, truffles have at last entered the realm of agriculture. As with French wine grapes, Oregon has the climactic conditions required for truffle production. Given high demand, inadequate global supply and established profitability, Oregon has a unique opportunity to become a world leader in the production of this rare, highly-prized commodity. Annual truffle commerce is expected to exceed $6 billion within the next two decades, rivaling many other agricultural commodities traded worldwide. With adequate support, cultivated and native truffles produced in Oregon could annually exceed $200 million in direct sales income; counting secondary economic benefits, the value of the industry could exceed $1.5 billion. These figures rival the current value of the state’s lucrative wine industry, and could be greater if Oregon pursues truffle production with similar passion and focus. Other regions of the U.S., and other countries around the world, already recognize this economic opportunity and are formulating strategies, developing funding, and promoting their own truffle industries. Some are ahead of Oregon in one respect -- cultivation of the European truffle species.
    [Show full text]
  • Truffle Farming in North America
    Examples of Truffle Cultivation Working with Riparian Habitat Restoration and Preservation Charles K. Lefevre, Ph.D. New World Truffieres, Inc. Oregon Truffle Festival, LLC What Are Truffles? • Mushrooms that “fruit” underground and depend on animals to disperse their spores • Celebrated delicacies for millennia • They are among the world’s most expensive foods • Most originate in the wild, but three valuable European species are domesticated and are grown on farms throughout the world What Is Their Appeal? • The likelihood of their reproductive success is a function of their ability to entice animals to locate and consume them • Produce strong, attractive aromas to capture attention of passing animals • Androstenol and other musky compounds French Truffle Production Trend 1900-2000 Driving Forces: • Phylloxera • Urbanization Current Annual U.S. Import volume: 15-20 tons Price Trend:1960-2000 The Human-Truffle Connection • Truffles are among those organisms that thrive in human- created environments • Urban migration and industrialization have caused the decline of truffles not by destroying truffle habitat directly, but by eliminating forms of traditional agriculture that created new truffle habitat • Truffles are the kind of disturbance-loving organisms that we can grow Ectomycorrhizae: Beneficial Symbiosis Between the Truffle Fungus and Host Tree Roots Inoculated Seedlings • Produced by five companies in the U.S. and Canada planting ~200 acres annually • ~3000 acres planted per year globally • Cultivated black truffle production now
    [Show full text]
  • Historical Biogeography and Diversification of Truffles in the Tuberaceae and Their Newly Identified Southern Hemisphere Sister Lineage
    OPEN @ACCESS Freely available online ·.@"-PLOS.. IONE Historical Biogeography and Diversification of Truffles in the Tuberaceae and Their Newly Identified Southern Hemisphere Sister Lineage 1 14 13 2 3 Gregory Bonito *, Matthew E. Smith , Michael Nowak , Rosanne A. Healy , Gonzalo Guevara , 4 1 5 5 6 Efren Cazares , Akihiko Kinoshita \ Eduardo R. Nouhra , Laura S. Dominguez , Leho Tedersoo , 8 9 10 11 Claude Murae, Yun Wang , Baldomero Arroyo Moreno , Donald H. Pfister , Kazuhide Nara , 12 4 1 Alessandra Zambonelli , James M. Trappe , Rytas Vilgalys 1 Deparment of Biology, Duke University, Durham, North Carolina, United States of America, 2 University of Minnesota, Department of Plant Biology, St. Paul, Minnesota, United States of America, 31nstituto Tecnologico de Ciudad Victoria, Tamaulipas, Mexico, 4 Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, United States of America, Slnstituto Multidisciplinario de Biologfa Vegetal, Cordoba, Argentina, 61nstitute of Ecology and Earth Sciences and the Natural History Museum of Tartu University, Tartu, Estonia, 71nstitute National de Ia Recherche Agronomique et Nancy University, Champenoux, France, 8 New Zealand Institute for Plant & Food Research Ltd, Christchurch, New Zealand, 9 Department of Plant Biology, University of Cordoba, Cordoba, Spain, 10 Farlow Herbarium, Harvard University, Cambridge, Massachusetts, United States of America, 11 Department of Natural Environmental Studies, Graduate School of Frontier Science, The University of Tokyo, Chiba, Japan, 12 Dipartimento di Science Agrarie, Universita di Bologna, Bologna, Italy, 131nstitute of Systematic Botany, University of Zurich, Zurich, Switzerland, 14 Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America Citation: Bonito G, Smith ME, Nowak M, Healy RA, Guevara G, et al.
    [Show full text]
  • ECTOMYCORRHIZA DIVERSITY in NATURAL Tuber Aestivum Vittad.GROUNDS
    UNIVERSITY OF LJUBLJANA BIOTEHNICAL FACULTY DEPARTMENT OF FORESTRY AND RENEWABLE FOREST RESOURCES Yasmine PIÑUELA SAMANIEGO ECTOMYCORRHIZA DIVERSITY IN NATURAL Tuber aestivum Vittad.GROUNDS B. Sc. THESIS Academic study Programmes Ljubljana, 2012 1 UNIVERSITY OF LJUBLJANA BIOTEHNICAL FACULTY DEPARTMENT OF FORESTRY AND RENEWABLE FOREST RESOURCES Yasmine PIÑUELA SAMANIEGO ECTOMYCORRHIZA DIVERSITY IN NATURAL Tuber aestivum Vittad.GROUNDS B. Sc. THESIS Academic Study Programmes PESTROST EKTOMIKORIZE NA NARAVNIH RASTIŠČIH GOMOLJIKE Tuber aestivum Vittad. DIPLOMSKO DELO Univerzitetni študij – 1. stopnja Ljubljana, 2012 I PIÑUELA SAMANIEGO Y. Ectomycorrhiza diversity in natural Tuber aestivum Vittad.grounds. B. Sc. Thesis. Ljubljana, Univ. of Lj., Biotechnical facul, Dep. of Forestry and Ren. For. Res., 2012 Graduation thesis is the conclusion of the program at the Department of Forestry and Renewable Forest Resources Biotechnical Faculty at University of Ljubljana and University of Escuela de Ingeniería Técnica Forestal, Universidad Politécnica de Madrid. Research / field work was carried out in Slovenian Forestry Institute. Commission for the Study and Student Affairs at Department of Forestry and Renewable Forest Resources BF approved the topic of this thesis on a meeting on June 1st. 2012 and appointed as supervisor prof. dr. Hojka Kraigher and dr. Tine Grebenc as co-supervisor. Commission for evaluation and presentation: President: Member: Member: Date of presentation: This thesis is the result of my own research work. I agree to publish this work in full text on the web site of the Digitalna knjižnica Biotehniške fakultete. I declare that the work that I submitted in electronic form is identical to the printed version. Yasmine PIÑUELA SAMANIEGO II PIÑUELA SAMANIEGO Y.
    [Show full text]
  • <I>Tuber Xanthomonosporum</I>, a New <I>Paradoxa
    ISSN (print) 0093-4666 © 2015. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON http://dx.doi.org/10.5248/130.61 Volume 130, pp. 61–68 January–March 2015 Tuber xanthomonosporum, a new Paradoxa-like species from China Yuan Qing1,5, Shu-hong Li2, Cheng-yi Liu3, Lin Li2, Mei Yang3, Xiao-lei Zhang2, Xiao-lin Li 4, Lin-Yong Zheng1,4*a, & Yun Wang6*b 1 Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, School of Life Science, Sichuan University, 24 (South part) First Ring Road, Chengdu, Sichuan, China 2 Biotechnology & Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, 9 Xueyun Road, Kunming, Yunnan, China 3Sichuan Panzhihua Academia of Agriculture and Forestry, 1719 Panzhihua Road, Panzhihua, Sichuan, China 4Sichuan Academy of Agricultural Sciences, 20 Jingjusi Road, Chengdu, Sichuan, China 5Department of Light Chemical Engineering, Xichang College, Mapingba Road, Xichang, Sichuan, China 6Yunnan Institute for Tropical Crop Research, 99 Xuanwei Road, Jinghong, Yunnan, China * Correspondence to: [email protected] [email protected] Abstract — A new species, Tuber xanthomonosporum, is described based on specimens collected under Pinus yunnanensis in Panzhihua, Sichuan Province, China. Tuber xanthomonosporum invariably has only one spore per ascus. It can be distinguished from the three other Chinese Paradoxa-like species — T. gigantosporum, T. sinomonosporum, and T. glabrum — by its whitish to yellow-brownish gleba, two-layered peridium, and spiky cystidia. Molecular analysis also supports T. xanthomonosporum as a unique species. Key words — taxonomy, Pezizales, Yunnan Introduction The genusParadoxa was erected by Mattirolo in 1935 in the Tuberaceae to accommodate Paradoxa monospora Mattir., a species which, invariably, has one-spored asci (Montecchi & Sarasini 2000; Læssøe & Hansen 2007).
    [Show full text]
  • Ascoma Genotyping and Mating Type Analyses of Mycorrhizas and Soil
    Ascoma genotyping and mating type analyses of mycorrhizas and soil mycelia of Tuber borchii in a truffle orchard established by mycelial inoculated plants Pamela Leonardi, Claude Murat-Furminieux, Federico Puliga, Mirco Iotti, Alessandra Zambonelli To cite this version: Pamela Leonardi, Claude Murat-Furminieux, Federico Puliga, Mirco Iotti, Alessandra Zambonelli. Ascoma genotyping and mating type analyses of mycorrhizas and soil mycelia of Tuber borchii in a truffle orchard established by mycelial inoculated plants. Environmental Microbiology, Society for Applied Microbiology and Wiley-Blackwell, 2019, 10.1111/1462-2920.14777. hal-02352497 HAL Id: hal-02352497 https://hal.archives-ouvertes.fr/hal-02352497 Submitted on 6 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - ShareAlike| 4.0 International License Environmental Microbiology (2019) 00(00), 00–00 doi:10.1111/1462-2920.14777 Ascoma genotyping and mating type analyses of mycorrhizas and soil mycelia of Tuber borchii in a truffle orchard established by mycelial inoculated plants Pamela Leonardi,1 Claude Murat,2 Federico Puliga,1 Introduction Mirco Iotti3 and Alessandra Zambonelli 1* Ectomycorrhizal fungi assist plants in their growth, therefore, 1Department of Agricultural and Food Sciences, playing key roles in forest ecosystem functioning.
    [Show full text]
  • 2 Pezizomycotina: Pezizomycetes, Orbiliomycetes
    2 Pezizomycotina: Pezizomycetes, Orbiliomycetes 1 DONALD H. PFISTER CONTENTS 5. Discinaceae . 47 6. Glaziellaceae. 47 I. Introduction ................................ 35 7. Helvellaceae . 47 II. Orbiliomycetes: An Overview.............. 37 8. Karstenellaceae. 47 III. Occurrence and Distribution .............. 37 9. Morchellaceae . 47 A. Species Trapping Nematodes 10. Pezizaceae . 48 and Other Invertebrates................. 38 11. Pyronemataceae. 48 B. Saprobic Species . ................. 38 12. Rhizinaceae . 49 IV. Morphological Features .................... 38 13. Sarcoscyphaceae . 49 A. Ascomata . ........................... 38 14. Sarcosomataceae. 49 B. Asci. ..................................... 39 15. Tuberaceae . 49 C. Ascospores . ........................... 39 XIII. Growth in Culture .......................... 50 D. Paraphyses. ........................... 39 XIV. Conclusion .................................. 50 E. Septal Structures . ................. 40 References. ............................. 50 F. Nuclear Division . ................. 40 G. Anamorphic States . ................. 40 V. Reproduction ............................... 41 VI. History of Classification and Current I. Introduction Hypotheses.................................. 41 VII. Growth in Culture .......................... 41 VIII. Pezizomycetes: An Overview............... 41 Members of two classes, Orbiliomycetes and IX. Occurrence and Distribution .............. 41 Pezizomycetes, of Pezizomycotina are consis- A. Parasitic Species . ................. 42 tently shown
    [Show full text]